Особенности и применение транзистора
Полупроводниковый прибор имеет неплохие мощностные характеристики. Так максимальное напряжение коллектор-эмиттер составляет 45 В, а ток коллектора достигает 0,8А. Элемент с такими параметрами может работать в маломощных типовых ключевых схемах на 24 В для переключения реле, источников света.
В перечне параметров стоит выделить высокий коэффициент усиления по току и приличные частотные характеристики. Их конкретные значения отражены в таблице. Транзисторы с такими параметрами широко применяются в усилителях звуковой частоты, — предусилительных и выходных каскадах.
По совокупности характеристик BC337 является высокочастотным транзистором общего применения средней мощности. Радиокомпонент отличается высокой надежностью и доступностью. Его параметры лежат в диапазоне значений, востребованных в промышленной электротехнике и радиолюбительской практике.
Как проверить TL431
Так как это не одиночный радиокомпонент, а целая схема, заключенная в маленький корпус, мы не можем проверить ее одним лишь мультиметром, ведь в ней содержится только 10 штук транзисторов, не говоря об остальных компонентах. Проверка сопротивлений между выводами не принесет никакой полезной информации, так как от партии к партии и от производителя к производителю референсные значения разнятся.
Поэтому, как и для проверки большинства микросхем, необходимо собрать простейшую схему с ее использованием. Такой схемой может послужить приведенная ниже
При подаче на вход 12В на выходе должно быть 5В, а при замыкании S1 на выход должно идти опорной напряжение микросхемы TL431 — 2.5В. Вы можете подобрать свои значения
Важно, чтобы они соответствовали формуле:
Если все значения подходят — значит микросхема рабочая и ее можно использовать в проекте. Если собрать небольшой стенд с такой схемой на breadboard, то получится конвейерно проверять большое количество TL431 и ей подобных микросхем.
Корпус и распиновка
Цоколевка bc337 выглядит следующим образом. Большинство производителей выпускают его в пластмассовой упаковке ТО-92 с гибкими выводами, или её аналогах: SOT54, TO-226. Маркировка цифробуквенная, наносится на лицевой части корпуса по европейской системе Pro Electron. Если смотреть на неё, то первая ножка слева это — коллектор, второй — база, третий — эмиттер.
Несмотря на это, некоторые китайские компании выпускают устройство в тех же корпусах, что указаны выше, но с другой распиновкой. Например, у Foshan Blue Rocket Electronics сначала идет эмиттер, потом база и последним коллектор.
Схема TL431
Рассмотрим схему, которая находится в официальном datasheet производителя Texas Instruments.
Схема довольно простая. На ней изображен самый обыкновенный операционный усилитель (выглядит, как треугольник на картинке), который подключен к транзистору на выходе.
Как работает TL431?
Здесь все элементарно. Операционному усилителю на вход стоит источник опорного напряжения на 2.5В, который подсоединен ко входу. Контакт под кодовым названием REF и коллектор и эмиттер транзистора связаны с контактами питания усилителя. А безопасность обеспечивает защитный диод, который сохранит и убережет микросхему от переполюсовки.
Чтобы открылся выходной транзистор, нужно на вход REF подать сигнал, вольтаж которого будет чуть больше, чем опорное. Так как достаточно превышения в пару милливольт, то смело можем считать, что подаем вольтаж, который равен опорному. В таком случае, на выходе с ОУ идет напряжение на базу транзистора, и он открывается.
Специально для особо любознательных в даташите TL431 также имеется изображение детализированной схемы:
Как вы видите, даже на показанной развернутой схеме, устройство TL431 не вызывает чувство страха.
Недостатки схемы Дарлингтона
К сожалению, на этом преимущества заканчиваются. Первый недостаток этой схемы — это то, что на базе-эмиттрере напряжение приходит вдвое большее. Здесь мы имеем дело с последовательным соединением переходов база-эмиттер, поэтому напряжения на каждом из них складываются (около 0,7 В при включении).
Это означает, что U BE схемы Дарлингтона составляет примерно 1,4 вольта. Это следует учитывать при выборе резисторов, ограничивающих базовый ток. |
Однако гораздо более серьезным недостатком является повышенное напряжение насыщения. Этот вопрос лучше всего проанализировать на диаграмме с записью напряжений.
Распределение напряжения в насыщенном транзисторе Дарлингтона
Напряжение коллектор-эмиттер транзистора Дарлингтона состоит из:
- напряжение база-эмиттер транзистора Т2,
- напряжение коллектор-эмиттер Т1.
Когда система насыщена, транзистор T2 все еще должен быть открыт, то есть, его напряжение база-эмиттер составляет 0,7 В. Благодаря этому, транзистор T1 может правильно насыщаться, и его U CE падает до произвольного уровня 0,2 В. После суммирования этих значений напряжения, оказывается, что U CE транзистора T2 целых 0,9 В!
Эту потерю напряжения следует учитывать при проектировании схемы, потому что такой величиной определенно нельзя пренебрегать! |
В нашей примерной схеме, из начала этой статьи, одиночный транзистор имеет большое преимущество: в насыщенном состоянии на нем будет около 0,2 В (на практике немного больше), что в сочетании с протекающим током 5 А, через коллектор, приведет к рассеиванию мощности около 1 Вт.
Это количество тепла можно легко рассеять с помощью небольшого радиатора, то есть элемента, который отводит тепло. Обычно он изготавливается из алюминия, который имеет легкий вес и хорошо проводит тепло. Радиаторы имеют различную форму — чаще всего в поперечном сечении они напоминают гребешок, увеличивающий поверхность контакта с протекающим воздухом.
Радиатор — теплоотводящий элемент
Но вернемся к управлению нашим двигателем. Если мы воспользуемся Дарлингтоном, эта мощность будет потрачена впустую, да и радиатор потребуется намного прочнее. Кроме того, напряжение питания приемника будет ниже примерно на 1 В. В случае схем, питающихся от низкого напряжения, например 3,3 В, это будет значительное снижение.
5 Вт — это очень большая мощность. 5 Вт, например, может потреблять светодиодная настольная лампа. |
И еще, в забитом состоянии, напряжение коллектор-эмиттер обоих транзисторов практически одинаково. Это означает, что при управлении приемником от источника питания, например 60 В, оба транзистора должны выдерживать такое напряжение (с запасом).
Зачем нужна схема Дарлингтона?
Вы должны помнить, что биполярный транзистор — это элемент, управляемый током. Когда ток, известной величины, течет в базу, мы ожидаем, что ток коллектора будет в β раз больше, где β — коэффициент усиления по току, который соединяет токи базы и коллектора вместе.
Теперь давайте представим ситуацию: предположим, что мы хотим использовать транзистор для включения двигателя, потребляющего ток 5 А. Напряжение питания настолько низкое, что использование полевых МОП-транзисторов невозможно, поэтому они остаются только биполярными. Оказывается, что транзисторы, способные проводить такой большой ток, имеют параметр β в диапазоне 40–100.
Делим ток коллектора на коэффициент усиления по току. Результат будет находится в диапазоне 50–125 мА. Поэтому для насыщения транзистора необходимо обеспечить ток базы, по крайней мере, в три раза превышающий расчетный, то есть порядка 150–375 мА. Однако наш микроконтроллер (например, Arduino) может выдавать только 20 мА (безопасная производительность для одного выхода), что определенно слишком мало… Вот здесь и пригодится схема Дарлингтона.
Аналоги и комплементарная пара
Для замены транзистора необходимо использовать радиокомпоненты с наиболее близким техническими характеристиками.
Аналог | VCEO | IC | PC | hFE | fT | Корпус |
---|---|---|---|---|---|---|
BC337 | 45 | 0,8 | 0,625 | 100 | 210 | ТО-92 |
Отечественное производство | ||||||
КТ504Б | 350 | 1 | 1 | 15 | 20 | КТ-2-7 |
КТ660А | 45 | 0,8 | 0,5 | 110 | 200 | КТ-26 (ТО-92) |
КТ928Б | 60 | 0,8 | 0,5 | 50 | 250 | КТ-2-7 |
КТ3102БМ | 50 | 0,2 | 0,25 | 200 | — | КТ-26 (ТО-92) |
Импорт | ||||||
BC184 | 30 | 0,2 | 0,3 | 240 | 150 | ТО-92 |
BC637 | 60 | 1 | 1 | 40 | 50 | ТО-92 |
2N4401 | 40 | 0,6 | 0,31 | 100 | 250 | ТО-92 |
2N5818 | 40 | 0,75 | 0,5 | 150 | 135 | ТО-92 |
MPSA06 | 80 | 0,5 | 0,625 | 50 | 100 | ТО-92 |
SE6022 | 60 | 1 | 0,22 | 100 | 250 | ТО-106 |
Примечание: характеристики аналогов в таблице взяты из даташип производителя.
Корпуса и цоколевка аналогов
Для комплементарной пары производители предлагают использовать ВС327.
BC327 Datasheet (PDF)
BC327-xBK / BC328-xBK BC327-xBK / BC328-xBK General Purpose Si-Epitaxial Planar Transistors PNP PNP Si-Epitaxial Planar-Transistoren für universellen Einsatz Version 2010-06-23 ±0.1 Power dissipation 625 mW 4.6 Verlustleistung Plastic case TO-92 Kunststoffgehäuse (10D3) Weight approx. – Gewicht ca. 0.18 g Plastic material has UL classification 94V-0 C B E Gehäusematerial UL9
1.2. bc327 bc328.pdf Size:160K _motorola
MOTOROLA Order this document SEMICONDUCTOR TECHNICAL DATA by BC327/D Amplifier Transistors PNP Silicon BC327,-16,-25 BC328,-16,-25 COLLECTOR 1 2 BASE 3 EMITTER 1 MAXIMUM RATINGS 2 3 Rating Symbol BC327 BC328 Unit CASE 29�04, STYLE 17 Collector�Emitter Voltage VCEO �45 �25 Vdc TO�92 (TO�226AA) Collector�Base Voltage VCBO �50 �30 Vdc Emitter�Base Voltage VEBO �5.0 Vdc Collect
1.3. bc327 3.pdf Size:52K _philips
DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D186 BC327 PNP general purpose transistor 1999 Apr 15 Product specification Supersedes data of 1997 Mar 10 Philips Semiconductors Product specification PNP general purpose transistor BC327 FEATURES PINNING � High current (max. 500 mA) PIN DESCRIPTION � Low voltage (max. 45 V). 1 emitter 2 base APPLICATIONS 3 collector � Genera
BC807; BC807W; BC327 45 V, 500 mA PNP general-purpose transistors Rev. 06 � 17 November 2009 Product data sheet 1. Product profile 1.1 General description PNP general-purpose transistors. Table 1. Product overview Type number Package NPN complement NXP JEITA BC807 SOT23 — BC817 BC807W SOT323 SC-70 BC817W BC327 SOT54 (TO-92) SC-43A BC337 Also available in SOT54A and SOT54 variant
BC327-25 BC327-40 � SMALL SIGNAL PNP TRANSISTORS PRELIMINARY DATA Ordering Code Marking Package / Shipment BC327-25 BC327-25 TO-92 / Bulk BC327-25-AP BC327-25 TO-92 / Ammopack BC327-40 BC327-40 TO-92 / Bulk BC327-40-AP BC327-40 TO-92 / Ammopack SILICON EPITAXIAL PLANAR PNP TRANSISTORS TO-92 PACKAGE SUITABLE FOR THROUGH-HOLE PCB ASSEMBLY TO-92 TO-92 THE NPN COMPLEMENTARY TYPES ARE
1.6. bc327 bc328.pdf Size:49K _fairchild_semi
BC327/328 Switching and Amplifier Applications � Suitable for AF-Driver stages and low power output stages � Complement to BC337/BC338 TO-92 1 1. Collector 2. Base 3. Emitter PNP Epitaxial Silicon Transistor Absolute Maximum Ratings Ta=25�C unless otherwise noted Symbol Parameter Value Units VCES Collector-Emitter Voltage : BC327 -50 V : BC328 -30 V VCEO Collector-Emitter Voltage :
BC327-16/25/40 MCC TM Micro Commercial Components BC328-16/25/40 20736 Marilla Street Chatsworth Micro Commercial Components CA 91311 Phone: (818) 701-4933 Fax: (818) 701-4939 Features PNP � Lead Free Finish/RoHS Compliant («P» Suffix designates RoHS Compliant. See ordering information) Plastic-Encapsulate � Capable of 0.625Watts of Power Dissipation. � Collector-current : -0.8
BC327, BC327-16, BC327-25, BC327-40 Amplifier Transistors PNP Silicon http://onsemi.com Features � Pb-Free Packages are Available* COLLECTOR 1 MAXIMUM RATINGS 2 BASE Rating Symbol Value Unit Collector -Emitter Voltage VCEO -45 Vdc 3 Collector -Base Voltage VCES -50 Vdc EMITTER Collector —Emitter Voltage VEBO -5.0 Vdc Collector Current — Continuous IC -800 mAdc Total Power Dissip
SBC327 Semiconductor Semiconductor PNP Silicon Transistor Descriptions • High current application • Switching application Features • Suitable for AF-Driver stage and low power output stages • Complementary Pair with SBC337 Ordering Information Type NO. Marking Package Code0 SBC327 SBC327 TO-92 Outline Dimensions unit : mm 3.45±0.1 4.5±0.1 2.25±0.1 0.4±0.02 2.06±0
Схема подключения
На uln 2003 схема подключения до боли проста и не включает никаких компонентов. Главное, не перепутать вход с выходом и общий вывод, в остальном все и так ясно. Но все же для наглядности стоит повторить схему на примере с шаговым двигателем с питанием от 12 до 24 В. Общий провод от +24В подключается на 9 вывод и к центральному отводу обмоток двигателя, все остальные оп порядку согласно полюсам. Управление двигателем осуществляется по аналогичным линиям, только со входа МС.
При работе в таком режиме вероятность спалить выходной транзистор достаточно большая, потому что короткое замыкание в двигателе никто еще не отменял, точно также, как и клин ротора, из-за чего ток может существенно возрасти. Поэтому в каждую линию управления по выходу можно поставить шунт и обрисовать его схемой защиты от КЗ. Это зависит от конкретной задачи и типа устройства, в котором эта микросхема применяется.
Поэлементный разбор внутренностей простейшей микросхемы — ULN2003
Выглядит следующим образом. Цвета несколько усилены относительно натуральных, под контактными площадками металл поврежден кислотой (и приобрел такой коричневый цвет):
Как видим, 7 каналов абсолютно идентичны, потому будем рассматривать только один. К счастью для нас, схема каждого канала нам известна — и мы можем в неё подглядывать:
А теперь 1 канал с отмеченными элементами. Сопоставление конкретных элементов схеме — оставляю как домашнее задание для читателя.
Но как же сделан сам транзистор? Известно, что внутренняя структура планарного биполярного npn транзистора при производстве получается следующая:
Тонкая база — «подныривает» под эмиттер. Не смотря на то, что и на коллекторе и на эмиттере — кремний легирован в тип n, отличается концентрация легирующей примеси и толщина: это делают для того, чтобы оптимизировать транзистор для «усиления тока» в одном направлении.
Зная это — мы можем внимательнее посмотреть на 1 транзистор, и понять где там что. Кремний, легированный в разный тип — немного отличается по цвету. Невооруженному взгляду это практически не заметно — но тут насыщенность цветов и контраст выкручены почти на максимум. Пусть 2 эмиттера включенных параллельно вас не смущают — они работают как 1 бОльшей площади.
Для того, чтобы соединения не «закорачивали» то, что не нужно — поверхность кремния покрыта слоем прозрачного стекла (SiO2), в котором есть отверстия непосредственно над местами, где вывод соединяется с нужным местом на транзисторе. Это хорошо видно на следующей фотографии, т.к. глубина резкости на этом объективе меньше, и например соединение к базе — уже не в фокусе, т.к. расположено выше, над слоем стекла.
Коллекторы обоих транзисторов — это фактически единое целое, т.к. по схеме они соединены. Соседние каналы изолированы pn-переходом, можно увидеть прямоугольник немного отличающегося цвета вокруг каждого канала на .
Как видим, никакой магии внутри нет
Биполярный транзистор или полевой
Когда следует выбирать биполярный транзистор, а когда – полевой МОП-транзистор? В подавляющем большинстве устройств MOSFET победит – у него низкие потери мощности. Биполярный же транзистор стоит рассмотреть при низком управляющем напряжении (например, 1,8 В).
Далее приведены 4 примера управления Arduino нагрузкой, потребляющей ток до 0,5 А. Все питаются от 5 В.
Если данная нагрузка включает в себя катушку или двигатель, соответствующий защитный диод должен быть обязательно подключен параллельно к ней. Это защитит транзистор от повреждения во время его выключения при возникновении перенапряжения на индуктивности.
Идея схемы Дарлингтона
Если один транзистор может усилить ток, улучшит ли нашу ситуацию использование двух транзисторов? Да, правильно, улучшит. Все, что нам нужно сделать, это объединить наши транзисторы в схему Дарлингтона, данная схема была разработана в 1953 году Сидни Дарлингтоном.
Примерное подключение двух биполярных транзисторов в схему Дарлингтона
При описании работы схемы Дарлингтона, мы предполагаем, что ток коллектора равен току эмиттера (для простоты здесь мы опускаем ток базы). Также будем учитывать, что в схеме используются однотипные биполярные транзисторы. Принцип работы следующий: ток, который подается на базу Т1, течет с его эмиттера усиленным. Обозначим коэффициент усиления этого транзистора по току β T1 .
T1 течет из эмиттера I BT1 · β T1 и напрямую влияет на базу T2. Транзистор Т2 усилен в β Т2 — кратно. В результате ток I BT1 · β T1 · β T2 протекает через коллектор T2. Гораздо большая часть тока проходит через T2, поэтому ток коллектора T1 можно считать незначительным.
В результате общий коэффициент усиления по току этой системы составляет β D = β T1 · β T2. |
Распределение токов, протекающих в схеме Дарлингтона
Преобразовывая формулы, мы сделали несколько упрощений. Однако, они мало повлияют на результат (порядка одного процента). Коэффициент усиления по току транзисторов колеблется намного сильнее (температура, производитель).
Если у вас возникли проблемы с пониманием приведенной выше схемы, попробуйте нарисовать её на листе бумаги самостоятельно (шаг за шагом). |