Характеристики износостойких сталей
Главное свойство износостойких сталей – повышенная твердость, которая обеспечивается присутствием в составе марганца и других легирующих элементов. Причем чем сильнее нагрузка на элемент, тем более износостойкой и твердой становится деталь, а разрушения поверхности и внутренней структуры не происходит. При высоких показателях прочности материал остается пластичным, не крошится, поддается сварке
При выборе высокопрочного сплава важно учитывать условия и интенсивность эксплуатации детали или узла. У проката, прошедшего закалку, повышается устойчивость ко всем разновидностям износа
Сферы применения износостойких сплавов
Использование высокопрочных сталей увеличивает срок эксплуатации оборудования, машин и механизмов, значительно снижает затраты на их ремонт и обслуживание, устраняет простои на производстве. Металлопрокат используется в самых разных отраслях.
- Автомобилестроение Производство деталей и узлов, подверженных интенсивным нагрузкам и работающих в условиях трения – ролики и шарики подшипников, втулки, сменные накладки, поршневые кольца, коленчатые валы и другие фасонные изделия, бронированные элементы.
- Дорожная и строительная техника Изготовление экскаваторных ковшей, режущих кромок техники, козырьков землечерпалок, гидравлических молотов, элементов разравнивателя для асфальтоукладочной машины. В качестве футеровки желобов оборудования, дробилок, контейнеров, лопастей барабана, бетономешалок.
- Тяжелая карьерная и горнодобывающая техника Изготовление режущих кромок оборудования, кузовов для самосвалов, транспортировочных емкостей и желобов, бункеров, футеровка накопителей и других элементов дробилок, режущий инструмент.
- Железнодорожная отрасль Облицовка вагонов, в качестве элементов железнодорожных полотен, звеньев гусеничных механизмов, крестовин и т. д.
- Сельхозтехника и оборудование для лесозаготовки Концевые механизмы лесопогрузчика, перегружателя, элементы отжимного пресса, плужного оборудования, оборудования для транспортировки и хранения силоса.
- Станкостроение В качестве элементов производственного оборудования, подвергающегося серьезным нагрузкам и трению: валы, узлы, агрегаты, детали.
- Строительная отрасль Изготовление металлоконструкций различного назначения, предполагающих особую прочность строения. Для этих целей используются конструкционные марки.
Износостойкие стали
Для деталей, работающих на износ в условиях абразивного трения и высоких давлений и ударов (например, для траков некоторых гусеничных машин, щек дробилок, черпаков землечерпательных машин, крестовин железнодорожных и трамвайных путей и т. д.), применяют высокомарганцевую литую аустенитную сталь 110Г13Л, содержащую 0,9-1,3 % Си 11,5-14,5 % Мп.
Структура этой стали после литья состоит из аустенита и избыточных карбидов (Fe, Мп)3С, выделяющихся по границам зерен, что снижает прочность и вязкость стали. В связи с этим литые изделия закаливают с нагревом до 1100 °С и охлаждением в воде. При таком нагреве растворяются карбиды, и сталь после закалки приобретает более устойчивую аустенитную структуру. Сталь с аустенитной структурой характеризуется низким пределом текучести, составляющим примерно одну треть от временного сопротивления, и сильно упрочняется под действием холодной деформации.
Сталь 110Г13Л обладает высокой износостойкостью только при ударных нагрузках, когда происходит деформационное упрочнение аустенита и образование е-мартенсита с ГПУ-решеткой. При небольших ударных нагрузках в сочетании с абразивным изнашиванием либо при чистом абразивном изнашивании мартен- ситное превращение не протекает и износостойкость стали 110Г13Л невысокая.
Содержание фосфора
При повышенном содержании фосфора сталь 110Г13Л хладноломка. При содержании в стали более 0,05 % Р по границам зерен образуется хрупкая фосфидная эвтектика, на которой зарождается и растет хрупкая трещина при низких температурах, поэтому при использовании стали в северных районах содержание фосфора должно быть равно или менее 0,02-0,03 %.
Высокой стойкостью при циклическом контактно-ударном нагружении и ударно-абразивном изнашивании обладает литая сталь 60Х5Г10Л, претерпевающая при эксплуатации.
Применяемость
Для изготовления лопастей гидротурбин и гидронасосов, судовых гребных винтов и других деталей, работающих в условиях изнашивания при кавитационной эрозии, применяют стали с нестабильным аустенитом 30Х10Г10 и 0Х14АГ12 и 0Х14Г12М, испытывающим при эксплуатации частичное мартенситное превращение.
В процессе работы изделий, подверженных кавитационной эрозии, деформация и разрушение поверхностных слоев приводят
к тому, что на поверхности под действием гидравлических ударов образуется новый слой мартенсита, обладающий высокой прочностью. Многократное повторение этого процесса объясняет высокую стойкость сталей с метастабильным аустенитом.
Немагнитные стали
Марки нержавеющей стали и их характеристики
В электромашиностроении от материала требуются иногда немагнитность и механическая прочность одновременно.
Вместо цветных металлов для этой цели применяют более дешевые немагнитные аустенитные стали. Аустенитные нержавеющие (см. гл. XIX) или износоустойчивые (см. гл. XX) стали пригодны как немагнитные, если по прочностным свойствам они удовлетворяют поставленным требованиям. Однако сталь часто не проходит по прочностным и технологическим свойствам, а аустенитные нержавеющие стали слишком дороги в качестве материала для деталей большой массы (например, для немагнитных бандажных колец в турбогенераторах). В этом случае применяют стали, легированные марганцем, хромом, алюминием при сравнительно повышенном содержании углерода и ограниченном содержании никеля.
Аустенитная структура получается в результате закалки, а упрочнение — при холодном наклепе (если в закаленном состоянии прочность недостаточна). Сталь должна обладать устойчивым аустенитом, т. е. точка должна лежать ниже чтобы деформация при комнатной температуре не вызывала образования мартенсита.
Состав некоторых промышленных немагнитных сталей приведен в табл. 100.
Раньше в качестве немагнитных применяли стали с высоким содержанием никеля . В настоящее время найдены составы с меньшим содержанием дефицитного никеля или даже совершенно без никеля где в качестве аустенитообразователя выступает марганец. Марганец как аустенитообразователь действует в два раза слабее никеля, поэтому для получения устойчивого аустенита увеличивают содержание углерода. Если полностью отказаться от присадки никеля, то аустенитная структура и немагнитность могут быть получены в стали состава: Это — сталь типа стали Гадф и льда с присущей ее склонностью сильно упрочняться при деформировании и, следовательно, плохо подвергаться обработке давлением, резанием и т. д., что в данном случае является недостатком. Присадка алюминия в марганцовистые аустенитные стали сильно уменьшает их склонность к упрочнению при деформации.
Таблица 100. (см. скан) Состав немагнитных сталей, %
Такая особенность легирования марганцовистого аустенита алюминием использована в наиболее экономичной и достаточно технологичной немагнитной стали Механические свойства этой стали в закаленном состоянии следующие:
Предел прочности может быть повышен наклепом до 1500—1800 МПа при одновременном снижении пластичности. Все перечисленные аустенитные стали не являются коррозионно устойчивыми; стойкость Против коррозии у них выше, чем у обычной углеродистой стали. При одновременном требовании немагнитности и
Виды стали и маркировка
Для одних изделий нужна высокая износоустойчивость, для других стойкость к коррозии, а для третьих – магнитные свойства.
Но большая часть сплавов требуется для изготовления конструкционной стали, которая разделяется по видам и маркируется буквами:
- «С» — для строительства. С низким содержанием легирующих компонентов, отличающаяся хорошей свариваемостью.
- Для пружин (пружинная). В данных сплавах присутствуют отличные показатели упругости, сопротивляемости к разрушительным процессам, прочность на усталость. Для изготовления рессор, пружин.
- «Ш» для подшипников. Из названия понятно, что данные сплавы нужны для изготовления элементов подшипников для различных узлов, механизмов. Главные свойства – износоустойчивость, отменная прочность, и малая текучесть.
- Сталь стойкая коррозии или нержавейка. Данный вид отличает высокое содержание легирующих компонентов, повышенная стойкость к агрессивным средам и веществам.
- Жаропрочные марки стали – сплавы, которые могут применяться в изделиях, способных функционировать под нагрузкой при высоких температурах. Сфера применения – элементы различных двигателей.
- «У» для инструментов или инструментальная сталь нашла свое применение в изготовлении инструментов для измерений в металлообработке и для деревообрабатывающей промышленности.
- «Р» быстрорежущая сталь востребована для производства инструментов в металлообрабатывающем оборудовании.
- Цементирующая – сплав, применяемый для узлов и механизмов, которые функционируют при значительных поверхностных нагрузках.
Для остальных сталей (пружинная, инструментальная) не имеют обозначений. Указывается только химсостав.
Кроме видов сталь классифицируется по химсоставу, качеству, способу плавки, структуре, назначению.
Так ли хороша дамасская сталь
Качественная дамасская сталь по режущим характеристикам превосходит многие марки.
Узор на лезвии ножа характерен для дамасской стали из-за особого процесса подготовки стальной пластины.
В производстве используется особая технология:
- Собираются мягкие и твердые виды стали.
- Стальной пакет прогревается до температуры ковки.
- Наносятся специальные добавки (для улучшения сварки между пластинами).
- Пакет многократно пробивают молотом, отправляют в горн.
- Когда пластина сформирована, она прогревается. Рубится на несколько частей, которые снова собираются в пакет.
- Цикл повторяется.
Количество повторений может составлять от 3 до 10. Чем их больше, тем качественнее сталь. На свойства клинка влияет соотношение мягких и твердых сталей. Последних должно быть больше.
Дамасский сплав имеет жесткость 60 HRC, отличается прочностью и остротой кромки. Еще одним преимуществом является удержание режущих качеств. Изделия часто украшены узорами, образующимися из-за неоднородной структуры.
Материал обладает большим недостатком: неустойчив к ржавчине и требует тщательного ухода.
Для поддержания рабочих характеристик и внешнего вида необходима защита от влаги, нужно протирать лезвие после использования, обрабатывать специальным маслом.
Поэтому на сегодняшний день дамасская сталь уступает большинству современных сплавов.
Характеристики износостойких сталей
Главное свойство износостойких сталей – повышенная твердость, которая обеспечивается присутствием в составе марганца и других легирующих элементов. Причем чем сильнее нагрузка на элемент, тем более износостойкой и твердой становится деталь, а разрушения поверхности и внутренней структуры не происходит. При высоких показателях прочности материал остается пластичным, не крошится, поддается сварке
При выборе высокопрочного сплава важно учитывать условия и интенсивность эксплуатации детали или узла. У проката, прошедшего закалку, повышается устойчивость ко всем разновидностям износа
Конструкционные износостойкие стали
Под термином «конструкционные стали» подразумевается ряд сплавов, используемых в изготовлении разнообразных узлов, деталей, конструкций и механизмов в машиностроении и строительной области. Конструкционные стали отличаются от других типов особой прочностью.
Конструкционные стали имеют несколько классификаций. В частности их можно разделить по содержанию углерода и добавок на углеродистые и легированные; по способам обработки (цементуемые и улучшаемые), по предназначению – пружинные, подшипниковые. Особую категорию таких сталей составляют износостойкие сплавы, разрабатываемые для работы в экстремально тяжелых условиях, где присутствует высокий абразивный износ, износ в результате скольжения и ударов.Эти сплавы разрабатываются специально для механизмов и оборудования, работающих в горно-добывающей и лесопильной промышленности, на переработке отходов и металлолома, в строительстве дорог, почвообработке и т. д.
Износостойкие стали должны обладать повышенной твердостью. Этого добиваются различными способами. Как правило, для получения данного типа сплавов используются разнообразные легирующие элементы, в частности, марганец. Из отечественных сплавов такой сталью является высокомарганцовистая сталь Г13. Она имеет от 1 до 1,4% углерода и от 12 до 14% марганца в своем составе. Поскольку эта сталь относится к аустенитным, ее характерной особенностью является только стойкость к интенсивному наклепу.
Шарикоподшипниковые стали предназначены для работы в условиях повышенного истирающего износа, возникающего вследствие трения скольжения и трения качения. Эти стали содержат приблизительно 1% углерода и до 1,5% хрома. К таким сплавам относятся отечественные стали ШХ6, ШХ9, ШХ15.
Особняком стоят высокопрочные износостойкие легированные военные стали типа А3 и стали производства концерна SSAB Oxelosund AB, в частности, линейка сплавов, объединенных общим названием Hardox. Так же, как и вышеописанные марки шарикоподшипниковых сталей, Хардокс-стали имеют в своем составе высокое содержание хрома. Например, в марке Hardox 500 от 1 до 1,5% в зависимости от толщины листа. Однако содержание углерода в этих сплавах намного ниже. Отдельные марки этого бренда включают всего 0,2% С. Концентрация углерода влияет на такие характеристики сталей, как твердость и прочность. Несмотря на то, что сплавы Hardox относятся к низкоуглеродистым, они, тем не менее, являются высокопрочными. К примеру, сталь Hardox 450 обладает твердостью в 425-475 НВ и прочностью на разрыв – 1400 МПа. Производитель добивается этого, применяя различные инновационные методики, например, миролегирование, продувку инертными газами в ковше, а также выбирая исходное сырье по высоким стандартам. На заводах концерна практикуется, в частности, использование руды с низким содержанием серы. Сравнительные испытания на Уралвагонзаводе иностранных и Российских сталей в рамках программы импортозамещения показывают, что ХАРДОКС многократно проигрывает А3.
Лабораторные испытания на истирание и износ не дают ХАРДОКСУ эксплуатироваться более 3 месяцев, тогда как А3 практически вечен.
В отечественной практике используется в качестве износостойкого сплава также сталь с высоким содержанием углерода и кремния – так называемая графитизированная сталь. Количество этих двух элементов варьирует от 1,3 до 1,75%. За счет присутствия кремния часть углерода образует графит. Эти сплавы применяются для выплавки валов, производства штампов, калибров, пресс-форм.
Высокомарганцевые стали наподобие марки Г13 уступает по твердости (эта характеристика составляет примерно 200-250 НВ), но относится к недорогим вариантам износостойких сталей. Максимальную износостойкость этот сплав приобретает после закалки при температуре от 1000 до 1100 °С и охлаждении на воздухе. Такая сталь может быть применена для производства звеньев тракторных гусениц, крестовин, устанавливаемых на железных дорогах.
Использование износостойких сталей является весьма выгодным и перспективным в любой отрасли, где детали, узлы и другие изделия из стальных сплавов подвергаются повышенным нагрузкам. Поэтому с каждым днем спрос на такие стали неуклонно и стремительно растет.
Износостойкая сталь DILLIDUR — Металлургическая компания
Сталь марки DILLIDUR – износостойкая листовая сталь, которая относится к классу конструкционных сталей средней твердости от 325 до 600 по Бринеллю. Изготавливается сталь немецкой компанией DILLINGET HUTTE GTS.
Производитель использует уникальную технологию высокопрочной закалки и быстрого охлаждения в воде, что придает стали высокую прочность и требуемую жесткость. Сбалансированный химический состав стали Dillidur позволяет выполнять беспроблемную резку, сварку и гибку.
Благодаря этим свойствам сталь DILLIDUR отлично подходит для применения в проектах, к которым предъявлены повышенные требования износостойкости, прочности и гибкости.
Характеристики и применение износостойкой стали Dillidur
Одним из главных преимуществ листовой стали Dillidur стоит назвать защиту оборудования и отдельных деталей от повышенного износа, увеличение срока их эксплуатации, а также снижение общего веса конструкций и механизмов. Также износостойкие стали Dillidur отлично зарекомендовали себя в работе при пониженных температурах.
Кроме того, сталь для листов Dillidur — это:
- повышенная прочность и долговечность;
- устойчивость к изнашиванию и разрушительному воздействию агрессивных материалов;
- устойчивость к появлению трещин и вмятин;
- высокая устойчивость ко всем видам износа, включая абразивный и истирание;
- хорошая свариваемость, гибкость и обрабатываемость.
Благодаря техническим свойствам сталь Dillidur применяется в строительно-дорожной, горнодобывающей, лесозаготовительной, сельскохозяйственной отраслях, а также при переработке металлолома при:
- производстве спецтехники: землеройные машины, погрузчики, самосвалы, бульдозеры, сельскохозяйственная техника, электрокаров;
- производстве вагонеток, перегружателей;
- изготовлении элементов спецтехники: ковши экскаваторов, режущие лезвия, ножи, дробилки, рыхлители, лемеха, молоты;
- производстве конвейеров, прессов, транспортеров, просеивателей, измельчителей, дробильно-сортировочного оборудования.
* Dillidur – торговая марка высокопрочных сталей компании DILLINGET HUTTE GTS.
Компания ХотСтил осуществляет прямые комплексные поставки износостойких сталей Dillidur 325L, 400V, 450V, 500V и Dilidur Impact в Казахстан, Россию и Беларусь. Вы можете задать любой уточняющий вопрос и оформить заказ любым удобным для Вас способом
Классификации сталей
Чтобы разобраться во всем многообразии марок, металлурги применяют несколько классификаций:
Стали классифицируют:
- по химическому составу;
- по структуре;
- по назначению;
- по качеству;
- по степени раскисления.
Существуют и другие классификации, но их применение ограничивается научными и узкоспециальными областями применения.
Классификация по химическому составу
По химическому составу классификацию проводя, подразделяя на: углеродистые и легированные стали, которые, в свою очередь, подразделяются на:
углеродистые | Содержание углерода, % |
< 0,2 | низкоуглеродистые |
0,2–0,45 | среднеуглеродистые |
>0,45 | высокоуглеродистые |
легированные | Содержание присадок,% |
<2.5 | низколегированные |
2,5-10 | среднелегированные |
>10 | высоколегированные |
Содержание углерода не влияет на степень легирования, Если доля Mn превышает 1%, а Si- 0,9%, они также признаются легирующими добавками
Классификация по структуре
Структура стали, кроме ее химического состава, зависит от многих факторов, влиявших на нее на этапах отливки и термической обработки. Классификация по структуре после процедуры отжига, во время которого заготовку нагревают до температуры пластичности и медленно охлаждают прямо в печи, следующая:
- доэвтектоидные – с избыточными ферритовыми включениями;
- эвтектоидные – ферриты замещаются перлитами;
- заэвтектоидные – с включениями вторичных карбидов;
- ледебуритные – с включениями первичных карбидов;
- аустенитные;
- ферритные.
Микроструктура ледебуритной стали
Эвтектоидная сталь и ее микроструктура
После проведения процедуры нормализации, заключающейся в нагревании до температуры пластичности и остывании на открытом воздухе, классификация различает такие группы, как:
- перлитные;
- аустенитные;
- ферритные.
Микроструктура перлита
Классификация по степени раскисления
Процесс раскисления приводит к снижению содержания кислорода в расплаве. Классификация предусматривает такие классы, как:
- спокойные (сп);
- полуспокойные (пс);
- кипящие (кп).
Основными раскислительными добавками служат Mn, Al, Si.
Классификация сталей по степени раскисления
Где и как применяют износостойкую сталь
Очевидно, что износостойкая высокопрочная шведская сталь обладает рядом неоспоримых преимуществ, которые позволяют использовать ее в работе с особо мощными машинами и механизмами. Потому износостойкая сталь давно используется Volvo (Вольво), Caterpillar (торговая марка CAT), Komatsu (Коматсу), LIEBHERR (Либхер), NEW HOLLAND CONSTRUCTION (Нью Холланд Констракш), John Deere (Джон Дир) — мировыми лидерами по производству дорожной, сельскохозяйственной и строительной техники. В зависимости от типа техники, износостойкая сталь применяется как:
- в технике для переработки, измельчения отходов (Hardox 500-600 НВ; Swebor 450-500 НВ):
- футеровка сортирующих карманов;
- кромки прессователей мусоровозов;
- фрезы измельчителей, ножи грануляторов;
- грохоты, конвейерные ленты, сита, ножи;
- молотковые дробилки;
- стенки контейнеров.
- Для дорожно-строительной техники (Hardox 400-450 НВ; Swebor 400-450 НВ):
- гидравлический молот, футеровка желобов для гравия, лопастей барабанов, контейнеров;
- экскаваторные ковши и их части, ковши с режущими кромками и боковинами;
- режущие кромки отвала бульдозера;
- желоб для измельчителя, отвал грейдера;
- пластины разравниватели асфальтоукладчика;
- футеровка дробилки.
- Для карьерной и горно-шахтной техники (Hardox 500-600 НВ; Swebor 450-500 НВ):
- режущие кромки механических лопат, бункера, отвалов бульдозеров;
- легкие кузова для самосвалов;
- футеровка разгрузочных накопителей, ударные пальцы, молотки и щёки дробилок;
- транспортировочные желоба.
- Для горнодобывающей техники (Hardox 500-600 НВ; Swebor 450-500 НВ):
- легкие кузова самосвалов;
- ковши карьерных погрузчиков;
- бункеры главных дробилок;
- облицовка накопителей, стенки и полы вагонов;
- грохоты, футеровка разгрузочных пунктов, мерных бункеров и скип.
- Для лесозаготовительной и сельскохозяйственной техники (Hardox 450-550 НВ; Swebor 450-500 НВ):
- многоцелевые захваты, лемеха и долота плужного оборудования;
- перемешивающие лотки для силоса;
- захваты лесопогрузчика и перегружателя;
- ножи отжимного пресса.
- Для гражданского бронирование автомобилей и помещений (Hardox Extreme).
- Мишени и отражающие щиты для стрелковых тиров (Hardox Extreme).
- Футеровка бетоносмесителя, броня мобильной дробилки, футеровка камеры и отражающей плиты роторной дробилки, сита грохотов и измельчителей, ножи и пластины шредера, измельчителей, измельчителей, дезинтеграторов, аллигаторных механических и гидравлических ножниц, звенья высоконагруженных цепей, конвейерные шнеки, шнековые буры ( Hardox 500-600 НВ; Swebor 450-500 НВ).
- Элементы железнодорожного полотна (Hardox 500-600 НВ; Swebor 450-500 НВ).
Годовой выпуск износостойкой стали Swebor сейчас составляет 20 тыс. тонн в год, стали Hardox — 40 тысяч. Ее применение в ремонте, усовершенствовании или усилении техники более, чем оправдано и гарантирует:
- уменьшение веса;
- сокращение простоя оборудования и машин за счет увеличение срока эксплуатации;
- снижение затрат на проведение техобслуживания.
Высокое качество сплава и умеренная стоимость высокопрочной износостойкой шведской стали подтверждается ее всемирной популярностью.
Классификация по назначению
Выше уже были приведена классификация видов сталей по назначению. Маркировка конструкционных сталей включает в себя такие обозначения:
- Строительная – обозначается буквой С и цифрами, характеризующими предел текучести.
- Подшипниковая – обозначается буквой Ш. Далее идет обозначение и содержание легирующих добавок, в основном, хрома.
- Инструментальная нелегированная – обозначается буквой У и содержанием углерода в десятых долях процента.
- Быстрорежущая – обозначается буквой Р и символами легирующих компонентов.
- Нелегированная конструкционная сталь имеет в обозначении символы Сп и число, показывающее содержание углерода в десятых или сотых долях процента.
Классификация стали по назначению
Остальные разновидности, в том числе и инструментальные марки из легированных сталей, не имеют специальных обозначений, кроме химического состава, поэтому расшифровку и назначение отдельных видов можно определить только по справочной литературе.
Это интересно: Нержавеющая бытовая сталь 40х13 — характеристика и применение
Ферриты
Для сокращения электрических потерь используют повышение удельного сопротивления. Магнитная сталь играет важную роль в современном производстве. Большим сопротивлением обладают магнитные материалы — ферриты. Ферриты получают из оксидов методом порошковой металлургии. Такие материалы обладают свойствами ферромагнетика и диэлектрика, что позволяет их использовать там, где применяются высокие и сверхвысокие частоты.
Себестоимость ферритных сердечников ниже, чем остальных, благодаря автоматизации производства. Сплавы можно подразделить на 4 группы:
- спеченные;
- деформируемые;
- литые;
- прессмагниты.
Классификация стали по содержанию примесей
Кроме классификации по содержанию углерода и по степени раскисления, применяется классификация по качеству, определяемому методом производства и содержанием вредных примесей, прежде всего, серы и фосфора. Классификация сталей по качеству:
Группа | Сера, % | Фосфор, % |
Обыкновенные (рядовые) | < 0,06 | < 0,07 |
Качественные | < 0,04 | < 0,035 |
Высококачественные | < 0,025 | < 0,025 |
Особовысококачественные | < 0,015 | < 0,025 |
В некоторых классификациях особовысококачественные включают в состав высококачественных.
Обыкновенного качества
Большую часть рядовых сталей составляют углеродистые сплавы (С < 0,6%) Их производят мартеновским способом или конвертерным с использованием кислорода. Эти виды стали предназначены для самых массовых применений, недороги в производстве, хорошо поддаются обработке, но и не обладают особой прочностью или износостойкостью.
Качественные
К качественным относятся как углеродистые, так и легированные. Также производятся мартеновским или конвертерным способом с кислородным дутьем, но к составу сырья предъявляются намного более строгие требования, чем в случае рядовых. Также строже требования к соблюдению параметров плавки и розлива. Такие группы сталей стоят дороже и применяются для более ответственных деталей, работающих в условиях серьезных нагрузок.
Классификация сталей по качеству
Высококачественные
Эта группа производится более совершенными с точки зрения технологии способами, такими, как выплавка в электропечах. Особенности технологии производства позволяют добиться особо низкого содержания вредных примесей неметаллов и газовых включений, что гарантирует высокие механические свойства. Такие стали используются в особо ответственных узлах, а стоимость их в несколько раз выше, чем обычных.
Высокопрочная сталь
Методы анализа сложных сплавов
Из сказанного выше становится очевидно, насколько велика номенклатура сплавов, представляющих практический и научный интерес, и как разнообразны аналитические задачи. Современные подходы к построению системы контроля качества требуют использования измерительных средств, которые обеспечивают возможность оперативного получения точных результатов анализа элементного состава металла или сплава. При этом обязательно учитывается экономический эффект и окупаемость приборов.
Рентгено-флюоресцентный анализ
Возможности рентгено-флуоресцентного анализа при исследовании сложных сплавов впечатляют. Метод отличается экспрессностью, и позволяет с высокой степенью точности определить элементы от бериллия до урана, начиная с тысячных долей процента до 100%.
К преимуществам РФА относят:
- Возможность проведения исследования твердых проб без изменения их агрегатного состояния, а жидких — без необходимости отделения органики.
- Приборы не нуждаются в калибровке.
- Неразрушающий характер возбуждения спектра.
- Высокая скорость получения результатов анализа.
Несмотря на большие возможности рентгено-флуоресцентных спектрометров при решении аналитических задач любой сложности, существует ряд факторов, которые сдерживают массовое использование этого оборудования:
- Высокая стоимость.
- Необходимость придания пробе определенной формы и приведение к размерам, позволяющим поместить в измерительную кассету.
- Дорогостоящая периферия прибора и его обслуживание.
Спектрометры с индуктивно-связанной плазмой
Приборы этого типа способны проводить спектральный анализ проб, находящихся в жидком состоянии. Эта особенность спектрометров с индуктивно-связанной плазмой определяет их достоинства и недостатки.
Преимущества ИСП-спектрометров:
- Возможность одновременного определения десятков элементов.
- Линейная зависимость градуировочных характеристик по всему спектру.
- Доступная стоимость градуировочных растворов.
К недостаткам относят:
- Необходима помощь химико-аналитической лаборатории.
- Большая продолжительность исследования, которая связана с необходимостью перевода пробы в раствор.
- Прибор не способен определять углерод.
- При повышении концентрации снижается точность результатов исследования.
- Недостаточная нормативная база.
- Высокая стоимость оборудования.
Оптико-эмиссионная спектрометрия
Для анализа сложных сплавов широко используются оптико-эмиссионные спектрометры с низковольтной искрой в среде аргона. Они лишены недостатков приборов с высоковольтной искрой и дуговых спектрометров, и позволяют определять неограниченное число элементов при их концентрации от тысячных долей процента. Измерения отличаются стабильностью и имеют низкую погрешность. На подавляющее большинство металлов и сплавов разработана нормативная документация.
Основные достоинства ОЭС:
- Возможность определения неограниченного числа элементов.
- Низкий предел обнаружения и погрешность.
- Экспрессность.
- Невысокая стоимость оборудования по сравнению с РФА и ИСП-приборами.
- Простота эксплуатации и обслуживания.
Оптико-эмиссионные спектрометры не лишены недостатков:
- Повышенные требования к качеству аргона.
- Проведение пробоподготовки должно выполняться в соответствии с требований ГОСТ.
- При повышении концентрации происходит снижение надежности измерений.
- Возможен анализ только монолитных токопроводящих проб.