↑ Принципиальная схема модернизированного блока питания УМЗЧ
Схема двухполярного источника питания приведена на рис. 1.
Рис.1. Двухполярный источник питания УМЗЧ
Он состоит из двух гальванически не связанных выпрямителей VD1, C1, C2, C5, C6, C9, C11, C13 и VD2, C3, C4, C7, C8, C10, C12, C14, двух параметрических стабилизаторов, выполненных на стабилитронах VD3, VD4 и источниках тока на транзисторах VT5, VT6, и эмиттерных повторителей на транзисторах VT1, VT3 и VT2, VT4. Коэффициент стабилизации повышен благодаря питанию источника образцового напряжения одного стабилизатора от выходного напряжения другого и использованию вместо резисторов источников тока.
Выпрямители собраны на диодных мостах VD1, VD2, состоящих из двойных диодов Шотки с общим катодом 16CTQ100. Диоды включены параллельно.
Конденсаторы С1…С8; С9, С10 и RC — цепочки R9, C23 и R10, C24 установлены в соответствии с рекомендациями фирмы Texas Instruments по построению блоков питания для УМЗЧ .
Для уменьшения шумов каждый стабилитрон VD3, VD4 зашунтирован парой конденсаторов — оксидным и пленочным (соответственно С15, С17 и С16, С18).
Источники тока на транзисторах VT5, VT6 содержат параметрические стабилизаторы HL1, C19, C21, R8 и HL2, C20, C22 в базах транзисторов.
Ток каждого источника равен: IVD4=(UHL1-UбэVT5)/R4=(1,76-0,56)/0,13=9,2 мА, IVD3=(UHL2-UбэVT6)/R7=9,2 мА.
Резисторы R5, R6 уменьшают мощность, рассеиваемую на коллекторах транзисторов источников тока.
Коллекторы (корпусы) мощных транзисторов VT1, VT2 соединены с общим проводом блока питания, что позволяет обойтись без теплопроводящих прокладок, тем самым улучшить отвод тепла при больших токах нагрузки.
Для снижения динамического сопротивления источника питания его выходы зашунтированы парами конденсаторов оксидный — пленочный (соответственно С25, С27 и С26, С28). Балластные резисторы со светодиодами зеленого цвета служат для индикации (HL3, R11 и HL4, R12).
Резистор R2 предназначен для запуска двухполярного стабилизатора при включении питания.
Стабилизатор имеет защиту от короткого замыкания в нагрузке. При замыкании в любом плече отключаются оба стабилизатора.
Основные технические характеристики:
Выходные напряжения стабилизатора, В …. ±15 Максимальный ток нагрузки, А …. 20 Коэффициент стабилизации, не менее …. 1500 Выходное сопротивление, не более, Ом …. 0,01 Напряжение на понижающих обмотках трансформатора питания, В …. 2×20
Стабилизатор или фильтр?
Удивительно, но чаще всего для питания усилителей мощности используются простые схемы с трансформатором, выпрямителем и сглаживающим конденсатором. Хотя в большинстве электронных устройств сегодня используются стабилизированные блоки питания. Причина этого заключается в том, что дешевле и проще спроектировать усилитель, который бы имел высокий коэффициент подавления пульсаций по цепям питания, чем сделать относительно мощный стабилизатор. Сегодня уровень подавления пульсаций типового усилителя составляет порядка 60дБ для частоты 100Hz , что практически соответствует параметрам стабилизатора напряжения. Использование в усилительных каскадах источников постоянного тока, дифференциальных каскадов, раздельных фильтров в цепях питания каскадов и других схемотехнических приёмов позволяет достичь и ещё больших значений.
Питание выходных каскадов чаще всего делается нестабилизированным. Благодаря наличию в них 100% отрицательной обратной связи, единичному коэффициенту усиления, наличию ОООС, предотвращается проникновение на выход фона и пульсаций питающего напряжения.
Выходной каскад усилителя по сути является регулятором напряжения (питания), пока не войдет в режим клиппирования (ограничения). Тогда пульсации питающего напряжения (частотой 100 Гц) модулируют выходной сигнал, что звучит просто ужасно:
Если для усилителей с однополярным питанием происходит модуляция только верхней полуволны сигнала, то у усилителей с двухполярным питанием модулируются обе полуволны сигнала. Большинству усилителей свойственен этот эффект при больших сигналах (мощностях), но он никак не отражается в технических характеристиках. В хорошо спроектированном усилителе эффекта клиппирования не должно происходить.
Чтобы проверить свой усилитель (точнее блок питания своего усилителя), вы можете провести эксперимент. Подайте на вход усилителя сигнал частотой чуть выше слышимой вами. В моём случае достаточно 15 кГц :(. Повышайте амплитуду входного сигнала, пока усилитель не войдёт в клиппинг. В этом случае вы услышите в динамиках гул (100Гц). По его уровню можно оценить качество блока питания усилителя.
Предупреждение! Обязательно перед этим экспериментом отключите твиттер вышей акустической системы иначе он может выйти из строя.
Стабилизированный источник питания позволяет избежать этого эффекта и приводит к снижению искажений при длительных перегрузках. Однако, с учётом нестабильности напряжения сети, потери мощности на самом стабилизаторе составляют примерно 20%.
Другой способ ослабить эффект клиппирования это питание каскадов через отдельные RC-фильтры, что тоже несколько снижает мощность.
В серийной технике такое редко применяется, так как помимо снижения мощности, увеличивается ещё и стоимость изделия. Кроме того, применение стабилизатора в усилителях класса АВ может приводить к возбуждению усилителя из-за резонанса петель обратной связи усилителя и стабилизатора.
Потери мощности можно существенно сократить, если использовать современные импульсные блоки питания. Тем не менее, здесь всплывают другие проблемы: низкая надёжность (количество элементов в таком блоке питания существенно больше), высокая стоимость (при единичном и мелко-серийном производстве), высокий уровень ВЧ-помех.
Типовая схема блока питания для усилителя с выходной мощностью 50Вт представлена на рисунке:
Выходное напряжение за счёт сглаживающих конденсаторов больше выходного напряжения трансформатора примерно в 1,4 раза.
Lm2576t adj схема включения с дополнительным транзистором
Лабораторный блок питания на базе импульсного стабилизатора LM2576T-ADJ с регулировкой выходного напряжения 0-30В и тока 0-3А , с функцией ограничения выходного тока и индикацией режима ограничения при помощи светодиода.
Все мы очень давно знакомы с линейными стабилизаторами напряжения, особенно с трёхвыводными в корпусах TO-220 типа 7805, 7812, 7824 и LM317. Они недорогие и легко доступны. Их малошумящая и быстрая переходная характеристика делают их идеальными для многих применений. Но им присущ один недостаток — неэффективность (очень низкий КПД). Например, при подаче на стабилизатор 7805 напряжения 12В и при токе нагрузки 1А, на стабилизаторе будет рассеиваться мощность 7Вт при мощности нагрузки 5Вт. Поэтому требуется большой радиатор для охлаждения самого стабилизатора. Когда важна эффективность, например при работе от батареи, необходимо выбирать импульсный стабилизатор. Фактически, самое современное оборудование использует импульсные источники питания и импульсные регуляторы или стабилизаторы. Но много радиолюбители уклоняются от импульсных регуляторов, поскольку, например, использование популярной LM3524 требует большого количества внешних деталей и внешнего коммутационного транзистора. Кроме того строгие требования для катушки индуктивности. Как выбрать правильно, и где их взять? К счастью, более новый импульсный регулятор типа LM2576 от National Semiconductor’s позволяет собирать импульсный стабилизатор с высоким КПД так же легко, как и с помощью 7805 и т.п. Микросхема выпускается в пятивыводном привычном корпусе типа TO-220 и корпусе ТО-263 для поверхностного монтажа. Диапазон питающих напряжений 7-40В постоянного тока. КПД — до 80%. Выходной ток — до 3А и на несколько напряжений (3.3V, 5 V, 12V, 15V), а также и в версии регулируемого выходного напряжения, что представляет для нас особенный интерес. При проектировании с использованием импульсного стабилизатора получается малый размер платы, кроме того необходим радиатор с малой площадью поверхности, обычно не более 100 см. кв. Частота преобразования стабилизатора 52 кГц. Есть серия высоковольтных стабилизаторов с маркировкой HV с диапазоном входных напряжений 7-60В и возможностью регулировки выходного напряжения до 55В.
Приведенная на рисунка схема лабораторного блока питания на базе импульсного стабилизатора LM2576T-ADJ с регулировкой выходного напряжения в диапазоне 0-30В и возможностью ограничения тока нагрузки в диапазоне 0-3А найдена в сети Интернет и подробно рассмотрена здесь на форуме сайта http://vrtp.ru. Кстати, замечательный сайт, рекомендую к посещению Свечение светодиода указывает на включение режима ограничения выходного тока, что очень удобно при проверке и ремонте радиоэлектроных устройств.
Чтобы облегчить режим работы стабилизатора 7805 (в корпусе ТО-92) и для повышения верхнего предела напряжения Uвх, последовательно с U2 установлен стабилитрон VD1. Схема регулирования тока и напряжения собрана на сдвоенном компараторе LM393. На первой половинке U3.1 собран регулятор напряжения, а на второй половинке U3.2 собран регулятор тока. На транзисторном ключе Q1 собран узел индикации включения режима ограничения выходного тока. Номинальный ток дросселя необходимо выбирать не менее тока нагрузки. Возможно пиатние слаботочной части схемы от отдельного источника напряжения с подачей его непосредственно на вход U2, при этом стабилитрон VD1 не устанавливается. Хорошо работает с низкоомной нагрузкой. Без изменения схемы, в ней можно применять импульсные стабилизаторы LM2596T-ADJ с частотой преобразования 150 кГц и диапазоном питающих напряжений 4,5-40В. Выходной ток — до 3А. КПД — до 90%.
Размеры печатной платыы блока питания 72х52 мм, расстояние между осями переменных резисторов 30 мм.:
Видео работы стабилизатора (без слов) приведено ниже. Поскольку сборка и проверка устройства велась в г. Донецке в то время, когда за окном рвались снаряды, то не было никакой охоты ничего рассказывать. Да и собирать его не хотелось, но нужно было как-то отвлечься от действительности. Надеюсь Вы меня поймёте.
Стоимость печатной платы с маской и маркировкой: закончились
Стоимость набора деталей с печатной платой для сборки блока питания (без радиатора): временно нет в наличии
Стоимость собранной и проверенной платы блока питания (без радиатора): временно нет в наличии
Краткое описание, схема и перечень компонентов набора здесь >>>
Для покупки печатных плат, наборов для сборки и готовых собранных блоков обращайтесь сюда >>> или сюда >>>
Всем удачи, мирного неба, добра, 73!
Характеристики
Основное назначение это стабилизация положительного напряжения. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.
Так же популярна LM317T, с ней не встречался, поэтому пришлось долго искать правильный даташит на неё. Оказалось, что они полностью идентичны по параметрам, букв «T» в конце маркировки обозначает корпус TO-220 на 1,5 Ампер.
Скачать даташиты:
- полный LM317, LM317T datasheet;
- LM117, LM217, LM317, LM317T datasheet.
Характеристики
LM317 | LM338 | LM350 | |
Входное Вольт | 1,2 – 37В | 1,2 – 37В | 1,2 – 37В |
Напряжение на выходе | до 36В | до 36В | до 36В |
Сила тока | 1,5А | 5А | 3А |
Нагрев | до 125° | — | — |
Защита | от перегрева от замыкания | — | — |
Нестабильность на выходе | 0,1% | — | — |
Даже при наличии интегрированных систем защиты не следует эксплуатировать на пределе возможностей. Если выйдет из строя, неизвестно сколько Вольт будет на выходе, можно будет спалить дорогостоящую нагрузку.
Приведу основные электрические характеристики из LM317 datasheet на русском . Не все знают технические термины на английском.
В даташите указана огромная сфера применения, проще написать где она не используется.
Простой импульсный БП для УМЗЧ
Представляю вашему вниманию испытанную мной схему достаточно простого импульсного сетевого блока питания УМЗЧ. Мощность блока составляет около 180Вт.
Входное напряжение – 220В;
Выходное напряжение – +-25В;
Частота преобразования – 27кГц;
Максимальный ток нагрузки – 3,5А.
Схема блока
достаточно проста:
Она представляет из себя полумостовой инвертор с переключающим насыщаюшимся трансформатором. Конденсаторы С1 и С2 образуют делитель напряжения для одной половины полумоста, а так же сглаживают пульсации сетевого напряжения.
Второй половиной полумоста являются транзисторы VT1 и VT2, управляемые переключающим трансформатором Т2.
В диагональ моста включена первичная обмотка силового трансформатора Т1, который рассчитан так что он не насыщается во время работы.
Кратко принцип его работы. Конденсатор С7 заряжается через резистор R3, при этом напряжение на коллекторе транзистора VT3 пилообразно растёт. При достижении этого напряжения примерно 50 – 70В, транзистор лавинообразно открывается, и конденсатор разряжается через транзистор VT3 на базу транзистора VT2 и обмотку III трансформатора Т2, тем самым запуская преобразователь.
Конструкция и детали
Блок питания собран на печатной плате из одностороннего стеклотекстолита. Чертёж платы не привожу, так как у каждого в заначке свои детали. Ограничусь лишь фото своей платы:
По моему, утюжить такую плату не имеет смысла, она не слишком сложная.
В качестве транзисторов VT1 и VT2 можно применить отечественные КТ812, КТ704, КТ838, КТ839, КТ840, то есть с граничным напряжением коллектор-эмиттер не менее 300В, из импортных знаю только J13007 и J13009, они применяются в компьютерных БП. Диоды можно заменить любыми другими мощными импульсными или с барьером шоттки, я, например, использовал импортные FR302.
Трансформатор Т1 намотан на двух сложенных кольцах К32Х19Х7 из феррита марки М2000НМ, первичная обмотка намотана равномерно по всему кольцу и составляет 82 витка провода ПЭВ-1 0,56.
Перед намоткой необходимо скруглить острые кромки колец алмазным надфилем или мелкой наждачной бумагой и обмотать слоем фторопластовой ленты, толщиной 0,2 мм, так же нужно обмотать и первичную обмотку.
Трансформатор Т2 намотан на кольце К10Х6Х5 из феррита той же марки. Все обмотки намотаны проводом МГТФ 0,05. Обмотка I состоит из десяти витков, а обмотки II и III намотаны одновременно в два провода и составляют шесть витков.
Наладка БП
ВНИМАНИЕ!!! ПЕРВИЧНЫЕ ЦЕПИ БП НАХОДЯТСЯ ПОД СЕТЕВЫМ НАПРЯЖЕНИЕМ, ПОЭТОМУ НУЖНО СОБЛЮДАТЬ МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ НАЛАДКЕ И ЭКСПЛУАТАЦИИ. Первый запуск блока желательно производить подключив его через токоограничивающий резистор, представляющий из себя лампу накаливания мощностью 200Вт и напряжением 220В
Первый запуск блока желательно производить подключив его через токоограничивающий резистор, представляющий из себя лампу накаливания мощностью 200Вт и напряжением 220В.
Как правило, правильно собранный БП в наладке не нуждается, исключение составляет лишь транзистор VT3. Проверить релаксатор можно подключив эмиттер транзистора к минусовому полюсу.
После включения блока, на коллекторе транзистора должны наблюдаться пилообразные импульсы частотой около 5Гц.
УМ с полевым транзистором в качестве источника тока для входного каскада
Он имеет следующие основные технические характеристики:
Номинальная выходная мощность ……. 75 Вт Коэффициент гармоник ………. 0,06% Полоса рабочих частот ………. 20 … 40 000 Гц Отношение сигнал-шум ………. 86 дБ Напряжение питания ……….. ±40 В Ток покоя ………….. 20 мА
Улучшение качественных показателей в этом усилителе по сравнению с предыдущим, достигнуто рядом схемотехнических решений. В эмиттерную цепь входного дифференциального каскада включен источник тока на полевом транзисторе. Это позволяет повысить коэффициент передачи первого каскада и улучшить его термостабильность. Для улучшения симметрии плеч выходного каскада усилителя и уменьшения нелинейных искажении в эмиттерную цепь одного из транзисторов предоконечного каскада вводится корректирующая цепь, состоящая из диода, резистора и конденсатора.
Принципиальная схема усилителя приведена на рис.1. Он содержит дифференциальный входной каскад (VT2, VT4), усилители тока (VT3) и напряжения {VT6), .выходной каскад (VT9-VT12) и устройство защиты от перегрузок (VT7, VT8). Как уже говорилось, источник тока на транзисторе VT1, включенный в эмиттерные цепи транзисторов VT2, VT4, позволяет, не увеличивая температурную нестабильность, повысить коэффициент передачи по напряжению дифференциального каскада. Транзистор VT3 позволяет уменьшить нагрузку на выход дифференциального каскада. Каскад с разделенной нагрузкой на транзисторе VT6 усиливает сигнал по напряжению, обеспечивая максимальный размах выходного напряжения.
Pис.1
Квазикомплементарный выходной каскад, выполненный на составных транзисторах (VT9, VT11 и VT10, VT12), хорошо согласовывается с низкоомной нагрузкой. Корректирующая цепь, состоящая из параллельно соединенных диода VD2, резистора R28 и конденсатора С10, улучшает симметрию плеч усилителя, уменьшая тем самым нелинейные искажения. Начальное смещение на базах выходных транзисторов для работы в режиме АВ определяется падением напряжения на участке коллектор-эмиттер транзистора VT5 и регулируется ре-зистором R16. Транзисторы VT7 и VT8 шунтируют при перегрузке эмиттерный переход выходных транзисторов, осуществляя тем самым их защиту. Элементы С3, R5, С4, R31, С12 предотвращают самовозбуждение усилителя на высоких частотах. Цепь R7, Сб служит для выравнивания АЧХ усилителя на высоких частотах звукового диапазона (до 20 кГц).
Конструктивно усилитель собран на печатной плате. Температурная стабилизация тока покоя выходных транзисторов осуществляется с помощью транзистора VT5, установленного на общем с VT12 или VT11 радиаторе; в непосредственной близости от них. Для питания усилителя необ-ходим двухполярный источник, обеспечивающий при напряжении ±40 В ток не менее 2,5 А.
Налаживание усилителя, собранного из исправных элементов, заключается в проверке правильности монтажа и установке тока покоя выходных транзисторов резистором R16 в пределах 20… 40 мА.
Усилитель звука на TEA2025B
TEA2025B питается в широком диапазоне однополярного напряжения: 3…15 В. Выходная мощность в режиме стерео 2 по 2,3 Вт. Нагрузкой являются два динамика, сопротивлением звуковой катушки 4 Ом. Также на микросхему можно подавать и моно сигнал. Тогда нагрузкой будет служить один динамик.
Важно!!! Приучите себя проверять схемы, найденные в интернете, с типовыми схемами включения, приведенными в даташите соответствующей микросхемы. Очень часто встречают ошибки
Поэтому не лишним будет заглянуть в первоисточник. Поскольку производители микросхем в технической документации ошибок не допускают, в отличие от сайтов радиолюбителей.
Мы будем делать стерео усилитель.
Прежде всего, для подключения к выходу звуковой карты компьютера или смартфона или просто к аудиовыходу другого устройства, например приемника или тюнера, нам понадобится аудио штекер.
Аудио штекеры бывают для моно сигнала (однопиновый), стереосигнала (2-х пиновый), стерео с микрофоном (4-х пиновый). В нашем случае необходимо использовать аудио штекер 2-х пиновый и без микрофона.
Один пин – это левый канал. Второй пин – правый канал. Третий контакт – это общий провод для двух каналов.
Во избежание ошибки, место пайки проводов проще всего прозвонить с соответствующими пинами.
И так, штекер готов, но пока что мы его никуда не припаиваем.
Также нам понадобятся два самых простых, но одинаковых по характеристикам динамика. Вполне подойдут динамики, мощность по 3 Вт, сопротивлением звуковой катушки 4 Ом.
Обратите внимание, динамики также имеют полярность, которая обозначает начало и конец звуковой катушки. В дальнейшем нам ее также необходимо придерживаться
Я буду применять блок питания с регулировкой выходного напряжения, который я показывал, как сделать в своем курсе для начинающих электронщиков.
Развязка
При использовании двух фильтрующих конденсаторов при двухполярном питании надо следить, чтобы две полуволны сигнала суммировались в одной точке, как показано на рисунке:
Часто применение одного конденсатора, включенного между плюсом и минусом питания, позволяет решить эту проблему. Этот метод хорошо работает с операционными усилителями типа 5532, и для усилителей мощности типа LM3886.
Когда питание драйверного каскада и выходного каскада подключено раздельными проводами, это может вызвать некоторую нестабильность усилителя на высоких частотах. Проблема решается подключением керамического конденсатора небольшой ёмкости между выводами питания микросхемы:
увеличение по клику
Если ёмкость байпасных (блокировочных) конденсаторов больше 100мкФ, их общий провод должен подключаться к «грязной» земле, так как большие зарядные токи могут создавать ощутимые помехи, если конденсаторы будут подключены к сигнальной земле.
Устройство и работа полевого транзистора
DC ток — понятие и виды постоянно тока
Для изучения функциональности полевого транзистора можно рассмотреть две схемы подключения. В первом варианте соединяют исток и затвор проводником, выравнивая соответствующий потенциал: Uзи= 0. Повышением напряжения Uси (сток-исток) обеспечивают прохождение тока в рабочей зоне.
Напряжение равно нулю
В показанном на рисунке состоянии прибор функционирует как типичный проводник. Специфическое название на графике «Омическая область» определяет зону пропорционального увеличения силы тока по мере увеличения разницы потенциалов. При переходе в режим насыщения количества свободных зарядов недостаточно для поддержания отмеченного изменения.
Уменьшение потенциала на затворе
На этом рисунке канал прохождения зарядов сужают дополнительным источником питания, который уменьшает Uзи<0. На определенном уровне (напряжение отсечки) ток не проходит.
Устройство полевого транзистора
На рисунке показаны зоны p и n типа. Регулировкой напряжения Uси изменяют сопротивления канала (силу тока). Как показано выше, при необходимости можно закрыть эту цепь.
Варианты выходных каскадов усилителя
Автором предлагается еще два варианта выходных каскадов усилителя, работающих в разных режимах и позволяющих снизить коэффициент гармоник мощного УМЗЧ. Их упрощенные электрические схемы показаны на рис. 1а и рис.16.
Скорость нарастания выходного напряжения на эквиваленте нагрузки при замкнутой накоротко катушке индуктивности, В/мкс — 10.
Рис. 1. Упрощенные электрические схемы УМЗЧ.
Каждый из усилителей состоит из двух выходных каскадов — основного и вспомогательного, включенных параллельно. Причем основной каскад работает в режиме В, а вспомогательный — в режиме АВ.
Основной каскад усилителя, показанный на рис. 1а, выполнен на транзисторах VT1, VT2, включенных по схеме комплементарного эмиттерного повторителя, работающего в режиме В. Транзисторы VТ3, VТ4 и резисторы R6. R9 образуют вспомогательный каскад,который работает в режиме АВ.
Резисторы R1 . R5 и диоды VD1, VD2 обеспечивают необходимое смещение на базах транзисторов и задают режим работы обоих каскадов.
Как видно из схемы, напряжение смещения на базах транзисторов вспомогательного каскада всегда больше, чем на базах основного каскада на величину падения напряжения на диодах VD1, VD2.
В результате с помощью изменения сопротивления резистора R4 задается напряжение смещения на базах транзисторов VТ1, VТ2, при котором каскад будет работать в режиме В. Резисторы R8, R9 создают необходимую термостабилизацию вспомогательного каскада, а резисторы R6, R7 ограничивают базовый ток транзисторов VТ3, VТ4.
При малых уровнях входного сигнала транзисторы основного каскада VТ1, VТ2 закрыты, и при этом работает только вспомогательный каскад. При этом переменный ток, поступающий в нагрузку, мал, мало и падение напряжения на резисторах R8, R9.
С ростом входного напряжения начинают открываться транзисторы VТ1, VТ2 и увеличивается ток, поступающий в нагрузку от включенных параллельно выходных каскадов. Увеличение тока, протекающего через резисторы R8, R9, приводит к росту падения напряжения на них и ограничению тока транзисторов VТ3 и VТ4.
При максимальном выходном токе, например, при положительной полуволне входного напряжения, транзистор VТ1 полностью открыт, а через транзистор VТ3 при этом протекает в нагрузку гораздо меньший ток, ограниченный в основном резистором R8 и частично R6.
Таким образом, чем больше будет сопротивление резисторов R8, R9, тем на «меньшем уровне будет ограничен максимальный ток транзисторов вспомогательного каскада, а значит, и максимальная мощность в режиме АВ, отдаваемая в нагрузку.
Как показало макетирование, сопротивление резисторов R8, R9 порядка 2. 10 Ом ограничивает максимальный ток транзисторов вспомогательного каскада на уровне 200. 40 мА.
Более сложен выходной каскад, изображенный на рис. 16. Он обеспечивает усиление как по току, так и по напряжению. В основном каскаде (VТ3, VТ4) предусматривается использование мощных составных транзисторов КТ825, КТ827. Вспомогательный каскад VТ5. VТ8 также должен быть собран на составных транзисторах.
Резисторы R1. R11, стабилитроны VD1, VD2, диоды VD3, VD4 и транзисторы VТ1, VТ2 определяют режим работы выходных каскадов, который не меняется при изменении напряжения питания в значительных пределах.
Объясняется это тем, что напряжение смещения на базах транзисторов VТ1, VТ2 поддерживается постоянными стабилитронами VD1, VD2. Работа транзисторов выходного каскада в режиме усиления тока и напряжения обеспечивает максимальный КПД выходного каскада, поскольку в этом случае напряжение насыщения транзисторов минимально, и максимальное значение амплитуды выходного сигнала приближается к напряжению питания.
Как и при коррекции искажений с использованием прямой связи, усилитель мощности, построенный по предложенным схемам, должен иметь достаточно глубокую ООС, обеспечивающую малые нелинейные искажения в широком динамическом диапазоне выходных сигналов.
Очевидно, что наилучшим образом решить эту задачу позволяют современные быстродействующие ОУ. Применив в предварительном каскаде УМЗЧ быстродействующий ОУ и построив его выходной каскад по схеме, указанной на рис. 16, удалось сконструировать усилитель.