Виды стабилизирующих устройств
По способу ограничения силы тока выделяются устройства линейного и импульсного типа.
Так как напряжение на светодиоде – неизменная величина, то стабилизаторы тока часто считают стабилизаторами мощности LED. Фактически последняя прямо пропорциональна изменению напряжения, что характерно для линейной зависимости.
Линейный стабилизатор нагревается тем больше, чем больше прилагается к нему напряжения. Это его главный недочёт. Преимущества данной конструкции обусловлены:
- отсутствием электромагнитных помех;
- простотой;
- низкой стоимостью.
Более экономичными устройствами являются стабилизаторы на основе импульсного преобразователя. В этом случае мощность прокачивается порционно – по мере необходимости для потребителя.
Datasheet по lm317, lm350, lm338
Прежде чем перейти непосредственно к схемам, рассмотрим особенности и технические характеристики вышеприведенных линейных интегральных стабилизаторов (ЛИС).
Все три ИМ имеют схожую архитектуру и разработаны с целью построения на их основе не сложных схем стабилизаторов тока или напряжения, в том числе применяемых и со светодиодами. Различия между микросхемами кроются в технических параметрах, которые представлены в сравнительной таблице ниже.
LM317 | LM350 | LM338 | |
---|---|---|---|
Диапазон значений регулируемого выходного напряжения | 1,2…37В | 1,2…33В | 1,2…33В |
Максимальный показатель токовой нагрузки | 1,5А | 3А | 5А |
Максимальное допустимое входное напряжение | 40В | 35В | 35В |
Показатель возможной погрешности стабилизации | ~0,1% | ~0,1% | ~0,1% |
Максимальная рассеиваемая мощность* | 15-20 Вт | 20-50 Вт | 25-50 Вт |
Диапазон рабочих температур | 0° — 125°С | 0° — 125°С | 0° — 125°С |
Datasheet | LM317.pdf | LM350.pdf | LM338.pdf |
* – зависит от производителя ИМ.
Во всех трех микросхемах присутствует встроенная защита от перегрева, перегрузки и возможного короткого замыкания.
Выпускаются интегральные стабилизаторы (ИС) в монолитном корпусе нескольких вариантов, самым распространенным является TO-220.
- ADJUST. Вывод для задания (регулировки) выходного напряжения. В режиме стабилизации тока соединяется с плюсом выходного контакта.
- OUTPUT. Вывод с низким внутренним сопротивлением для формирования выходного напряжения.
- INPUT. Вывод для подачи напряжения питания.
Подбор компонентов
Одним из сложных моментов реализации нашей идеи внезапно оказался подбор интегральных стабилизаторов в нужном корпусе. Несмотря на то, что мне было достоверно известно об их существовании во всех возможных SMD-корпусах, просмотр даташитов различных производителей не позволял найти точной маркировки, а поиск по параметрам у нескольких глобальных поставщиков показывал лишь отдельные варианты, и чаще всего различных производителей. В итоге, искомая комбинация в корпусах SOT-223, к тому же из одной серии, обнаружилась на сайте Texas Instruments: LM337IMP и LM317EM:
Рис. 10 — И нтегральные стабилизаторы LM337IMP и LM317EM
Стоит отметить, что различных пар, состоящих из разнополярных стабилизаторов напряжения можно подобрать великое множество, однако производителем рекомендована пара из стабилизаторов одной серии. Оба стабилизатора обеспечивают максимальный ток до 1 A при разнице между входным и выходным напряжением до 15 В включительно, однако номинальным током, при котором стабилизатор гарантированно не уходит в защиту по перегреву можно считать 0,5-0,8 А. Тока в 500 mA в тех приложениях, для которых мы строим данный стабилизатор более чем достаточно, поэтому будем считать задачу по подбору стабилизаторов выполненной.
Перейдем к остальным компонентам.
Диодный мост – любой, с номинальным током 1-2 А. на напряжение не менее 50 В, мы использовали DB155S.
Электролитические конденсаторы в данной схеме применимы практически любые, с небольшим запасом по напряжению. Подбор осуществляется исходя из следующих соображений: так как размах питающего напряжения, которое нам требуется не превышает 15 В, а рекомендуемый максимум для стабилизаторов составляет 20 В – конденсаторы на 25 В имеют запас минимум в 25%. Все электролитические конденсаторы необходимо зашунтировать пленочными или керамическими с номиналами согласно схемы, на напряжение не менее 25 В. Мы использовали типоразмер 0805 и тип диэлектрика X7R (можно применить NP0, а Z5U или Y5V – не рекомендуются из-за плохих ТКС и ТКЕ, хотя в отсутствие альтернативы – подойдут и такие).
Резисторы постоянного номинала – любые, в делителе напряжения, отвечающем за напряжение стабилизации лучше применить более точные, с допуском в 1%. Типоразмер всех резисторов -1206, исключительно для удобства монтажа, однако можно смело применять 0805. Подстроечный резистор номиналом в 100 Ом – многооборотный, для точной регулировки (используется 3224W-1-101E). Резистор, применяющийся для регулировки выходного напряжения — номиналом в 5 КОм, любой имеющийся, мы взяли 3314G-1-502E под отвертку, но можно применить и переменный резистор для монтажа на корпус, соединив его с платой стабилизатора проводами. Диоды желательно применять быстродействующие, на ток не мене 1 А и напряжение от 50 В, например HS1D.
Светодиодный индикатор включения рассчитан по следующему принципу: ток через стабилитрон при самом большом напряжении на входе не должен превысить 40 mA, при подаче на вход напряжения до 30 В, номинал токоограничивающего резистора будет равен 750 Ом, для надежности лучше применить 820 Ом. Подавать на стабилизаторы напряжение меньше чем 8 В на плечо бессмысленно (т.к. во внутренней структуре микросхемы присутствуют стабилитроны на 6,3 В), таким образом при напряжении в 16 В ток через стабилитрон будет составлять 20 mA, а через подключенный параллельно ему светодиод – порядка 8 mA, чего будет достаточно для свечения SMD-светодиода. Стабилитрон любой, на напряжение стабилизации 3,3 В (применен DL4728A), и соответственно токоограничивающий резистор для светодиода в 150 Ом для обеспечения его продолжительной работы при максимальном токе через стабилитрон.
Готовимся к сборке
Трансформатор
Перед тем как мы начнем сборку регулируемого типа блока с защитой от короткого замыкания, основанного на микросхеме lm317, необходимо купить все требуемые в работе детали и компоненты. Здесь нужно помнить, что от качества приобретенной радиотехнической продукции будет напрямую зависеть срок службы и качество работы собираемого БП. Поэтому, если вы не очень хорошо разбираетесь в комплектующих, покупать лучше всего только там, где вам могут предоставить сертификат качества отпускаемой продукции. Одной из самых важных деталей в любой схеме сборки будет трансформатор. Он используется для понижения напряжения в качестве преобразователя.
Эту деталь можно извлечь из любого электроприбора, который у вас дома стоит без дела или уже сломался. Например, трансформатор можно извлечь из телевизора, магнитофона и т.д.
Силовой трансформатор
Некоторые рекомендуют включать в схему трансформатор марки ТВК-110. Он устанавливался ранее в черно-белых телевизорах в блоке для кадровой развертки. Но здесь имеется один минус – выходное напряжение здесь будет составлять всего 9 В, а сила тока будет маленькой. При этом если вам потребуется подпитать мощный электроприбор, то данный трансформатор не справится с возложенной на него нагрузкой. Здесь, если есть потребность в мощном БП, следует использовать силовые трансформаторы.
При этом помните, что их мощность должна составлять минимум 40 Вт. Чтобы сделать БП на микросборке lm317t для ЦАП, вам понадобится выходное напряжение в диапазоне 3,5-5 В. Именно такой уровень напряжения следует поддерживать в цепи для питания микроконтроллера. Также вам могут потребоваться незначительные изменения во вторичную обмотку, без затрагивания первичной обмотки.
LM358 схема включения: преобразователь напряжение – частота
И напоследок схема которую можно использовать в качестве аналого-цифрового преобразователя. Нужно только подсчитать период или частоту выходных сигналов.
- C1 – 0,047 мкФ;
- DA1 – LM358;
- R1 – 100 кОм;
- R2 – 50 кОм;
- R3,R4,R5 – 51 кОм;
- R6 — 100 кОм;
- R7 — 10 кОм.
26 thoughts on “ LM358 схема включения ”
Наверное — это самый распространенный операционник. Как раз тот случай, когда усредненные характеристики детали, делают ее востребованной в любых стандартных устройствах. Возможность сносно работать в различных режимах позволяет использовать в УМЗЧ, параметрических и импульсных стабилизаторах, генераторах, модуляторах, регуляторах и т.д. Из-за надежности, обусловленной простотой, используется и в бытовой, и в промышленной, и, даже, военной технике.
Востребованной ее делает крайне низкая цена, я их брал по 3,5 руб. Взял сотню, теперь леплю эти «семечки» куда только можно. Кроме звукоусиливающей аппаратуры, конечно, где посредственные частотные и скоростные параметры накладывают серьезные ограничения на использование LM358. Что любопытно, у этого простенького ОУ довольно большое допустимое синфазное напряжение, что позволяет использовать его в качестве усилителя напряжения с шунта в «горячем» проводе источника питания с выходным напряжением до 27 вольт. Как на девятом рисунке в публикации. Только с напряжением смещения у него не очень, поэтому приходится сопротивление шунтов выбирать побольше, компенсируя низкую точность операционного усилителя. Но что тут поделать? Инструментальный усилитель за 3 рубля не купишь…
Можно и в звуковых усилителях использовать, но, не в виде предварительного каскада усиления, конечно, тут полностью поддерживаю. Ресиверы, вообще одно из немногих устройств, в каскады усиления которых, современные технологии не добрались. Понимаю, что сейчас кругом МП3, но после качественного ЦАП, микросхемам делать уже нечего. Если мы говорим о верном Hi-Fi (High-Fidelity) стерео-звуке, конечно. В аппаратуре такого уровня, даже применение вакуумных радиоламп до сих пор актуально и востребовано.
Не подскажете пару радиосхем на вакуумных лампах. Лампы есть, а вот схем не могу найти, даже в интернете. Помню, в детстве, был у меня катушечный магнитофон «Астра», так в нём целых три лампы стояло, звук был громкий, но качество конечно оставляло желать лучшего.
Качество звука было неважным — из-за плохого качества магнитных носителей и звукоснимателей, а не из-за усиления НЧ! Усилитель только подчеркивал эти недостатки. Плюс «звукоизлучатели» вносили свою лепту. Да и усилитель-усилителю рознь, несмотря на использованные в нем элементы. Многие старые магнитофоны, по вышеуказанной причине, оснащались изначально некачественным, упрощенным выходным каскадом. А какие у вас лампы? Их разнообразие побольше, чем у транзисторов, особенно биполярных. Схемы найти трудно, но не невозможно, сложнее — под определенные лампы, особенно, если это две ГУ-50.
Схемы на радиолампах в большом количестве имеются в книгах по радиоэлектронике, например есть знаменитая книга «Юный радиолюбитель» авторы Борисов, В.Г. https://tehosnova.ru/knigi/elektronika/borisov_vg_uniy_radiolubitel_7_izd_p.zip
не прикалывайтесь, в стандарт hi-fi влазят почти все современные звуковоспроизводящие устройства)
Интересно, что цоколи большинства сдвоенных (стерео
Собираем блок питания
После того как вы выбрали сборочную схему и обзавелись всеми нужными комплектующими, можно приступать в работе. Как уже говорилось, в нашем случае сборка блока питания регулируемого типа будет происходить на базе микросхемы lm317. Сборка происходит следующим образом:
- устанавливаем выбранный тип трансформатора;
- затем приступаем к сборке выпрямительного блока или каскада. Здесь нужно спаять полупроводниковые диоды. В данной ситуации ничего сложного нет. Единственное, нужно учитывать тип выправления;
Схема выпрямительного каскада
далее определяем выводы на схеме. Здесь имеется три вывода: масса (1), вход (2) и выход (3). Переворачиваем корпус так, чтобы нумерация шла слева направо. Теперь осталось только провести стабилизацию напряжения. Минус с выпрямителя подаем на второй вывод, а с третьего снимаем стабилизированное напряжение.
Схема стабилизатора напряжения
Вариант готового БП
После этого ориентируемся по выбранной схеме, устанавливая оставшиеся детали. Все элементы схемы можно поместить в корпус, для которого следует использовать пластик или лист алюминия. Но можно придать БП абсолютно любую форму, которую вы сами захотите.
Как видим, при правильно подобранной схеме, в зависимости от своего уровня профессионализма и знаний радиотехники, можно без особых проблем создать своими руками блок питания регулируемого типа на базе микросхемы lm317. Для того чтобы у вас все получилось, нужно следовать схеме сборки, а также приобрести качественные детали. В результате у вас получится отличный блок питания с отменными характеристиками – незаменимый помощник в домашней лаборатории любого радиолюбителя.
Основные узлы регулируемого блока питания
Трансформаторный источник питания в большинстве случаев выполняется по следующей структурной схеме.
Узлы трансформаторного БП.
Понижающий трансформатор снижает напряжение сети до необходимого уровня. Полученное переменное напряжение преобразуется в импульсное с помощью выпрямителя. Выбор его схемы зависит от схемы вторичных обмоток трансформатора. Чаще всего применяется мостовая двухполупериодная схема. Реже – однополупериодная, так как она не позволяет полностью использовать мощность трансформатора, да и уровень пульсаций выше. Если вторичная обмотка имеет выведенную среднюю точку, то двухполупериодная схема может быть построена на двух диодах вместо четырех.
Двухполупериодный выпрямитель для трансформатора со средней точкой.
Если трансформатор трехфазный (и имеется трехфазная цепь для питания первичной обмотки), то выпрямитель можно собрать по трехфазной схеме. В этом случае уровень пульсаций наиболее низок, а мощность трансформатора используется наиболее полно.
После выпрямителя устанавливается фильтр, который сглаживает импульсное напряжение до постоянного. Обычно фильтр состоит из оксидного конденсатора, параллельно которому ставится керамический конденсатор малой емкости. Его назначение – компенсировать конструктивную индуктивность оксидного конденсатора, который изготовлен в виде свернутой в рулон полоски фольги. В результате получившаяся паразитная индуктивность такой катушки ухудшает фильтрующие свойства на высоких частотах.
Далее стоит стабилизатор. Он может быть как линейным, так и импульсным. Импульсный сложнее и сводит на нет все преимущества трансформаторного БП в нише выходного тока до 2..3 ампер. Если нужен выходной ток выше этого значения, проще весь источник питания выполнить по импульсной схеме, поэтому обычно здесь используется линейный регулятор.
Выходной фильтр выполняется на базе оксидного конденсатора относительно небольшой емкости.
Обобщенная блок-схема импульсного БП.
Импульсные источники питания строятся по другому принципу. Так как потребляемый ток имеет резко несинусоидальный характер, на входе устанавливается фильтр. На работоспособность блока он не влияет никак, поэтому многие промышленные производители БП класса Эконом его не ставят. Можно не устанавливать его и в простом самодельном источнике, но это приведет к тому, что устройства на микроконтроллерах, питающиеся от той же сети 220 вольт, начнут сбоить или работать непредсказуемо.
Дальше сетевое напряжение выпрямляется и сглаживается. Инвертор на транзисторных ключах в цепи первичной обмотки трансформатора создает импульсы амплитудой 220 вольт и высокой частотой – до нескольких десятков килогерц, в отличие от 50 герц в сети. За счет этого силовой трансформатор получается компактным и легким. Напряжение вторичной обмотки выпрямляется и фильтруется. За счет высокой частоты преобразования здесь могут быть использованы конденсаторы меньшей емкости, что положительно сказывается на габаритах устройства. Также в фильтрах высокочастотного напряжения становится целесообразным применение дросселей – малогабаритные индуктивности эффективно сглаживают ВЧ пульсации.
Регулирование напряжения и ограничение тока выполняется за счет цепей обратной связи, на которые подается напряжение с выхода источника. Если из-за повышения нагрузки напряжение начало снижаться, то схема управления увеличивает интервал открытого состояния ключей, не снижая частоты (метод широтно-импульсного регулирования). Если напряжение надо уменьшить (в том числе, для ограничения выходного тока), время открытого состояния ключей уменьшается.
Возможно заинтересует: Как из старого блока питания компьютера сделать зарядное устройство
↑ Настройка зарядного устройства
Без нагрузки подстройкой R5 убедиться, что напряжение на выходе плавно регулируется около значения в 14 Вольт. Подгонкой R7, R8 добиться зажигания D6 при напряжении 14…14,2 Вольт. На печатной плате предусмотрено место для подключения SMD резисторов параллельно R7, R8 для их подгонки. При указанных на схеме номиналах, подстройка не потребовалась. Затем подстройкой R5 установить на выходе напряжение 14,4…14,5 Вольт. Подключить нагрузку, например, 20 Ом и убедиться, что ток в нагрузке примерно 300 мА. Закоротить ненадолго выход и убедиться, что оба диода гаснут, а предохранитель не перегорает. Без нагрузки должны светиться оба светодиода, при подключении аккумулятора красный светодиод гаснет. Если цепь заряда оборвана или аккумулятор заряжен полностью, красный светодиод не гаснет.
Подключить аккумулятор, убедиться, что красный светодиод гаснет и зарядка проходит нормально. При приближении к полной зарядке красный диод должен загореться. Проконтролировать напряжение на полностью заряженной батарее и, при необходимости, подкорректировать резистором R5 выходное напряжение. Если напряжение заметно отличается от нормы, батарея неисправна. Надо проконтролировать состояние всех элементов батареи и заменить неисправный.
Схема LM317
Все внутреннее устройство стабилизатора можно видеть на его схеме, взятой в datasheet. На ней изображены три вывода схемы: вход (на этот вход подается питание), регулировка и выход. На пине регулировки вольтаж сигнала сначала понижается на одностороннем ограничителе до стабильных 1.25В и служит опорным источником, а ток, вместе с током питания идут на компаратор, основанный на операционном усилителе.
Также на схеме можно видеть выходной каскад на базе биполярного транзистора, который усиливает ток, и блок защиты от перегрева и превышения по току.
Справа от блока защиты находится датчик тока, падение на котором и отслеживается защитой с целью предупреждения повреждений от КЗ.
Схема LM317
Все внутреннее устройство стабилизатора можно видеть на его схеме, взятой в datasheet. На ней изображены три вывода схемы: вход (на этот вход подается питание), регулировка и выход. На пине регулировки вольтаж сигнала сначала понижается на одностороннем ограничителе до стабильных 1.25В и служит опорным источником, а ток, вместе с током питания идут на компаратор, основанный на операционном усилителе.
Также на схеме можно видеть выходной каскад на базе биполярного транзистора, который усиливает ток, и блок защиты от перегрева и превышения по току.
Справа от блока защиты находится датчик тока, падение на котором и отслеживается защитой с целью предупреждения повреждений от КЗ.
Стабилизатор тока на lm317 | AUDIO-CXEM.RU
Ток на выходе блока питания может увеличиться вследствие уменьшения сопротивления нагрузки (простой пример, короткое замыкание), также изменение тока нагрузки происходит из-за изменения напряжения питания её. Стабилизатор тока на lm317 обеспечивает стабильность тока (ограничение тока) на выходе в случаях описанных выше.
Данный стабилизатор может быть применён в схемах питания светодиодов, зарядных устройствах (ЗУ), лабораторных источников питания и так далее.
Если, к примеру, рассматривать светодиоды, то необходимо учитывать тот факт, что для них нужно ограничивать ток, а не напряжение. На кристалл можно подать 12В и он не сгорит, при условии, что ток будет ограничен до номинального (в зависимости от маркировки и типа светодиода).
Основные технические характеристики LM317
Максимальный выходной ток 1.5А
Максимальное входное напряжение 40В
Выходное напряжение от 1.2В до 37В
Более подробные характеристики и графики можно посмотреть в даташите на стабилизатор.
Схема стабилизатора тока на lm317
Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Минусом является низкий КПД (в счёт своей линейности), и поэтому происходит значительный нагрев кристалла микросхемы. Как вы уже поняли, микросхему необходимо обеспечить хорошим радиатором.
За величину тока стабилизации (ограничения) отвечает резистор R1. С помощью данного резистора можно выставить ток стабилизации, например 100мА, тогда даже при коротком замыкании на выходе схемы будет протекать ток, равный 100мА.
Сопротивление резистора R1 рассчитывается по формуле:
R1=1,2/Iнагрузки
Изначально необходимо определиться с величиной тока стабилизации. Например, мне необходимо ограничить ток потребления светодиодов равный 100мА. Тогда,
R1=1,2/0,1A=12 Ом.
То есть, для ограничения тока 0,1A необходимо установить резистор R1=12 Ом. Проверим на железе… Для проверки собрал схему на макетной плате. Резистор на 12 Ом искать было лень, зацепил в параллель два по 22 Ома (были под рукой).
Выставил напряжение холостого хода, равное 12В (можно выставить любое). После чего, я замкнул выход на землю, и стабилизатор LM317 ограничил ток 0,1А. Расчеты подтвердились.
При увеличении или уменьшении напряжения ток остается стабильным.
Резистор можно припаять на выводы микросхемы, но не стоит забывать, что через резистор протекает весь ток нагрузки, поэтому при больших токах нужен резистор повышенной мощности.
Если использовать данный стабилизатор тока на LM317 в лабораторном блоке питания, то необходимо устанавливать переменный резистор проволочного типа, простой переменный резистор не выдержит токи нагрузки протекающие через него.
Для ленивых представляю таблицу значений резистора R1 в зависимости от нужного тока стабилизации.
Ток | R1 (стандарт) |
0.025 | 51 Ом |
0.05 | 24 Ом |
0.075 | 16 Ом |
0.1 | 13 Ом |
0.15 | 8.2 Ом |
0.2 | 6.2 Ом |
0.25 | 5.1 Ом |
0.3 | 4.3 Ом |
0.35 | 3.6 Ом |
0.4 | 3 Ома |
0.45 | 2.7 Ома |
0.5 | 2.4 Ома |
0.55 | 2.2 Ома |
0.6 | 2 Ома |
0.65 | 2 Ома |
0.7 | 1.8 Ома |
0.75 | 1.6 Ома |
0.8 | 1.6 Ома |
0.85 | 1.5 Ома |
0.9 | 1.3 Ома |
0.95 | 1.3 Ома |
1 | 1.3 Ома |
Таким образом, применив галетный переключатель и несколько резисторов, можно собрать схему регулируемого стабилизатора тока с фиксированными значениями.
Даташит на LM317 СКАЧАТЬ
Таблица параметров разных вариантов исполнения LM317:
Part Number | Корпус | Рабочая температура | Макс. ток нагрузки | Напряжение стабилизации | Макс. входное напряжение | Маркировка на корпусе | Производитель |
LM317K | TO-3 | 0…+125 °C | 1.5 A | 1.2 … 37 V | 40 V | LM317K STEEL P+ | |
LM317AH | TO-39 | -40…+125 °C | 0.5 A | 1.2 … 37 V | 40 V | LM317AH P+ | |
LM317H | TO-39 | 0…+125 °C | 0.5 A | 1.2 … 37 V | 40 V | LM317H P+ | |
LM317AT | TO-220 | -40…+125 °C | 1.5 A | 1.2 … 37 V | 40 V | LM317AT P+ | |
LM317BT | TO-220 | -40…+125 °C | 1.5 A | 1.2 … 37 V | 40 V | LM317B |
|
LM317T | TO-220 | 0…+125 °C | 1.5 A | 1.2 … 37 V | 40 V | LM317T |
|
LM317S | TO-263-3 (D2PAK-3) | 0…+125 °C | 1.5 A | 1.2 … 37 V | 40 V | LM317S P+ | |
LM317EMP | SOT-223 | 0…+125 °C | 1 A | 1.2 … 37 V | 40 V | N01A | |
LM317AEMP | SOT-223 | -40…+125 °C | 1 A | 1.2 … 37 V | 40 V | N07A | |
LM317MDT | TO-252-3 (DPAK-3) | 0…+125 °C | 0.5 A | 1.2 … 37 V | 40 V | LM317MDT | |
LM317AMDT | TO-252-3 (DPAK-3) | -40…+125 °C | 0.5 A | 1.2 … 37 V | 40 V | LM317AMDT | |
LM317D2T-TR | TO-263-3 (D2PAK-3) | 0…+125 °C | 1.5 A | 1.2 … 37 V | 40 V | LM317D2T |
|
LM317BD2T | TO-263-3 (D2PAK-3) | -40…+125 °C | 1.5 A | 1.2 … 37 V | 40 V | LM317BD2T | |
LM317P | TO-220FP | 0…+125 °C | 1.5 A | 1.2 … 37 V | 40 V | LM317P | |
LM317KTE | KTE (R-PSFM-G3) | 0…+125 °C | 1.5 A | 1.2 … 37 V | 40 V | LM317 | |
LM317KTT | TO-263-3 (D2PAK-3) | 0…+125 °C | 1.5 A | 1.2 … 37 V | 40 V | LM317 | |
LM317DCY | SOT-223 | 0…+125 °C | 1.5 A | 1.2 … 37 V | 40 V | L3 | |
LM317KC | TO-220 | 0…+125 °C | 1.5 A | 1.2 … 37 V | 40 V | LM317 | |
LM317MDT | TO-252-3 (DPAK-3) | 0…+125 °C | 0.5 A | 1.2 … 37 V | 40 V | LM317M | |
LM317MT | TO-220 | 0…+125 °C | 0.5 A | 1.2 … 37 V | 40 V | LM317M | |
LM317LCD | SOIC-8 | 0…+125 °C | 0.1 A | 1.25 … 32 V | 35 V | L317LC | |
LM317LCLP | TO-92 | 0…+125 °C | 0.1 A | 1.25 … 32 V | 35 V | L317LC | |
LM317LCPK | SOT-89 | 0…+125 °C | 0.1 A | 1.25 … 32 V | 35 V | LA | |
LM317LCPW | TSSOP-8 | 0…+125 °C | 0.1 A | 1.25 … 32 V | 35 V | L317LC | |
LM317LID | SOIC-8 | -40…+125 °C | 0.1 A | 1.25 … 32 V | 35 V | L317LI | |
LM317LILP | TO-92 | -40…+125 °C | 0.1 A | 1.25 … 32 V | 35 V | L317LI | |
LM317LIPK | SOT-89 | -40…+125 °C | 0.1 A | 1.25 … 32 V | 35 V | LB | |
LM317LIPW | TSSOP-8 | -40…+125 °C | 0.1 A | 1.25 … 32 V | 35 V | L317LI | |
LM317LD | SO-8 | 0…+125 °C | 0.1 A | 1.2 … 37 V | 40 V | LM317L | |
LM317LZ | TO-92 | 0…+125 °C | 0.1 A | 1.2 … 37 V | 40 V | LM317LZ | |
LM317MABDTG | TO-252-3 (DPAK-3) | -40…+125 °C | 0.5 A | 1.2 … 37 V | 40 V | 317ABG | |
LM317MABTG | TO-220 | -40…+125 °C | 0.5 A | 1.2 … 37 V | 40 V | LM317MABT | |
LM317MADTRKG | TO-252-3 (DPAK-3) | 0…+125 °C | 0.5 A | 1.2 … 37 V | 40 V | 317MAG | |
LM317MBDTG | TO-252-3 (DPAK-3) | -40…+125 °C | 0.5 A | 1.2 … 37 V | 40 V | 317MBG | |
LM317MBSTT3G | SOT−223 | -40…+125 °C | 0.5 A | 1.2 … 37 V | 40 V | 317MB | |
LM317MBTG | TO-220 | -40…+125 °C | 0.5 A | 1.2 … 37 V | 40 V | LM317MBT | |
LM317MDTG | TO-252-3 (DPAK-3) | 0…+125 °C | 0.5 A | 1.2 … 37 V | 40 V | 317MG | |
LM317MSTT3G | SOT−223 | 0…+125 °C | 0.5 A | 1.2 … 37 V | 40 V | 317M | |
LM317MTG | TO-220 | 0…+125 °C | 0.5 A | 1.2 … 37 V | 40 V | LM317MT | |
LM317HV | TO-3 | 0…+125 °C | 1.5 A | 1.25 … 57 V | 60 V | LM317HV | |
LM317HVT | TO-220 | 0…+125 °C | 1.5 A | 1.25 … 57 V | 60 V | LM317HVT P+ |
В зависимости от схемы включения LM317 может использоваться в качестве стабилизатора напряжения или тока.
Рассчитать величину резисторов R1 и R2, для требуемого выходного напряжения, можно в программе Calc LM317 (395 КБ).
Типовая схема включения LM317 в режиме стабилизации тока:
Рассчитать сопротивление резистора R1 для нужного тока также можно в программе Calc LM317.
Помогла ли вам статья?
ДаНе особо
LM317 регулируемый стабилизатор напряжения и тока. Характеристики, онлайн калькулятор, datasheet
Интегральный, регулируемый линейный стабилизатор напряжения LM317 как никогда подходит для проектирования несложных регулируемых источников и блоков питания, для электронной аппаратуры, с различными выходными характеристиками, как с регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.
Технические характеристики стабилизатора LM317:
- Обеспечения выходного напряжения от 1,2 до 37 В.
- Ток нагрузки до 1,5 A.
- Наличие защиты от возможного короткого замыкания.
- Надежная защита микросхемы от перегрева.
- Погрешность выходного напряжения 0,1%.
Эта не дорогая интегральная микросхема выпускается в корпусе TO-220, ISOWATT220, TO-3, а так же D2PAK.
Онлайн калькулятор LM317
Ниже представлен онлайн калькулятор для расчета стабилизатора напряжения на основе LM317. В первом случае, на основе необходимого выходного напряжения и сопротивления резистора R1, производится расчет резистора R2. Во втором случае, зная сопротивления обоих резисторов (R1 и R2), можно вычислить напряжение на выходе стабилизатора.
Калькулятор для расчета стабилизатора тока на LM317 смотрите здесь.
Примеры применения стабилизатора LM317 (схемы включения)
Стабилизатор тока
Данный стабилизатор тока можно применить в схемах различных зарядных устройств для аккумуляторных батарей или
регулируемых источников питания. Стандартная схема зарядного устройства приведена ниже.
В данной схеме включения применяется способ заряда постоянным током. Как видно из схемы, ток заряда зависит от сопротивления резистора R1. Величина данного сопротивления находится в пределах от 0,8 Ом до 120 Ом, что соответствует зарядному току от 10 мА до 1,56 A:
Источник питания на 5 Вольт с электронным включением
Ниже приведена схема блока питания на 15 вольт с плавным запуском. Необходимая плавность включения стабилизатора задается емкостью конденсатора С2:
Регулируемый стабилизатор напряжения на LM317
Схема включения с регулируемым выходным напряжением
lm317 калькулятор
Для упрощения расчета номинала резистора можно использовать несложный калькулятор, который поможет рассчитать необходимые номиналы не только для LM317, но и для L200, стабилитрона TL431, M5237, 78xx.
Скачать datasheet и калькулятор для LM317
- GL317
- SG31
- SG317
- UC317T
- ECG1900
- LM31MDT
- SP900
- КР142ЕН12 (отечественный аналог)
- КР1157ЕН1 (отечественный аналог)