Способ монтажа монтажная плата что это

Соединение проводов при монтаже каскадов НЧ

Для низкочастотных цепей, цепей питания и выпрямительных устройств применяют мягкий монтаж, используя гибкий многожильный провод. При неудачном монтаже деталей усилителя звуковой частоты могут возникать помехи.

Поэтому соединения между деталями входного и последующего каскада должны выполняться кратчайшим путем. Общий провод схемы в ламповой аппаратуре — это «минус» делают медным проводом 01,5. 2 мм.

Этот провод нельзя заменить соединением деталей с шасси усилителя, его и отрицательные выводы электролитических конденсаторов необходимо изолировать от шасси. В каждом усилительном каскаде резисторы в цепи управляющей сетки, сеточного смещения, а также минусовые выводы конденсаторов в цепи катода и развязывающего фильтра соединяют в одной, «нулевой» точке (рис. 4).

Рис. 4. Соединение проводов при монтаже каскадов усиления звуковой частоты.

Нулевые точки всех каскадов отдельными проводами сводят в общую точку у выходного конденсатора фильтра выпрямителя, в этом же месте общую точку соединяют с шасси усилителя звуковой частоты.

Читать также: Устройство и принцип работы магнитного пускателя

Макетные платы для монтажа в гнёзда

Данный вид макетных плат представляет собой пластиковую доску с множеством отверстий, в которые вставляются ножки радиодеталей. Каждое отверстие ведёт к самозажимному металлическому контакту. В свою очередь, эти контакты соединены между собой таким образом, чтобы образовывать сигнальные и питающие шины. На рисунке №1 показаны несколько вариантов подобных плат.

Рисунок №1 – варианты макетных плат для монтажа в гнёзда

На сегодняшний день радиомагазины предоставляют пользователю широкий ассортимент макетных плат разных размеров и цветовых гамм, что крайне положительно сказывается на их популярности. Вы всегда сможете подобрать для себя оптимальный вариант, обусловленный индивидуальными потребностями. Ведь где-то хватит и самой маленькой платки, а где-то необходим более серьёзный подход с множеством схемных узлов. На рисунке №2 показана внутренняя структура «беспаечной» макетной платы. Иллюстрация даст более детальное представление о способе крепления радиокомпонентов в самозажимных контактах.

Рисунок №2 – контакты беспаечной макетной платы.

При проектировании электронного макета следует учитывать схематехнику построения самой «беспаечной» платы, так как контакты внутри неё соединены особым образом, и неправильное понимание процессов может вызвать в будущем ряд неприятных моментов. Все «беспаечные» макетные платы, вне зависимости от их размеров, выполнены по одному стандарту. Отличие только может быть в присутствии или отсутствии отдельных контактов шины питания. Обычно, на маленьких макетках, подобные шины не предусмотрены. На рисунке №3 можно наглядно увидеть схему соединения самозажимных контактов под пластиковым покрытием платы.

Как сделать микроскоп для паяльных работ

Рисунок №3 – схема соединения контактов

Как видно из вышеприведенного рисунка, у данной платы имеется две группы питающих и две группы сигнальных линий. Сигнальные линии первой группы обозначены буквами A, B, C, D, E. Сигнальные линии второй группы обозначены буквами F, G, H, I, J. Каждая группа имеет по 31 сигнальной шине. Цифробуквенное обозначение удобно для быстрого ориентирования на макетных платах среднего и выше размеров. Например, ножка радиодетали, которая будет вставлена в отверстие по адресу 1А, будет доступна по адресам 1B, 1C, 1D и 1Е. А ножка, вставленная по адресу 1J, будет соединена с отверстиями 1I, 1H, 1G и 1F. Красными и синими линиями показаны шины питания. Например, к первой группе можно подключить питание 5В, а ко второй 3,3В. Обе питающие группы, как и сигнальные, между собой никак не связаны.

Что такое печатные платы?

Современные гаджеты не представляют своего существования без такого компонента, как печатная плата. Заготовка представляет из себя пластинку с диэлектрического материала, которая содержит цепи, проводящие электрический ток.

Располагаться такие «жилки» могут либо на самой поверхности диэлектрика, либо же бывают внедрены во внутреннюю часть основы печатной платы.

Назначение плат – объединение компонентов электронных устройств в единую сеть. Они проводят электричество и соединяют элементы гаджета в цельную механическую структуру. Выводы на концах плат крепятся один к одному при помощи пайки.

Из чего состоит печатная плата:

• диэлектрический материал, лежащий в основании;
• рисунок из фольги, выполняющий функцию электрического проводника;
• специальные отверстия для монтажа;
• контактные площадки, объединяющие планарные элементы печатной платы;
• паяльная маска, выполняющая роль защитного покрытия;
• маркировка (в промышленном производстве).

Классификация плат для печати зависит от таких факторов, как температурный порог использования и отрасль применения.

Классификация печатных плат по количеству слоев:

  • Односторонняя – покрытие из фольги для диэлектрика наносится лишь на одну сторону.
  • Двухсторонние – покрытие из фольги для диэлектрика наносится на две стороны печатной платы.
  • Многослойные – диэлектрическая основа имеет несколько слоев, на каждом из которых располагается покрытие из фольги.

При производстве различных электронных устройств могут возникать проблемы с функциональностью самой основы. Слишком хрупкий диэлектрик становится проблемой в смартфонах с гибким дисплеем, а работа типичной платы в условиях повышенных температур приводит к ее плавке и, соответственно, выходу из строя.

Увеличивающейся ассортимент продукции повлек за собой появление новых решений по реализации компонентов. Это заставило производство печатных плат внедрить еще одну классификацию на основании свойств материала диэлектрической основы. В технической литературе появились такие термины, как жесткие и гибкие платы для печати.

Существуют также отдельные технологические решения, учитывающие особенности применения плат для печати (высокая/низкая частота, температура и тому подобное).

Официальная документация по производству печатных плат состоит из 5 нормативных документов, перечень которых можете увидеть на рисунке:

Материалы монтажных оснований

Чтобы избежать проблем расслоения и коробления оснований печатных плат, их необходимо изготавливать из материалов с большей температурой стеклования (Tg) — около 150 °С и выше. Группа материалов типа FR-4 с Tg = 125 °С, обычно используемая при пайке сплавом SnPb, уже не годится для пайки сплавом SnAgCu. Особенно критично поведение материала основания в процессе горячего облуживания HASL. Материалы типа FR-52 и полиимидные платы могут использоваться для бессвинцовой пайки без ограничений. Дешевые материалы типа FR-1, FR-2, FR-3 c Tg < 130 °С уже не годятся для бессвинцовой пайки.

Законы Евросоюза RoHS (Restriction of the use of certain Hazardous Substances in electrical and electronic equipment) предлагают уйти от галогеновых пламегасителей, входящих в состав связующего материала печатных плат массового применения. Материалы FR-4 с таким связующим имеют Tg в диапазоне 130–150 °С, что приемлемо для бессвинцовой пайки. Но стоимость таких материалов более чем на 30% выше. Для удешевления в состав армирующих компонентов вводят целлюлозную (СЕМ-1) или стеклянную (СЕМ-3) бумагу (CEM — Composite Epoxy Material). Такие материалы мягче, поэтому лучше ведут себя при сверлении: при их использовании стенки отверстий ровнее, а расход сверл меньше, что создает CEM некоторые преимущества перед FR-4.

↑ Ты помнишь, как всё начиналось…

Надеюсь, что многие из уважаемых датагорцев, помнят свои первые шаги в электронику. Помнят как выглядели их первые приёмники, усилители или там генераторы, до того, как были полностью проверены, настроены, собраны на печатных платах и помещены в корпуса. В наших краях в 80-е дело обстояло так (в других, думаю, также): схемы попроще представляли из себя «паутину» из проводов и деталей, на которую иногда и дышать страшно.

Для схем посложнее брался отрезок доски. Из жести вырезались контактные площадки и рядами прибивались к той самой доске на гвоздики. Возможно, где-то в сарае у моих родителей до сих пор хранится такое изделие. Именно на таких макетных платах радиолюбители в наших, да и не только в наших краях, собирали и настраивали свои первые конструкции. Измеряли и подгоняли режимы транзисторов, добивались требуемых параметров или хотя бы просто работы, до того, как изделие попадало (или не попадало) на нормальную плату, затем в корпус и радовало своего создателя.

Действительно — быстро, дёшево и сердито. Про недостатки такого «испытательного стенда» говорить не буду. Все, кто его когда-либо использовал и так знают. Иногда в журналах вроде «Радио» или «МК» встречались советы по изготовлению макетных плат из фольгированного гетинакса или текстолита. Пример из «МК»:

Щаззз! Его и на простые печатные платы не всегда наскрести удавалось. Большинство из них делалось упомянутым в моей позапрошлой статье «непечатным монтажом». Да и не видел смысла городить изделие, которое прослужит «полтора раза» в результате лишившись всех площадок.

Примерно в те времена и была придумана конструкция о которой будет рассказано ниже. Хотя «придумана» — это слишком громко сказано. Скорее сделана на основе похожих публикаций в тех же «Радио», «МК» и «ЮТ», с учётом местных условий.

Вот пример из приложения к «Юному технику» за 1985 г.

Если не ошибаюсь туда он перекочевал из журнала «Радио» 70-х, вместе со всеми недостатками, вроде свободного вращения контактных площадок в отверстиях и из-за этого огромных (даже по меркам 80-х) расстояний между ними. Эта конструкция и была взята за основу. Правда при изготовлении пришлось отказаться от «наворотов» и по возможности избавиться от недостатков «прототипа».

К сожалению в то время, когда такая макетная плата изготовлялась крайний раз (примерно год назад), под рукой не было фотоаппарата. Поэтому придётся ограничиться криво сделанными мной рисунками и пояснениями.

Возможно, вам также будет интересно

В статье рассматривается топология высокочастотных плат с практической точки зрения. Основная ее цель — помочь новичкам прочувствовать множество моментов, которые должны быть учтены при разработке печатных плат (ПП) для высокочастотных устройств. Она также будет полезна и для повышения квалификации тех специалистов, у кого был перерыв в разработке плат. Основное внимание уделено способам улучшения характеристик схем,

В последнее десятилетие наблюдается неуклонный и значительный рост выпуска разнообразной портативной аппаратуры, что определяет и рост спроса на герметичные химические источники тока (ХИТ) для их электро-снабжения. Значительную долю рынка этой продукции составляют выпускаемые уже несколько десятилетий щелочные аккумуляторы: никель-кадмиевые (Ni-Cd) и никель-металлгидридные (Ni-MH). При этом вследствие более высоких удельных энергетических характеристик и упрощения решения экологических

Одним из основных инструментов процесса разработки радиоэлектроники является использование измерений S-параметров. Эти измерения можно использовать в современных средствах автоматизированного проектирования радиоэлектроники (CAD) в качестве составной части процесса моделирования цепей. S-параметры описывают компонент в виде «черного ящика» и используются для эмулирования поведения электронных компонентов на определенных частотах. Существует много возможностей использования S-параметров в разработке и анализе цепей как с активными, так и с пассивными компонентами. Задача данной статьи — показать, как можно интегрировать S-параметры в процесс разработки с использованием CAD-систем.

Какие виды монтажа используются

Под монтажом печатных плат понимают процесс размещения на ней конденсаторов, резисторов и других компонентов, обеспечивающих работу электроники. Существуют такие разновидности монтажа плат:

  1. Выводной монтаж. В местах крепления компонентов платы заранее подготавливаются небольшие отверстия для их выводов. Непосредственная фиксация всех составляющих печатной платы осуществляется с обратной ее стороны.
  2. Поверхностный монтаж подразумевает закрепление всех компонентов непосредственно на поверхности платы. Этот способ часто называют SMD-технологией.
  3. Иногда монтаж может быть смешанных. При изготовлении платы могут применяться технологии каждого из описанных выше методов.

На сегодняшний день чаще можно встретить платы, монтаж которых осуществлялся поверхностно. Этот способ дает возможность сделать производство печатных плат максимально автоматизированным, а значит менее затратным.

Как пользоваться макетной платой для монтажа без пайки

При конструировании и сборке новых электронных схем обязательно требуется их отладка. Она проводится на временной монтажной плате, позволяющей достаточно свободно расположить компоненты с целью обеспечения возможности быстрой и удобной их замены, проведения контрольно-измерительных работ.

Детали в такой плате могут крепиться при помощи пайки, а сама площадка будет называться макетной платой. Чтобы лишний раз не подвергать компоненты механическим и тепловым воздействиям, монтажниками и конструкторами используется беспаечная макетная плата. Часто радиолюбители называют это приспособление макеткой.

Назначение и устройство

Макетная плата для сборки без пайки позволяет произвести монтаж электрической схемы и запустить ее без использования паяльника. При этом можно проверить все параметры и характеристики будущего устройства, подключив к плате измерительные и контрольные приборы.

Макетная плата представляет собой пластину из полимерного материала, являющегося диэлектриком. На пластине в определенном порядке просверлены монтажные отверстия, в которые должны вставляться выводы деталей – компонентов будущего устройства.

Отверстия допускают подключение выводов диаметром 0,4-0,7 мм. Расположены они на плате, как правило, с шагом 2,54 мм.

Как правило, эти соединения осуществляются группами вдоль платы по ее длинным сторонам. Таких рядов может быть два-три. Эти контактные группы используются как шины для подключения питания.

Между продольными рядами отверстия соединяются пластинами в группы по пять. Эти пластины расположены в направлении поперек платы.

Около отверстий в местах будущих контактов токопроводящие пластины имеют конструктивные особенности, позволяющие зажимать и прочно удерживать выводы деталей, обеспечивая при этом наличие электрического контакта. В этом и есть смысл монтажа без пайки.

Качественные макетные платы допускают монтаж и разборку при сохранении прочного и надежного соединения между деталями до 50 000 раз.

Макетные платы, выпускаемые промышленным способом и приобретенные в торговой сети, как правило, имеют схему расположения контактов и токопроводящих связей между отверстиями.

Как правильно пользоваться

Чтобы успешно и рационально пользоваться макеткой, необходимо иметь еще такие приспособления:

  • несколько монтажных проводов диаметром 0,4-0,7 мм для устройства различных перемычек и подключения питания;
  • кусачки-бокорезы;
  • плоскогубцы;
  • пинцет.

Паяльник при монтаже без пайки, разумеется, не нужен, но он может понадобиться, чтобы припаять провода к клеммам источника питания, если отсутствуют разъемные изделия. Иногда пайку придется применить для осуществления экранирования.

Зная расположение токопроводящих дорожек на макетной плате, легко осуществить монтаж любой схемы и, подключив ее к источнику питания, проверить работоспособность. Для сборки нужно только вставить выводы компонентов в зажимы разъемов и соединить их в нужной последовательности.

При этом необходимо четко представлять расположение токопроводящих дорожек, чтобы не допустить короткого замыкания. При необходимости осуществления контактов между дорожками на макетной плате используются соединители.

В случае если выводы деталей по диаметру не подходят под монтажные отверстия, к ним можно подпаять или подмотать отрезки подходящего провода. Микросхемы и компоненты в BAG-корпусах устанавливаются в центре платы.

Подготовка и экранирование

Для того чтобы работать с макетной платой, особенно, если она предназначена для монтажа без пайки, сначала необходимо произвести подготовительные работы. Это тем более актуально, если плата не использовалась длительное время.

Подготовка включает в себя очистку макетной платы от пыли. Для этого можно воспользоваться мягкой кистью, а для очистки отверстий можно использовать пылесос или баллончик со сжатым воздухом.

Следующим этапом необходимо прозвонить мультиметром токопроводящие дорожки, чтобы избежать лишних трат времени на поиск возможной потери контакта при монтаже схемы.

При отладке устройств, они могут работать некорректно из-за различных помех и наведенных токов, возникающих при работе схемы. Для устранения этого явления необходимо применить экранирование макетной платы.

Для этого используют металлическую пластину, прикрепленную снизу и соединенную пайкой с общей шиной, которая впоследствии станет отрицательной.

Виды макетных плат

Далее мы рассмотрим все виды макетных плат.

Толстый картон

В прежние времена, когда с доступностью некоторых видов товаров были проблемы, умельцами использовался толстый картон как один из самых простых, недорогих и быстрых способов для проверки схемы. Достаточно было проделать отверстия в куске картона под конкретные радиоэлементы и установить. Далее припаять выводы деталей друг к другу либо при помощи провода согласно схеме.

Такой вид макета, помимо его простоты, имеет массу недостатков: высокая вероятность замыкания, риски неправильного соединения элементов, возможность прожечь картон. Да и с точки зрения эстетики такой макет явно не лидер.

Самодельные макетные платы

Макетную плату из фольгированного текстолита можно изготовить самостоятельно. Для этого используется режущий инструмент – как правило резец. С его помощью на отрезке текстолита подходящего размера прорезаются канавки, образуя тем самым небольшие квадратики на фольгированной стороне. После чего она покрывается припоем.

Ряд контактов при необходимости можно соединить между собой припоем благодаря небольшому расстоянию между ними и создать дорожку. В результате образуется надёжный проводник, который не выглядит при этом убого. В случае успешной проверки устройства на работоспособность прототип можно оставить в исходном виде и использовать как готовое устройство.

Одноразовые макетные платы

На сегодняшний день в продаже имеется целый ряд разнообразных макетных плат: любых форм, размеров и цветов. Одно- и двухсторонние.

Шаг между отверстиями подобран таким образом, чтобы в них без проблем размещались радиодетали и микросхемы различных форм-факторов. Это придаёт удобство и упрощает сборку для проверки устройства. Стоимость подобных макетных плат, как правило, невысока.

При обилии преимуществ у такого рода макетных плат имеется существенный недостаток: при повторном использовании оловянные пятачки могут сорваться с платы, что приводит к её непригодности.

Беспаечные макетные платы

Следующим поколением макетных плат можно назвать беспаечные (контактные, зажимные, цанговые) макетные платы.

Они ещё проще в обращении, надёжнее и долговечнее предыдущих. Соответственно, и цена на них отличается в большую сторону.

Беспаечные макетные платы отличаются простотой и удобством установки деталей, а также соединением нескольких плат между собой. Существуют ограничения по диаметру контактов радиодеталей и проводов от 0,4 мм до 0,7 мм. С помощью мультиметра можно определить ряды дорожек, расположенных на одном проводнике. На случай создания прототипа с большим количеством узлов, предусмотрена возможность соединения нескольких макетных плат между собой с помощью специальных креплений на торцах.

При создании разветвлённой схемы с высокочастотными узлами, существует риск возникновения помех и наводок по причине паразитных параметров радиодеталей. Для уменьшения негативных последствий, т. к. «масса» (общий провод) подсоединяется к пластине из металла на обратной стороне макетной платы. Обычно общим проводом служит минус, либо он имеет название GND (ground — от англ. земля). Металлическая пластина может идти в комплекте с макетной платой как в закреплённом, так и в незакреплённом варианте, что потребует её установки при необходимости.

Для соединения радиодеталей на данной макетной плате, а также для соединения нескольких макетных плат между собой используются специальные соединительные провода – джамперы (jump — от англ. прыгать). Купить джамперы.

Для установки джампера требуется подогнать его по длине, зачистить от изоляции, подогнуть под 90° и вставить в отверстия.

Рассмотрим пример создания элементарной схемы: включение LED светодиода посредством кнопки на макетной плате.

На лабораторном блоке питания установить напряжение 5 вольт, подключить клеммы и нажать на кнопку. При нажатии светодиод загорается, что говорит о работоспособности прототипа.

↑ P.S. Немного воспоминаний, не совсем в тему

В далёкие школьные и студенческие времена, «идея» заложенная в описанную в статье макетную плату сильно пригодилась в условиях недостатка фольгированных материалов. Изрядно подустав крутить проволочки, стал собирать не очень сложные схемы, припаивая детали на устаноленных в нужных местах платы жестяных площадках и дорожках, в общем делал нечто среднее между печатным и навесным монтажом. Конечно способ не без недостатков, но обслуживание изделия, замену неисправных деталей, и внесение изменений в схему делать быстрей и удобней чем на стандартной «печатке». До сих пор сохранилось несколько артефактов изготовленных этим экзотическим способом:


Микрофонный усилитель

Одна из первых собственноручно спаянных удачных схем. Долгое время удивлял знакомых чувствительностью, позволяющей записывать тиканье часов из соседней комнаты:) До наших дней сохранился только чудом.


Одна из гитарных примочек

Как видите пара плат сделана из картона. Давно уже, лет двадцать назад. Видать торопился тогда. Подумываю заменить их на печатные да и схему изрядно перелопатить, только всё руки не доходят. Тем более в уличных концертах этому изделию уже вряд-ли предстоит участвовать.


Неведомая антинаучная фигня

Когда-то в докомпьютерные времена служила ритм-боксом и обеспечивала моё гитарное брыньканье ударным сопровождением бумканьем и дыцканьем :russian: Несмотря на опять же картонные платы, криво сделанную, не вполне законченную схему и общую неактуальность, работает до сих пор.

Ну, для изготовления рабочих плат я этот способ уж точно никому рекомендовать не буду. Так, для смеха вспомнил. Хотя, думаю, вполне можно использовать для быстрой сборки и настройки чего-нибудь не очень сложного, когда нет времени или настроения делать макетку описанную в статье.

Одна такая плата, сделанная под одну из первых гитарных примочек, впоследствии разобранную, в разное время «носила на себе» предусилитель, генератор, и ещё несколько похожих по смыслу и топологии платы схем. Некоторые из этих блоков после доведения до ума работают на других платах, сделанных уже специально под них.

Внутренние электромонтажные работы в шкафу

После подводки входящих и отходящих кабелей можно приступать к монтажу DIN-реек и проектного оборудования (устройств защиты и управления). Взаимное расположение оборудования на DIN-рейках прорабатывается на этапе рабочего проектирования.

Обычно вводный автоматический выключатель располагается в крайней левой верхней позиции, за ним идут мощные электроприемники, УЗО и так далее. Последним этапом электромонтажных работ является натурная проверка работы всех цепей и устройств шкафа. На дверцу вешается схема подключения вводно-распределительных устройств.

Заказать изготовление и профессиональный монтаж распределительных силовых шкафов ШРС вы сможете в . Мы гарантируем безупречное качество выпускаемого оборудования и соблюдение всех норм при выполнении монтажных работ.

Путь от схемы до устройства. Часть 1: навесной монтаж

Процесс превращения схемы в функционирующее устройство наиболее актуален для начинающего (да и не только) радиолюбителя. Информации на эту тему много, но судя по тому что об этом приходится довольно часто рассказывать, эта тема очень актуальна. Потому я и решил написать несколько небольших заметок. В дальнейшем, вероятнее всего, появятся более развернутые статьи на эту тему. А пока постараюсь обойтись без лишней воды, только суть и фотографии.

На самом деле способов изготовления устройств очень много, от самых известных типа ЛУТ и до экзотических типа электроэрозионного способа изготовления плат. Я же затрону самые известные из них. Мы начнем с самого простого способа, в котором не понадобится ничего кроме радиодеталей, а закончим вполне качественной платой с паяльной маской и шелкографией. Если вам интересно такое развитие событий, то добро пожаловать.

В качестве устройства выберем что-то не очень сложное. Думаю, классический мультивибратор вполне подойдет.

У нас все готово, тогда начинаем.

И первый вариант — навесной монтаж.

Как видно из названия, все элементы устройства находятся на весу, и в самом простейшем случае, несущей конструкцией являются выводы радиодеталей. И сразу совет для начинающего радиолюбителя: сборка любого устройства начинается с подбора комплектующих и подготовки рабочего места. Очень неприятна ситуация, когда приходится в куче хлама искать нужную деталь или инструмент. Это раздражает и отвлекает, старайтесь этого избегать.

Схема есть, детали подготовлены, из инструментов нам понадобятся только кусачки и пинцет. Можно приступать к сборке. Сборка все же подразумевает начальные знания в области электроники, а значит с полярностью резисторов вы не напутаете, а вот цоколевку транзистора на схеме разместить можно, это поможет при сборке.

Очень удобным помощником является, так называемая «третья рука», с ней пайка проходит заметно веселее.

Собранное устройство не смотря на свой «несерьезный» вид вполне работоспособно.

  • Способ прост, и не требует каких-либо дополнительных материалов. Позволяет довольно быстро оценить работоспособность схемы. Подходит для освоения навыков пайки.
  • Низкая механическая прочность собранной конструкции. Не особо подходит для устройств серьезнее мигалки. Да, встречаются шедевры навесного монтажа, но это уже при должном опыте и любви к искусству.

Следующий способ чем-то похож на навесной монтаж, но в качестве основы устройства используется плотный картон. Перед сборкой чертим расположение деталей на листе бумаги. Давным-давно, когда паяльники были большими, эта увлекательная процедура делалась при помощи листа в клетку, простого карандаша и стирательной резинки. Сейчас же можно воспользоваться одной из программ для трассировки печатных плат (DipTrace, SprintLayout и т.п.). Дорожки рисовать пока рано, а вот расположить элементы и распечатать заготовку уже можно. После чего наклеиваем распечатанную заготовку на картон и вырезаем по периметру.

Для чего это нужно? Прокалываем иголкой отверстия под выводы деталей, и в результате все выглядит ровно, красиво, и расположено на своих местах. Да еще и бонусом на нашей «плате» получается, так называемая, шелкография с обозначением элементов. Такую конструкцию собирать гораздо проще. Собственно, именно с расположения элементов начинается создание настоящей платы, к чему мы еще вернемся, так что этот навык пригодится. А пока паяем наш девайс. Если не хотите чтобы следы флюса образовали малоприятные пятна картоне, можете подкладывать под выводы тот же картон. Токоведущими дорожками как и прежде являются выводы деталей.

Полностью собранное устройство. Как можно заметить, оно уже больше похоже на настоящее. А ведь все только начинается.

  • Метод по прежнему прост, требуется лишь картон, который обычно есть под рукой. Вполне презентабельный вид, особенно когда речь идет о макетировании.
  • Прочность по прежнему довольно низкая. Например, если устройство попадет под дождь и картон размокнет, оно автоматически перейдет в разряд навесного монтажа.

Эти способы были представлены больше для ознакомления. Впрочем, это вовсе не значит что ими нельзя пользоваться. Существует масса ситуаций, когда такие способы будут вполне к месту. В следующей части рассмотрим материал, из которого изготавливаются настоящие печатные платы — фольгированный стеклотекстолит. И не просто рассмотрим, а попробуем на нем собрать нашу мигалку.

Источник

Кельвиновские соединения

Кельвиновские соединения полезны для измерений. Кельвиновские соединения для уменьшения паразитных сопротивлений и индуктивностей выполняются в конкретных местах. Например, кельвиновские соединения для резистора измерения тока помещаются точно на площадках установки резистора, а не на произвольных местах печатных дорожек. Хотя на схеме размещение соединений и на площадках установки резистора, и на произвольных местах может выглядеть одинаково, реальные дорожки на печатных платах обладают индуктивностью и сопротивлением, которые могут помешать вашим измерениям, если вы не используете кельвиновские соединения.

Кельвиновские соединения к шунту измерения тока

Компоненты, чувствительные к нагреву

Держите компоненты, чувствительные к нагревы, подальше от компонентов, которые выделяют тепло. Примеры компонентов, чувствительных к теплу, включают в себя термопары и электролитические конденсаторы. Размещение термопар вблизи источников тепла может привести к бесполезности температурных измерений. Размещение электролитических конденсаторов вблизи компонентов, выделяющих тепло, сократит срок их службы. Компоненты, которые генерируют тепло, могут включать в себя мостовые выпрямители, диоды, MOSFET транзисторы, индуктивности и резисторы. Выделяемое тепло зависит от тока, протекающего через компоненты.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: