Как рассчитать индуктивность многослойной катушки без сердечника с помощью линейки и омметра
- Журнал РАДИОЛОЦМАН, январь 2012
- Петр Демченко, Литва
- EDN
- В статье показано, как рассчитать индуктивность многослойной катушки без сердечника, зная только ее размеры и сопротивление постоянному току
- Если размеры катушки выражены в миллиметрах, ее индуктивность в микрогенри может быть рассчитана по формуле:
где
- D – средний диаметр катушки,
- h – высота катушки,
- g – глубина (толщина намотки) катушки,
- N – количество витков (Рисунок 1).
|
|
Рисунок 1. | Зная размеры и количество витков катушки, можно рассчитать ее индуктивность. |
Если количество витков неизвестно, индуктивность, все равно, можно рассчитать, используя значение сопротивления обмотки постоянному току. Предполагается, что катушка намотана аккуратно, виток к витку, цилиндрическим эмалированным проводом (Рисунок 2). В этом случае приближенное выражение для числа витков будет следующим:
- где d – диаметр провода.
- Однако, мы будем полагать, что диаметр нам неизвестен.
Индуктивность и емкость в цепи переменного тока
Изменения силы тока, напряжения и э. д. с. в цепи переменного тока происходят с одинаковой частотой, но фазы этих изменений, вообще говоря, различны. Поэтому если начальную фазу силы тока условно принять за нуль, то начальные фазы напряжения и э. д. с. соответственно будут иметь некоторые значения ϕ и ψ. При таком условии мгновенные значения силы тока, напряжения и э. д. с. будут выражаться следующими формулами:
i = Iм sin ωt
u = Uм sin (ϕ + ωt),
e = Ɛm sin (ψ + ωt).
Сопротивление цепи, которое обусловливает безвозвратные потери электрической энергии на тепловое действие тока, называют активным. Это сопротивление для тока низкой частоты можно считать равным сопротивлению R этого же проводника постоянному току и находить по формуле:
R=(pl/S)(1 + at).
В цепи переменного тока, имеющей только активное сопротивление, например в лампах накаливания, нагревательных приборах и т. п., сдвиг фаз между напряжением и током равен нулю, т. е. ϕ=0. Это означает, что ток и напряжение в такой цепи изменяются в одинаковых фазах, а электрическая энергия полностью расходуется на тепловое действие тока.
График и схема подключения
Включение в цепь переменного тока катушки с индуктивностью L проявляется как увеличение сопротивления цепи. Объясняется это тем, что при переменном токе в катушке все время действует э. д. с. самоиндукции, ослабляющая ток. Сопротивление XL, которое обусловливается явлением самоиндукции, называют индуктивным сопротивлением. Так как э. д. с. самоиндукции тем больше, чем больше индуктивность цепи и чем быстрее изменяется ток, то индуктивное сопротивление прямо пропорционально индуктивности цепи L и круговой частоте переменного тока ω:
ХL = ωL.
Влияние индуктивного сопротивления на силу тока в цепи наглядно иллюстрируется опытом, изображенным на рис. 26.6. При опускании ферромагнитного сердечника в катушку лампа гаснет, а при его удалении вновь загорается. Это объясняется тем, что индуктивность катушки сильно возрастает при введении в нее сердечника. Следует отметить, что напряжение на индуктивном сопротивлении опережает по фазе ток.
Постоянный ток не проходит через конденсатор, так как между его обкладками находится диэлектрик. Если конденсатор включить в цепь постоянного тока, то после зарядки конденсатора ток в цепи прекратится.
Катушки индуктивности
Пусть конденсатор включен в цепь переменного тока. Заряд конденсатора (q=CU) вследствие изменения напряжения непрерывно изменяется, поэтому в цепи течет переменный ток. Сила тока будет тем больше, чем больше емкость конденсатора и чем чаще происходит его перезарядка, т. е. чем больше частота переменного тока. Сопротивление, обусловленное наличием электроемкости в цепи переменного тока, называют емкостным сопротивлением Хс. Оно обратно пропорционально емкости С и круговой частоте ω;
Хс = 1/ωС
Из сравнения формул (26.11) и (26.12) видно, что катушки индуктивности представляют собой очень большое сопротивление для тока высокой частоты и небольшое для тока низкой частоты, а конденсаторы — наоборот. Напряжение на емкостном сопротивлении Ха отстает по фазе от тока. Индуктивное XL и емкостное Хс сопротивления называют реактивными. В теории переменного тока доказывается, что при последовательном включении индуктивного и емкостного сопротивлений общее реактивное сопротивление равно их разности:
Будет интересно Что такое короткое замыкание
X = XL—XC
и имеет индуктивный характер при XL > Хс и емкостный характер при XL < Xc.
В заключение заметим, что средняя активная мощность переменного тока, показывающая, сколько энергии за единицу времени передается электрическим током данному участку цепи, определяется формулой:
P = IU cos ϕ.
Мощность, затрачиваемая только на тепловое действие тока, выражается формулой:
Р = I2R
Для увеличения активной мощности переменного тока нужно повышать cos ϕ. (Объясните, почему наибольшее значение cos ϕ имеет при XL=XC.)
Индуктивность
Измеритель индуктивности для мультиметра
Несмотря на то, что определять индуктивность при работе с электроникой приходится редко, это все же иногда необходимо, а мультиметры с измерением индуктивности найти достаточно трудно. В данной ситуации поможет специальная приставка к мультиметру, позволяющая измерить индуктивность.
Зачастую для подобной приставки используется цифровой мультиметр установленный на измерение напряжения с порогом точности измерения в 200 мВ, который можно приобрести в любом магазине электро и радиоаппаратуры в готовом виде. Это позволит сделать простую приставку к цифровому мультиметру.
Эквивалентная схема реальной катушки индуктивности
Каждый дроссель можно представить в виде эквивалентной схемы.
Данная схема состоит из элементов:
- Rw – сопротивление обмотки с выводами;
- L – индуктивность;
- Cw – паразитная ёмкость;
- Rl – сопротивление потерь.
Изготавливая индуктивный элемент, стремятся снизить величину сопротивления потерь, паразитную ёмкость. При работе катушки на низкой частоте учитывают сопротивление её обмотки Rw. На таких частотах действуют токи большой величины.
Эквивалентная схема дросселя
Правильно рассчитанная катушка индуктивности будет иметь высокую добротность (180-300) и стабильность работы при влиянии внешних условий (температуры и влажности). Зная способы различной намотки и манипуляции с шагом, можно уменьшить влияние паразитных факторов.
Последовательное и параллельное соединение катушек
При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.
А при параллельном соединении получаем вот так:
При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек. Это может привести к неправильным показаниям общей индуктивности.
Эквивалентная схема реальной катушки индуктивности
Каждый дроссель можно представить в виде эквивалентной схемы.
Данная схема состоит из элементов:
- Rw – сопротивление обмотки с выводами;
- L – индуктивность;
- Cw – паразитная ёмкость;
- Rl – сопротивление потерь.
Изготавливая индуктивный элемент, стремятся снизить величину сопротивления потерь, паразитную ёмкость. При работе катушки на низкой частоте учитывают сопротивление её обмотки Rw. На таких частотах действуют токи большой величины.
Эквивалентная схема дросселя
Правильно рассчитанная катушка индуктивности будет иметь высокую добротность (180-300) и стабильность работы при влиянии внешних условий (температуры и влажности). Зная способы различной намотки и манипуляции с шагом, можно уменьшить влияние паразитных факторов.
Программа позволяет производить расчет следующих типов катушек индуктивности:
- Одиночный круглый виток
- Однослойная виток к виткуВ качестве начальных параметров при расчете катушки можно выбрать два варианта:
- Известны диаметр каркаса и диаметр провода, длина намотки вычисляется.
- Известны диаметр каркаса и длина намотки, диаметр провода вычисляется
- Однослойная катушка с шагом
- Катушка с не круглой формой витков
- Многослойная катушка В качестве начальных параметров при расчете катушки можно выбрать два варианта:
- Известны диаметр каркаса, длина намотки и диаметр провода. Вычисляется число витков, попутно определяется толщина катушки, ее омическое сопротивление постоянному току и приблизительная длина провода для намотки («сколько надо отрезать»).
- Известны диаметр каркаса, длина намотки и предельное омическое сопротивление катушки. Вычисляется число витков, попутно определяется толщина катушки, нужный минимальный диаметр провода и приблизительная длина провода для намотки.
- Тороидальная однослойная катушка
- Катушка на ферритовом кольце
- Катушка в броневом сердечнике(Ферритовом и карбонильном)
- Тонкопленочная катушка(Плоская катушка на печатной плате с круглой и квадратной формой витков и в виде одиночного прямого проводника)
Подробнее о Coil32 …
Довольно часто перед радиолюбителем встает вопрос: » Как рассчитать индуктивность катушки?». Катушки используются и в высокочастотной связной аппаратуре, и при конструировании акустических систем, и даже взглянув на материнскую плату компьютера, Вы и там обнаружите индуктивные элементы. С помощью программы Coil32 можно быстро рассчитать индуктивность катушки. В программе учитываются наиболее распространенные варианты каркасов катушек. Можно рассчитать бескаркасную катушку в виде одиночного витка, на каркасах различной формы, на ферритовых кольцах и в броневых сердечниках, а также плоскую печатную катушку с круглой и квадратной формой витков. Для рассчитанной катушки можно «не отходя от кассы» рассчитать емкость конденсатора в колебательном контуре.
В чем преимущества программы перед аналогами?
- Программа рассчитывает индуктивность многих типов катушек. Можно подобрать оптимальный вариант, либо пересчитать катушку под имеющийся каркас.
- Результаты всех расчетов выводятся в текстовое поле, откуда их можно сохранить в файл. В дальнейшем Вы можете их просмотреть, чтобы не пересчитывать заново. Можно открыть этот файл в «MS Word» и распечатать.
- Есть возможность рассчитать добротность для радиочастотных однослойных катушек индуктивности.
- Рассчитываются основные параметры колебательного контура для однослойной катушки
- Можно рассчитать длину провода для намотки однослойной, многослойной катушки и катушки на ферритовом кольце
- Для катушек в броневых сердечниках есть возможность выбрать один из нескольких стандартных, что позволяет рассчитать катушку несколькими щелчками мыши.
- Для плоских катушек на печатной плате программа подскажет оптимальные размеры для достижения наивысшей добротности.
- В Сети часто встречаются программы для расчета индуктивности, работающие под DOS, о преимуществах Windows-интерфейса, думаю, говорить не приходится.
- Программа имеет возможность расширения функционала с помощью дополнительных плагинов для расчета индуктивностей
- Программа имеет мультиязычный интерфейс и скины, дополнительные наборы скинов можно найти на .
Программа распространяется в стиле «Portable» и не имеет установщика. Для установки программы распакуйте архив программы в любой каталог и запустите на выполнение файл Coil32.exe. При постоянной работе с программой, желательно создать для нее специальную папку и вынести ярлык Coil32.exe на рабочий стол.
Какие параметры есть у катушки
От того, где будет применяться индуктивный элемент и на какой частоте работать, зависит его исполнение. Имеются общие параметры:
- L – индуктивность;
- R пот – сопротивление потерь;
- Q – добротность;
- свой резонанс и паразитарная ёмкость;
- коэффициенты ТКИ и ТКД.
От чего зависит индуктивность
Индуктивность (коэффициент самоиндукции) L – это главная электрическая характеристика элемента, которая показывает количество накапливаемой дросселем энергии при передвижении тока. Величина энергии в катушки тем выше, чем больше её индуктивность. Единица измерений L – 1 Гн.
При взаимодействии тока и магнитного поля в обмотке возникают вредные явления. Они способствуют возникновению потерь, которые обозначают R пот. Формула потерь имеет вид:
R пот = rω + rd + rs + re.
Слагаемые формулы – это потери:
- rω – в проводах;
- rd – в диэлектрике;
- rs – в сердечнике;
- re – на вихревые токи.
В результате таких потерь импеданс индуктивного двухполюсника нельзя назвать целиком реактивным.
Добротность двухполюсника определяется по формуле:
Q = ω*L/R пот,
где ω*L = 2π*L – реактивное сопротивление.
При наматывании витков элемента между ними возникает ненужная ёмкость. Из-за этого дроссель превращается в колебательный контур с собственным резонансом.
ТКИ – показатель, описывающий зависимость L от Т0С.
ТКД – показатель, описывающий зависимость добротности от Т0С.
Информация. Изменение основных параметров индуктивного двухполюсника зависит от коэффициентов ТКИ, ТКД, а также от времени и влажности.
Конструкция катушки
По конструктивному исполнению индуктивные элементы различаются:
- видом намотки: винтоспиральная, винтовая; кольцевая;
- количеством слоёв: однослойные или многослойные;
- типом изолированного провода: одножильный, многожильный;
- наличием каркаса: каркасные или бескаркасные (при небольшом количестве витков толстого провода);
- геометрией каркаса: прямоугольный, квадратный, тороидальный;
- наличием сердечника: ферритовый, из карбонильного железа, электротехнической стали, пермаллоевый (магнитомягкий сплав), металлический (латунный);
- геометрией сердечника: стержневой (разомкнутый), кольцо-образный или ш-образный (замкнутый);
- возможностью изменять L в узких интервалах (движение сердечника по отношению к обмотке).
Индуктивность проводника
Существуют плоские катушки, в печатном исполнении устанавливаемые на платах цифровых устройств.
К сведению. Намотка провода может быть как рядовой (витком к витку), так и в навал. Последний способ укладки провода снижает паразитную ёмкость.
Конструкция катушек
Coil32 v7.2 Программа расчета катушек индуктивности
Программа расчета индуктивности — Coil32″ расчет индуктивности катушки
Программа бесплатна и свободна для использования и распространения. В последней версии Coil32 v7.2 доступны:
- Расчет числа витков катушки при заданной индуктивности
- Расчет индуктивности катушки для заданного числа витков
- Расчет добротности для однослойных катушек
- Расчет индуктивности многослойной катушки по ее омическому сопротивлению
- Расчет длины провода, необходимого для намотки многослойной катушки
- Расчет длины провода, необходимого для намотки катушки на ферритовом кольце
- Одиночный круглый виток
-
Однослойная виток к виткуВ качестве начальных параметров при расчете катушки можно выбрать два варианта:
- Известны диаметр каркаса и диаметр провода, длина намотки вычисляется.
- Известны диаметр каркаса и длина намотки, диаметр провода вычисляется
- Однослойная катушка с шагом
- Катушка с не круглой формой витков
-
Многослойная катушка В качестве начальных параметров при расчете катушки можно выбрать два варианта:
- Известны диаметр каркаса, длина намотки и диаметр провода. Вычисляется число витков, попутно определяется толщина катушки, ее омическое сопротивление постоянному току и приблизительная длина провода для намотки («сколько надо отрезать»).
- Известны диаметр каркаса, длина намотки и предельное омическое сопротивление катушки. Вычисляется число витков, попутно определяется толщина катушки, нужный минимальный диаметр провода и приблизительная длина провода для намотки.
- Тороидальная однослойная катушка
- Катушка на ферритовом кольце
- Катушка в броневом сердечнике(Ферритовом и карбонильном)
- Тонкопленочная катушка(Плоская катушка на печатной плате с круглой и квадратной формой витков и в виде одиночного прямого проводника)
Довольно часто перед радиолюбителем встает вопрос: « Как рассчитать индуктивность катушки?«. Катушки используются и в высокочастотной связной аппаратуре, и при конструировании акустических систем, и даже взглянув на материнскую плату компьютера, Вы и там обнаружите индуктивные элементы. С помощью программы Coil32 можно быстро рассчитать индуктивность катушки.
В программе учитываются наиболее распространенные варианты каркасов катушек. Можно рассчитать бескаркасную катушку в виде одиночного витка, на каркасах различной формы, на ферритовых кольцах и в броневых сердечниках, а также плоскую печатную катушку с круглой и квадратной формой витков.
Формула для расчета
Чтобы рассчитать индуктивность дросселя или катушки индуктивности на тороидальном ферритовом сердечнике можно использовать формулу:
L = m * m0 * N 2 * (h*(D — d)/2) / (π*(D + d)/2)
- L — индуктивность катушки (Гн);
- m — магнитная проницаемость;
- m0 — магнитная постоянная, 4π*10 -7 Гн/м =1,256637*10 -6 Гн/м;
- N — число витков провода, намотанного на ферритовом кольце;
- D — внешний диаметр кольца (м);
- d — внутренний диаметр кольца (м);
- h — высота (м);
- π — постоянная Пи, 3,141592653589.
Если принять что:
- S = h(D — d)/2 — это сечение сердечника (м 2 );
- l = Pi(D + d)/2 — это длина намотки катушки (м);
то формула будет выглядеть так:
L = m * m0 * N 2 * S / l
Расчет количества витков провода для катушки с требуемой индуктивностью L:
N = SQRT(L / m * m * S / l)
SQRT — функция «корень квадратный из числа».
Расчёт поправки на собственную индуктивность витков
Как я писал в начале статьи, полная индуктивность катушки L состоит из расчётной индуктивности LP и поправки на изоляцию ∆L, которая в свои очередь состоит из поправки на собственную индуктивность витков ∆1L и поправки на взаимную индуктивность витков ∆2L
Данные поправки зависят от взаимного расположения витков в катушке. Для провода круглого сечения возможны следующие варианты заполнения катушки
Расположение провода круглого сечения в катушке индуктивности. s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции), p – шаг намотки по длине катушки, q – шаг намотки по толщине катушки.
В общем случае поправка на собственную индуктивность витков рассчитывается по следующему выражению
где μ – магнитная постоянная, μ = 4π•10-7 Гн/м;
ω – число витков соленоида;
DСР – средний диаметр катушки, м;
I – коэффициент, зависящий от расположения витков катушки.
Коэффициент I определяется в зависимости от расположения провода, варианты которого изображены на рисунке выше.
Для варианта а), провод намотан с небольшим коэффициентом заполнения
где s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции).
Для варианта б), провод намотан с большим коэффициентом заполнения
где s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции).
Для варианта в), провод намотан с шагом p по длине катушки и с шагом q по толщине катушки
где s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции).
Для варианта г), провод намотан в один слой по длине катушки с шагом p. В зависимости от способа вычисления расчётной индуктивности LP
— если при вычислении расчётной индуктивности LP толщина намотки t принята равной диаметру голого провода sP, то коэффициент I будет равен
— если при вычислении расчётной индуктивности LP толщина намотки t принята равной нулю (расcчитывалась как соленоид), то коэффициент I будет равен
где p – шаг намотки по длине катушки, sp – диаметр голого провода (без изоляции).
Для варианта д), провод намотан в один слой по толщине намотки с шагом q, также возможно два случая
— если при вычислении расчётной индуктивности LP длина намотки l принята равной диаметру голого провода sP, то коэффициент I будет равен
— если при вычислении расчётной индуктивности LP длина намотки l принята равной нулю (рассчитывалась как плоская катушка), то коэффициент I будет равен
где q – шаг намотки по толщине катушки, sp – диаметр голого провода (без изоляции).
Расчет индуктивности однослойной катушки
Посчитаем по формулам индуктивность однослойной контурной катушки с параметрами намотки что приведены выше. Для наглядности нарисовал рисунок:
Рис. 1. Катушка индуктивности, параметры.
Формула рассчета индуктивности катушки:
L = D*D*n*n / (45*D + 100*l), где:
- L — индуктивность катушки, мкГн;
- D — диаметр катушки, см;
- n — число витков катушки;
- l — длина намотки катушки, см.
L = 4.5*4.5*12*12 / (45*4.5 + 100*1.1) = 2916 / (202.5 + 110) = 9.3 мкГн(µH) =0.0000093 Гн = 9.3 * 10−6 Гн.
Индуктивность катушки что содержит 12 витков провода (примерно 1,1 см в длину проводом 0.8мм) и намотана на каркасе диаметром 45мм составляет — 9.3 мкГн(µH). Все просто!
Как произвести расчёт катушек индуктивности (однослойных, цилиндрических без сердечника)
Из книги «300 советов»
Индуктивность катушки зависит от её геометрических размеров, числа витков и способа намотки катушки. Чем больше диаметр, длина намотки и число витков катушки, тем больше её индуктивность.
Если катушка наматывается плотно виток к витку, то индуктивность её будет больше по сравнению с катушкой, намотанной неплотно, с промежутками между витками. Когда требуется намотать катушку по заданным размерам и нет провода нужного диаметра, то при намотке её более толстым проводом надо несколько увеличить, а тонким — уменьшить число витков катушки, чтобы получить необходимую индуктивность.
Все приведенные выше соображения справедливы при намотке катушек без ферритовых сердечников.
Расчёт однослойных цилиндрических катушек производится по формуле
L
= (D/10)2*n2/(4.5*D+10*l)
где L
— индуктивность катушки, мкГн;D — диаметр катушки, мм;l — длина намотки катушки, мм;n — число витков катушки. При расчёте катушки могут встретиться два случая:
а) по заданным геометрическим размерам необходимо определить индуктивность катушки;
б) при известной индуктивности определить число витков и диаметр провода катушки.
В первом случае все исходные данные, входящие в формулу, известны, и расчёт не представляет затруднений.
Пример. Определим индуктивность катушки, изображенной на рисунке; для этого подставим в формулу все необходимые величины:
L
= (18/10)2*202/(4.5*18+10*20) = 4.6 мкГн
Во втором случае известны диаметр катушки и длина намотки, которая, в свою очередь, зависит от числа витков и диаметра провода. Поэтому расчет рекомендуется вести в следующей последовательности. Исходя из конструктивных соображений определяют размеры катушки, диаметр и длину намотки, а затем рассчитывают число витков по формуле
n
= 10*(5*L *(0.9*D +2*l))1/2/D После того как будет найдено число витков, определяют диаметр провода с изоляцией по формуле
d=l/n
где d
— диаметр провода, мм,l — длина обмотки, мм,n — число витков.
Пример. Нужно изготовить катушку диаметром 10 мм при длине намотки 20 мм, имеющую индуктивность 0,8 мкГн. Намотка рядовая виток к витку.
Подставив в последнюю формулу заданные величины, получим:
n
= 10*(5*0.8*(0.9*10+2*20))1/2/10
Диаметр провода
d
= 20/14=1.43 мм
Если эту катушку наматывать проводом меньшего диаметра, то нужно полученные расчетным путем 14 витков разместить по всей длине катушки (20 мм) с равными промежутками между витками, т. е. с шагом намотки. Индуктивность данной катушки будет на 1-2% меньше номинальной, что следует учитывать при изготовлении таких катушек. При намотке в случае необходимости более толстым проводом, чем 1,43 мм, следует сделать новый расчёт, увеличив диаметр или длину намотки катушки. Возможно, также придётся увеличить и то и другое одновременно, пока не будут получены необходимые габариты катушки, соответствующие заданной индуктивности.
Следует заметить, что по приведённым выше формулам рекомендуется рассчитывать такие катушки, у которых длина намотки l
равна или больше половины диаметра. Если же длина намотки меньше половины диаметраD /2, то более точные результаты можно получить по формулам
L
=(D /10)2*n 2/((4D +11l ))
и
n
= (10L *(4D +11l ))1/2/D
Расчет катушек индуктивности для фильтров и схем
Индуктивность катушки зависит от ее размеров, количества витков и способа намотки. Чем больше эти параметры, тем выше индуктивность. Если катушка наматывается плотно виток к витку, то индуктивность ее будет больше по сравнению с катушкой, намотанной неплотно, с промежутками между витками.
Когда требуется изготовить катушку по заданным размерам и нет провода нужного диаметра, то при использовании более толстого провода надо сделать больше витков, а тонкого — уменьшить их количество, чтобы получить необходимую индуктивность.
Все приведенные выше рекомендации справедливы при намотке катушек без ферритовых сердечников.
Расчет однослойных цилиндрических катушек производится по формуле
где L — индуктивность катушки, мкГн; D — диаметр катушки, см; l — длина намотки катушки, см;
и n — число витков катушки.
Расчет катушки выполняется в следующих случаях:
1 — по заданным геометрическим размерам необходимо определить индуктивность катушки; 2 — при известной индуктивности требуется определить число витков и диаметр провода катушки. То есть намотать катушку определенной индуктивности, что часто скажем надо для фильтров.
В первом случае все исходные данные, входящие в формулу, известны, и расчет не представляет затруднений.
Пример. Определим индуктивность катушки, изображенной на рис.1, где l = 2 см, D = 1,8 см, число витков n = 20. Подставив в формулу все необходимые величины, получим
Во втором случае известны диаметр катушки и длина намотки, которая, в свою очередь, зависит от числа витков и диаметра провода. Поэтому расчет рекомендуется проводить по следующей схеме. Исходя из конструкции изготавливаемого прибора, определяют размеры катушки (диаметр и длину намотки), а затем рассчитывают число витков по следующей формуле:
Определив число витков, вычисляют диаметр провода с изоляцией по формуле
где d — диаметр провода, мм;
l — длина обмотки, мм; n — число витков.
Пример. Нужно изготовить катушку диаметром 1 см при длине намотки 2 см, имеющую индуктивность 0,8 мкГн. Намотка рядовая, виток к витку. Подставив в последнюю формулу заданные величины, получим
диаметр провода
Если катушку наматывать проводом меньшего диаметра, то нужно полученные расчетным путем 14 витков разместить по всей ее длине (20 мм) с равными промежутками между витками, то есть с большим шагом намотки. Индуктивность данной катушки будет на 1-2% меньше номинальной, что следует учитывать при ее изготовлении.
Если для намотки берется провод большего диаметра, чем 1,43 мм, следует сделать новый расчет, увеличив диаметр или длину намотки катушки. Возможно, придется увеличить и то, и другое одновременно, пока не будут получены необходимые габариты катушки, соответствующие заданной индуктивности.
Следует заметить, что по приведенным выше формулам рекомендуется рассчитывать катушки, у которых длина намотки l равна половине диаметра или превышает эту величину. Если же она меньше половины диаметра, то более точные результаты можно получить по формулам
Обозначение, параметры и разновидности катушек индуктивности
Одним из самых известных и необходимых элементов аналоговых радиотехнических схем является катушка индуктивности. В цифровых электронных схемах индуктивные элементы практически потеряли свою актуальность и применяются только в устройствах питания как сглаживающие фильтры. Катушки индуктивности на принципиальных схемах обозначаются латинской буквой “L” и имеют следующее изображение. Разновидностей катушек индуктивности существуют десятки. Они бывают высокочастотные, низкочастотные, с подстроечными сердечниками и без них. Бывают катушки с отводами, катушки, рассчитанные на большие напряжения. Вот так, например, выглядят бескаркасные катушки. Катушки для СВЧ аппаратуры называются микрополосковыми линиями.
Они даже внешне не похожи на катушки. С катушками индуктивности связан такой эффект как резонанс и гениальный Никола Тесла получал на резонансных трансформаторах миллионы вольт. Основной параметр катушки это её индуктивность. Величина индуктивности измеряется в Генри (Гн, англ. – «H»). Это достаточно большая величина и поэтому на практике применяют меньшие значения (мГн, mH – миллигенри и мкГн, μH– микрогенри) соответственно 10 -3 и 10 -6 Генри. Величина индуктивности катушки указывается рядом с её условным изображением (например, 100 μH). Чтобы не запутаться в микрогенри и миллигенри, советую узнать, что такое сокращённая запись численных величин.
Маркировка цветная.
Многие факторы влияют на индуктивность катушки. Это и диаметр провода, и число витков, а на высоких частотах, когда применяют бескаркасные катушки с небольшим числом витков, то индуктивность изменяют, сближая или раздвигая соседние витки. Часто для увеличения индуктивности внутрь каркаса вводят сердечник из ферромагнетика, а для уменьшения индуктивности сердечник должен быть латунным. То есть можно получить нужную индуктивность не увеличением числа витков, что ведёт к увеличению сопротивления, а использовать катушку с меньшим числом витков, но использовать ферритовый сердечник. Катушка индуктивности с сердечником изображается на схемах следующим образом.
В реальности катушка с сердечником может выглядеть так. Также можно встретить катушки индуктивности с подстроечным сердечником. Изображаются они вот так. Катушка с подстроечным сердечником вживую выглядит так. Такая катушка, как правило, имеет сердечник, положение которого можно регулировать в небольших пределах. При этом величина индуктивности также меняется. Подстроечные катушки индуктивности применяются в устройствах, где требуется одноразовая подстройка. В дальнейшем индуктивность не регулируют. Наряду с подстроечными катушками можно встретить и катушки с регулируемой индуктивностью. На схемах такие катушки обозначаются вот так. В отличие от подстроечных катушек, регулируемые катушки индуктивности допускают многократную регулировку положения сердечника, а, следовательно, и индуктивности. Ещё один параметр, который встречается достаточно часто это добротность контура.
Под добротностью понимается отношение между реактивным и активным сопротивлением катушки индуктивности. Добротность обычно бывает в пределах 15 – 350. На основе катушки индуктивности и конденсатора выполнен самый необходимый узел радиотехнических устройств, колебательный контур. На схеме изображён входной контур простого радиоприёмника рассчитанного на работу в диапазонах средних и длинных волн. В настоящее время в этих диапазонах станций практически нет. Катушка индуктивности L1 имеет достаточно большое число витков, чтобы перекрыть диапазон по максимуму. Для улучшения приёма к первой обмотке L1 подключается внешняя антенна. Это может быть простой кусок проволоки длиной в пределах двух метров.
Благодаря большому числу витков в индуктивности L1 присутствует целый спектр частот и как минимум пять — шесть работающих радиостанций. Две индуктивности L1 и L2 намотанные на одном каркасе представляют собой высокочастотный трансформатор. Для того чтобы выделить на катушке индуктивности L2 станцию, работающую, допустим на частоте 650 КГц необходимо с помощью переменного конденсатора C1 настроить колебательный контур на данную частоту. После этого выделенный сигнал можно подавать на базу транзистора усилителя высокой частоты. Это одно из применений катушки индуктивности. Точно на таком же принципе построены выходные каскады радио- и телевизионных передатчиков только наоборот. Антенна не принимает слабый сигнал, а отдаёт в пространство ЭДС.
Обозначение катушек индуктивности.
Расчёт катушки с тороидальным сердечником
Тороидальные (кольцевые) сердечники, благодаря своей простоте изготовления находят широкое применение в различных импульсных трансформаторах, фильтрах и дросселях и обеспечивают небольшую потребляемую мощность при минимальных потерях.
Тороидальный сердечник.
Для расчёта индуктивности достаточно знать три конструктивных параметра такого магнитопровода: D1 – внешний диаметр, D2 – внутренний диаметр, h – высота сердечника.
Расчёт эффективных параметров сердечника, как сказано выше, основан на двух величинах С1 и С2, которые составляют
где he – эффективная высота сердечника,
D1 – внешний диаметр сердечника,
D2 – внутренний диаметр сердечника.
Расчёт эффективной высоты he сердечника зависит от конструктивных особенностей.
Расчёт эквивалентной высоты тороидального сердечника: прямоугольное сечение (вверху) и трапецеидальное сечение (снизу).
Рассмотрим несколько случаев:
а) прямоугольное поперечное сечение с острыми кромками
б) прямоугольное поперечное сечение со скруглёнными кромками и радиусом скругления rs
в) трапецеидальное поперечное сечение с острыми кромками
г) трапецеидальное поперечное сечение со скруглёнными кромками
Пример. В качестве примера рассчитаем индуктивность тороидальной катушки, имеющий ω = 50 витков, намотанных на равномерно на магнитопровод со следующими размерами D1 = 20 мм, D2 = 10 мм, h = 7 мм, сечение магнитопровода прямоугольное со скруглёнными кромками, радиус скругления rs = 0,5 мм, относительная магнитная проницаемость материала сердечника μr = 1000.
Так как рассчитываем только индуктивность, то в расчёте коэффициента С2 нет необходимости
Таблица КВ диапазонов
Короткие волны, отражаясь от поверхности земли могут распространяться на достаточно большие дистанции. То, насколько качественно мы сможем принимать волны разной длины зависит от многих факторов, одним из наиболее выраженных является время суток: день или ночь.
В день хорошо распространяются менее длинные волны, а ночью — большей длины.
Ниже приведу для справки таблицу вещательных КВ диапазонов с примечанием по зависимости от времени суток:
- 11 метров, 25.600 — 26.100 MHz (дневной);
- 13 метров, 21.450 — 21.850 MHz (дневной);
- 15 метров, 18.900 — 19.020 MHz (дневной);
- 16 метров, 17.480 — 17.900 MHz (дневной);
- 19 метров, 15.100 — 15.900 MHz (дневной);
- 21 метр, 13.500 — 13.870 MHz;
- 25 метров 11.600 — 12.100 MHz;
- 31 метра, 9.400 — 9.990 MHz;
- 41 метра, 7.200 — 7.600 MHz;
- 49 метров, 5.730 — 6.295 MHz;
- 60 метров, 4.750 — 5.060 MHz (ночной);
- 75 метров, 3.900 — 4.000 MHz (ночной);
- 90 метров, 3.200 — 3.400 MHz (ночной);
- 120 метров, 2.300 — 2.495 MHz (ночной).
Исходя из моих расчетов, что произведены выше, я смогу охватить радиоприемником диапазоны примерно в пределах 41 — 25 метров.