Как пересчитать витки катушек и емкости под свой датчик

Как произвести расчёт катушек индуктивности (однослойных, цилиндрических без сердечника)

Из книги «300 советов»

Индуктивность катушки зависит от её геометрических размеров, числа витков и способа намотки катушки. Чем больше диаметр, длина намотки и число витков катушки, тем больше её индуктивность.

Если катушка наматывается плотно виток к витку, то индуктивность её будет больше по сравнению с катушкой, намотанной неплотно, с промежутками между витками. Когда требуется намотать катушку по заданным размерам и нет провода нужного диаметра, то при намотке её более толстым проводом надо несколько увеличить, а тонким — уменьшить число витков катушки, чтобы получить необходимую индуктивность.

Все приведенные выше соображения справедливы при намотке катушек без ферритовых сердечников.

Расчёт однослойных цилиндрических катушек производится по формуле

L

= (D/10)2*n2/(4.5*D+10*l)

где L

— индуктивность катушки, мкГн;D — диаметр катушки, мм;l — длина намотки катушки, мм;n — число витков катушки. При расчёте катушки могут встретиться два случая:

а) по заданным геометрическим размерам необходимо определить индуктивность катушки;

б) при известной индуктивности определить число витков и диаметр провода катушки.

В первом случае все исходные данные, входящие в формулу, известны, и расчёт не представляет затруднений.

Пример. Определим индуктивность катушки, изображенной на рисунке; для этого подставим в формулу все необходимые величины:

L

= (18/10)2*202/(4.5*18+10*20) = 4.6 мкГн

Во втором случае известны диаметр катушки и длина намотки, которая, в свою очередь, зависит от числа витков и диаметра провода. Поэтому расчет рекомендуется вести в следующей последовательности. Исходя из конструктивных соображений определяют размеры катушки, диаметр и длину намотки, а затем рассчитывают число витков по формуле

n

= 10*(5*L *(0.9*D +2*l))1/2/D После того как будет найдено число витков, определяют диаметр провода с изоляцией по формуле

d=l/n

где d

— диаметр провода, мм,l — длина обмотки, мм,n — число витков.

Пример. Нужно изготовить катушку диаметром 10 мм при длине намотки 20 мм, имеющую индуктивность 0,8 мкГн. Намотка рядовая виток к витку.

Подставив в последнюю формулу заданные величины, получим:

n

= 10*(5*0.8*(0.9*10+2*20))1/2/10

Диаметр провода

d

= 20/14=1.43 мм

Если эту катушку наматывать проводом меньшего диаметра, то нужно полученные расчетным путем 14 витков разместить по всей длине катушки (20 мм) с равными промежутками между витками, т. е. с шагом намотки. Индуктивность данной катушки будет на 1-2% меньше номинальной, что следует учитывать при изготовлении таких катушек. При намотке в случае необходимости более толстым проводом, чем 1,43 мм, следует сделать новый расчёт, увеличив диаметр или длину намотки катушки. Возможно, также придётся увеличить и то и другое одновременно, пока не будут получены необходимые габариты катушки, соответствующие заданной индуктивности.

Следует заметить, что по приведённым выше формулам рекомендуется рассчитывать такие катушки, у которых длина намотки l

равна или больше половины диаметра. Если же длина намотки меньше половины диаметраD /2, то более точные результаты можно получить по формулам

L

=(D /10)2*n 2/((4D +11l ))

и

n

= (10L *(4D +11l ))1/2/D

Программа позволяет производить расчет следующих типов катушек индуктивности:

  • Одиночный круглый виток
  • Однослойная виток к виткуВ качестве начальных параметров при расчете катушки можно выбрать два варианта:
    1. Известны диаметр каркаса и диаметр провода, длина намотки вычисляется.
  • Известны диаметр каркаса и длина намотки, диаметр провода вычисляется
  • Однослойная катушка с шагом
  • Катушка с не круглой формой витков
  • Многослойная катушка В качестве начальных параметров при расчете катушки можно выбрать два варианта:
    1. Известны диаметр каркаса, длина намотки и диаметр провода. Вычисляется число витков, попутно определяется толщина катушки, ее омическое сопротивление постоянному току и приблизительная длина провода для намотки («сколько надо отрезать»).
  • Известны диаметр каркаса, длина намотки и предельное омическое сопротивление катушки. Вычисляется число витков, попутно определяется толщина катушки, нужный минимальный диаметр провода и приблизительная длина провода для намотки.
  • Тороидальная однослойная катушка
  • Катушка на ферритовом кольце
  • Катушка в броневом сердечнике(Ферритовом и карбонильном)
  • Тонкопленочная катушка(Плоская катушка на печатной плате с круглой и квадратной формой витков и в виде одиночного прямого проводника)

Подробнее о Coil32 …

Довольно часто перед радиолюбителем встает вопрос: » Как рассчитать индуктивность катушки?». Катушки используются и в высокочастотной связной аппаратуре, и при конструировании акустических систем, и даже взглянув на материнскую плату компьютера, Вы и там обнаружите индуктивные элементы. С помощью программы Coil32 можно быстро рассчитать индуктивность катушки. В программе учитываются наиболее распространенные варианты каркасов катушек. Можно рассчитать бескаркасную катушку в виде одиночного витка, на каркасах различной формы, на ферритовых кольцах и в броневых сердечниках, а также плоскую печатную катушку с круглой и квадратной формой витков. Для рассчитанной катушки можно «не отходя от кассы» рассчитать емкость конденсатора в колебательном контуре.

В чем преимущества программы перед аналогами?

  • Программа рассчитывает индуктивность многих типов катушек. Можно подобрать оптимальный вариант, либо пересчитать катушку под имеющийся каркас.
  • Результаты всех расчетов выводятся в текстовое поле, откуда их можно сохранить в файл. В дальнейшем Вы можете их просмотреть, чтобы не пересчитывать заново. Можно открыть этот файл в «MS Word» и распечатать.
  • Есть возможность рассчитать добротность для радиочастотных однослойных катушек индуктивности.
  • Рассчитываются основные параметры колебательного контура для однослойной катушки
  • Можно рассчитать длину провода для намотки однослойной, многослойной катушки и катушки на ферритовом кольце
  • Для катушек в броневых сердечниках есть возможность выбрать один из нескольких стандартных, что позволяет рассчитать катушку несколькими щелчками мыши.
  • Для плоских катушек на печатной плате программа подскажет оптимальные размеры для достижения наивысшей добротности.
  • В Сети часто встречаются программы для расчета индуктивности, работающие под DOS, о преимуществах Windows-интерфейса, думаю, говорить не приходится.
  • Программа имеет возможность расширения функционала с помощью дополнительных плагинов для расчета индуктивностей
  • Программа имеет мультиязычный интерфейс и скины, дополнительные наборы скинов можно найти на .

Программа распространяется в стиле «Portable» и не имеет установщика. Для установки программы распакуйте архив программы в любой каталог и запустите на выполнение файл Coil32.exe. При постоянной работе с программой, желательно создать для нее специальную папку и вынести ярлык Coil32.exe на рабочий стол.

Принцип работы

Сегодня многие домашние электрики пытаются собрать КТ, при этом не всегда понимая принцип работы трансформатора Тесла, из-за чего терпят фиаско. На самом деле КТ недалеко ушла от обычного трансформатора.

Есть две обмотки – первичная и вторичная. Когда к первичной обмотке подводят переменное напряжение от внешнего источника, вокруг нее создается магнитное поле или, как его еще называют, колебательный контур. Когда заряд пробьет разрядник, через магнитное поле энергия начнет перетекать к вторичной обмотке, где будет образовываться второй колебательный контур. Часть накапливаемой в контуре энергии будет представлена напряжением. Ее величина будет прямо пропорциональна времени образования контура.

Вам это будет интересно Особенности сети передачи электроэнергии

Таким образом, в КТ имеется два связанных между собой колебательных контура, что и является определяющей характеристикой при сравнении с обычными трансформаторами. Их взаимодействие создает ионизирующий эффект, из-за чего мы видим стримеры (разряды молний).

Для чего нужны и какие бывают

В зависимости от того, где применяется катушка индуктивности и её функциональных особенностей, она может называться по-разному: дроссели, соленоиды и прочее. Давайте рассмотрим, какие бывают катушки индуктивности и их сферу применения.

Дроссели. Обычно так называются устройства для ограничения тока, область применения:

  • В пускорегулирующей аппаратуре для розжига и питания газоразрядных ламп.
  • Для фильтрации помех. В блоках питания — фильтр электромагнитных помех со сдвоенным дросселем на входе компьютерного БП, изображен на фото ниже. Также используется в акустической аппаратуре и прочем.
  • Для фильтрации определенных частот или полосы частот, например, в акустических системах (для разделения частот по соответствующим динамикам).
  • Основа в импульсных преобразователях — накопитель энергии.

Токоограничивающие реакторы — используются для ограничения токов короткого замыкания на ЛЭП.

Примечание: у дросселей и реакторов должно быть низкое активное сопротивление для уменьшения их нагрева и потерь.

Контурные катушки индуктивности. Используются в паре с конденсатором в колебательном контуре. Резонансная частота подбирается под частоту приема или передачи в радиосвязи. У них должна быть высокая добротность.

Вариометры. Как было сказано — это настраиваемые или переменные катушки индуктивности. Чаще всего используются в тех же колебательных контурах для точной настройки частоты резонанса.

Соленоид — так называется катушка, длина которой значительно больше диаметра. Таким образом внутри соленоида образуется равномерное магнитное поле. Чаще всего соленоиды используются для совершения механической работы — поступательного движения. Такие изделия называют еще электромагнитами.

Рассмотрим, где используются соленоиды.

Это может быть активатор замка в автомобиле, шток которого втягивается после подачи на соленоид напряжения, и звонок, и различные исполнительные электромеханические устройства типа клапанов, грузоподъёмные магниты на металлургических производствах.

В реле, контакторах и пускателях соленоид также выполняет функцию электромагнита для привода силовых контактов. Но в этом случае его чаще называют просто катушка или обмотка реле (пускателя, контактора соответственно), как выглядит, на примере малогабаритного реле вы видите ниже.

Рамочные и кольцевые антенны. Их назначение — передача радиосигнала. Используются в иммобилайзерах автомобилей, металлодетекторах и для беспроводной связи.

Индукционные нагреватели, тогда она называется индуктором, вместо сердечника помещают нагреваемое тело (обычно металл).

Изготовление

Катушки индуктивности могут быть приобретены или изготовлены самостоятельно. Обычно приобретаются большие изделия. Наверное, никто не захочет самостоятельно наматывать дроссель для люминесцентной лампы. Небольшие обмотки для радиоэлектроники легко и с удовольствием изготавливаются своими руками. Навыки самостоятельного изготовления будут полезны при ремонте катушек или при изменении их рабочих параметров. Для увеличения их индуктивности используются специальные магнитные сердечники. Их изготавливают из смеси оксида железа с оксидами других металлов.

Воспользуйтесь другими онлайн калькуляторами:

Изолированная магнитная проволока наматывается непосредственно на магнитный сердечник, покрытый тонким слоем изолирующей бумаги. Перед изготовлением необходимо определить параметры с помощью специальных расчётных формул или программ. С их помощью будет определен размер и тип сердечника, число витков и диаметр проволоки.

Воспользуйтесь другими онлайн калькуляторами:

  • Расчет веса электрического кабеля
  • Онлайн расчет силы тока в цепи
  • Перевод Ватт в Амперы
  • Расчет потерь напряжения
  • Онлайн расчет сечения кабеля

Векторная диаграмма реальной катушки и полное её сопротивление

Несовпадение по фазе слагаемых в выражении (13.12) затрудняет определение амплитуды и действующей величины приложенного к цепи напряжения U. Поэтому воспользуемся векторным способом сложения синусоидальных величин. Амплитуды составляющих общего напряжения

UmR = RIm;       UmL = ωLIm ,

а действующие величины

UR = RI; UL = XLI .

Вектор общего напряжения

U = UR + UL

Для того чтобы найти величину вектора U, построим векторную диаграмму (рис. 13.10, а), предварительно выбрав масштабы тока Mi и напряжения Мu.

За исходный вектор диаграммы принимаем вектор тока I. Направление этого вектора совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза заданного тока Ψi =0). Как и ранее, эту ось удобно (но не обязательно) направить по горизонтали.

Вектор UR по направлению совпадает с вектором тока I, а вектор UL направлен перпендикулярно вектору I с положительным углом.

Из диаграммы видно, что вектор тока I общего напряжения U отражает вектор тока I на угол φ>0, но φ<90°, а по величине равен гипотенузе прямоугольного треугольника, катетами которого являются векторы падений напряжения в активном и индуктивном сопротивлениях UR и UL :

UR = Ucosφ 

Проекция вектора напряжения U на направление вектора тока называется активной составляющей вектора напряжения и обозначается Ua. Для катушки по схеме рис. 13.9 при Ua = UR

U = Usinφ                                                        (13.14)

Проекция вектора напряжения U на направление, перпендикулярное вектору тока, называется реактивной составляющей вектора напряжения и обозначается Up. Для катушки Up = UL

При токе i = Imsinωt уравнение напряжения можно записать на основании векторной диаграммы в виде

U = Umsin(ωt+φ)

Стороны треугольника напряжений, выраженные в единицах напряжения, разделим на ток I. Получим подобный треугольник сопротивлений (рис. 13.10, б), катетами которого являются активное R = UR/I и индуктивное XL = UL/I, сопротивления, а гипотенузой величина Z = U/I.

Отношение действующего напряжения к действующему току данной цепи называется полным сопротивлением цепи. Стороны треугольника сопротивлений нельзя считать векторами, так как сопротивления не являются функциями времени. Из треугольника сопротивлений следует

Понятие о полном сопротивлении цепи Z позволяет выразить связь между действующими величинами напряжения и тока формулой, подобной формуле Ома:

Из треугольников сопротивления и напряжения определяются

cosφ = UR/U = R/Z;    sinφ = UL/U = XL/Z;    tgφ = UL/UR = XL/R. (13.18)

Отличие напряжения от силы тока

Электричество, как и любая другая материя, имеет собственные характеристики, используемые для определения эффективности работы и контроля заданных параметров. В физике существуют такие понятия как «напряжение» и «сила тока». Они описывают одно и тоже явление, но сами по себе как показатели они отличаются друг от друга.

Такие различия заключены в принципе действия электричества. Под силой тока понимают объем потока электронов, способных пройти на расстояние одного метра за установленный интервал времени. Напряжение наоборот выражено в количестве потенциальной энергии. Оба понятия тесно связаны между собой. К внешним факторам влияния на них относят:

  • материал, из которого изготовлен проводник;
  • температура;
  • магнитное поле;
  • условия окружающей среды.

Отличия также заключаются в способах получения этих параметров. Когда на заряды проводника воздействует внешнее магнитное поле, формируется напряжение, которое генерирует поток между точками цепи. Так же специалисты выделяют отличия в энергопотреблении, называемым мощностью. Если напряжение характеризует параметры потенциальной энергии, то ток — кинетической.

Что такое катушка индуктивности

Данный элемент ещё называют дросселем. Это свёрнутый в спираль изолированный провод. Для такой спирали характерны большие индуктивные и маленькие ёмкостные параметры.

Важно! Дроссель препятствует протеканию переменного тока, потому что обладает существенной инерционностью. Она препятствует любому изменению проходящего через витки тока

При этом нет разницы, увеличивается он или уменьшается.

В связи с этим данные элементы применяют в электротехнике для осуществления:

  • токоограничения;
  • ослабления биений;
  • помехоподавления;
  • формирования магнитного поля;
  • изготовления датчиков движения.

Дроссель входит в систему колебательного контура в цепях резонанса и применяется в линиях задержки.


Применение L в колебательном контуре

Теоретическое обоснование

Рассматриваемое явление основано на способности генерации магнитного поля проводником при пропускании через соответствующий контур электрического тока. Для облегчения расчетов возможны следующие допущения:

  • слабость (медленное изменение) электрических полей;
  • постоянная сила тока в каждой части контура;
  • отсутствие емкостных составляющих проводника.

Резонанс в электрической цепи

Для элементарно малых областей эксперимента берут точечное распределение токов (магнитных полей). Суммирование расчетных параметров позволяет уточнить зависимость векторного представления индукции (B) от потока, пронизывающего поверхность S. Ее край формирует контур, по которому пропускают ток.

Чтобы не усложнять вычисления, рассматривают суммарный поток, проходящий через S, без учета сложности определенной поверхности. Он будет примерно равен току. Уточняющий коэффициент (L) помогает узнать действительное значение.

К сведению. На основе приведенных рассуждений можно сделать промежуточный вывод о минимальном значении формы контура (при работе с низкими и средними частотами).

Свойства индуктивности

Следующие особенности индуктивности (L) надо учитывать в ходе подготовки конструкторской документации:

  • L > 0;
  • L зависит от размеров рабочего контура;
  • на L оказывают влияние магнитные свойства окружающей среды.


Значение индуктивности зависит от магнитных параметров материала сердечника

Индуктивность одновиткового контура и индуктивность катушки

По приведенным выше формулам несложно сделать расчет базовых параметров для одного витка. Общее значение Фс (потокосцепление) равно сумме потоков через каждый из контуров, при одинаковых размерах рабочих элементов Ln = L1 * N2, где N – количество витков.

Важно! В реальных условиях структура магнитных полей значительно отличается в центральной части и на краях катушки

Индуктивность соленоида

Этим термином называют катушку с длиной, намного большей, по сравнению с диаметром. Такое соотношение геометрических размеров формирует параллельные силовые линии в центре конструкции. Для этой части индукция определяется по формуле:

В = m * N*I, где m (магнитная постоянная) = 4*π*10-7 Гн.

Индуктивность определяют с помощью выражения:

L = (m*N2*S)/l,

где:

  • S – площадь поперечного сечения катушки;
  • l – длина конструкции.

При установке внутрь сердечника с ферромагнитными свойствами дополнительно применяют поправочный множитель (m1), который определяет влияние соответствующего материала.

Индуктивность тороидальной катушки (катушки с кольцевым сердечником)

Для расчета изделий такой формы допустимо применять стандартную формулу со следующими поправками:

L = N2 * (m*m1*S)/(2*π*r),

где r – радиус до центральной оси тора.

Индуктивность длинного прямого проводника

Такую конструкцию рассчитывают по формуле:

L = (m/(2*π))*l*(mc*ln(l/r) + mi*1/4),

где mc (mi) – относительные проницаемости среды (материала проводника), соответственно.

При отсутствии внешних помех коэффициент mc берут равным единице.

Способы расчёта

Существует несколько основных способов определить индуктивность катушки. Все формулы, которые будут использоваться в расчётах, легко можно найти в справочной литературе или интернете. Весь процесс вычисления довольно простой и не составит труда для людей, имеющих элементарные математические и физические знания.

Через силу тока

Этот расчёт считается самым простым способом определения индуктивности катушки. Формула через силу тока вытекает из самого термина. Какова индуктивность катушки — можно определить по формуле: L=Ф/I, где:

  • L — индуктивность контура (в генри);
  • Ф — величина магнитного потока, измеряемого в веберах;
  • I — сила тока в катушке (в амперах).

Соленоид конечной длины

Соленоид представляет собой тонкую длинную катушку, где толщина обмотки значительно меньше диаметра. В этом случае расчёты ведутся по той же формуле, что и через силу тока, только величина магнитного потока будет определяться следующим образом: Ф=µ0NS/l, где:

  • µ0 — магнитная проницаемость среды, определяющаяся по справочным таблицам (для воздуха, который принимается по умолчанию в большинстве расчётов, она равна 0,00000126 генри/метр);
  • N — количество витков в катушке;
  • S — площадь поперечного сечения витка, измеряемая в квадратных метрах;
  • l — длина соленоида в метрах.

Коэффициент самоиндукции соленоида можно рассчитать и исходя из способа определения энергии магнитного потока поля. Это более простой вариант, но он требует наличия некоторых величин. Формула для нахождения индуктивности — L=2W/I 2 , где:

  • W — энергия магнитного потока, измеряемая в джоулях;
  • I — сила тока в амперах.

Катушка с тороидальным сердечником

В большинстве случаев тороидальная катушка наматывается на сердечник, изготовленный из материала, обладающего большой магнитной проницаемостью. В этом случае для расчётов индуктивности можно использовать формулу для прямого соленоида бесконечной длины. Она имеет такой вид: L=N µ0 µS/2 πr, где:

  • N — число витков катушки;
  • µ — относительная магнитная проницаемость;
  • µ0 — магнитная постоянная;
  • S — площадь сечения сердечника;
  • π — математическая постоянная, равная 3,14;
  • r — средний радиус тора.

Длинный проводник

Большинство таких квазилинейных проводников имеет круглое сечение. В этом случае величина коэффициента самоиндукции будет определяться по стандартной формуле для приближённых расчётов: L= µ0l (µelnl/r+ µi/4)/2 π. Здесь используются следующие обозначения:

  • l — длина проводника в метрах;
  • r — радиус сечения провода, измеряемый в метрах;
  • µ0 — магнитная постоянная;
  • µi — относительная магнитная проницаемость, характерная для материала, из которого изготовлен проводник;
  • µe — относительная магнитная проницаемость внешней среды (чаще всего принимается значение для вакуума, которое равняется 1);
  • π — число Пи;
  • ln — обозначение логарифма.

Сопротивление индуктивное Википедия

Реакти́вное сопротивле́ние

(реактанс) — электрическое сопротивление, обусловленное передачей энергии переменным током электрическому или магнитному полю (и обратно).

Реактивное сопротивление определяет мнимую часть полного сопротивления (импеданса):

Z=R+jX{\displaystyle Z=R+jX}, где Z{\displaystyle Z} — полное сопротивление или импеданс, R{\displaystyle R} — величина активного сопротивления, X{\displaystyle X} — величина реактивного сопротивления, j{\displaystyle j} — мнимая единица.

В зависимости от знака величины X{\displaystyle X} какого-либо элемента электрической цепи говорят о трёх случаях:

  • X>0{\displaystyle X>0} — элемент проявляет свойства индуктивности.
  • X=0{\displaystyle X=0} — элемент имеет чисто активное сопротивление.
  • X<0{\displaystyle X<0} — элемент проявляет ёмкостные свойства.

Величина реактивного сопротивления может быть выражена через величины индуктивного и ёмкостного сопротивлений:

X=XL−XC{\displaystyle X=X_{L}-X_{C}}

Индуктивное сопротивление

(XL{\displaystyle X_{L}}) обусловлено возникновением ЭДС самоиндукции в элементе электрической цепи. Изменение тока и, как следствие, изменение его магнитного поля вызывает препятствующую изменению этого тока ЭДС самоиндукции. Величина индуктивного сопротивления зависит от индуктивности L{\displaystyle L} элемента и угловой частоты ω{\displaystyle \omega } протекающего тока: XL=ωL=2πfL{\displaystyle X_{L}=\omega L=2\pi fL}Ёмкостное сопротивление

(XC{\displaystyle X_{C}}). Величина ёмкостного сопротивления зависит от ёмкости элемента C{\displaystyle C} и также частоты протекающего тока f{\displaystyle f}: XC=1ωC=12πfC{\displaystyle X_{C}={\frac {1}{\omega C}}={\frac {1}{2\pi fC}}} Здесь ω{\displaystyle \omega } — циклическая частота, равная 2πf{\displaystyle 2\pi f}.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: