Модели на базе двухпереходных расширителей: сборка и настройка
Сложить на двухпереходных расширителях цифровой измеритель емкости конденсаторов своими руками довольно просто. Однако для нормальной работы модификаций подходят только регулируемые транзисторы. Также стоит отметить, что при сборке нужно подбирать импульсные компараторы.
Дисплей для устройства подойдет строчного типа. При этом порт разрешается использовать на три канала. Для решения проблем с искажением в цепи применяются фильтры низкой чувствительности. Также стоит отметить, что модификации нужно собирать на диодных стабилизаторах. Настройка модели осуществляется при отрицательном сопротивлении 55 Ом.
- Измеряет весь востребованный диапазон
- Компактность и удобство
Заплатил 750 рублей. Искренне считал, что он этих денег не стоит, а цену «взвинтили» по причине полного отсутствия конкурентной продукции. Страна производитель — конечно Китай. Опасался, что будет «привирать», больше того был в этом уверен — однако напрасно.
Ёмкостемер и провода к нему были упакованы в полиэтилен, каждый в свою оболочку и вложены в коробку из толстого картона, свободное пространство заполнено пенопластом. Так же в коробке находилась инструкция на английском языке. Габаритные размеры прибора 135 х 72 х 36 мм, вес 180 грамм. Цвет корпуса чёрный, передняя панель с сиреневым отливом. Имеет жидкокристаллический индикатор, девять диапазонов измерения, два положения отключения питания, регулятор установки нуля, 15 сантиметровые, разного цвета (красный — чёрный) провода, при помощи которых подключается к прибору измеряемый конденсатор, заканчиваются зажимами типа «крокодил», а гнёзда на корпусе прибора, для их подключения, замаркированы цветным обозначением соответствующей полярности, дополнительно возможно измерение и без них (что увеличивает точность), для чего имеются два продолговатых гнезда, которые подписаны символом измеряемого конденсатора. Используется батарея питания на 9 вольт, имеется функция автоматической индикации её разряда. Жидкокристаллический индикатор трёхразрядный +1 знак после запятой, заявленный производителем диапазон измерения составляет от 0,1 пФ до 20000 мкФ, с возможностью юстировки на диапазоне измерения от 0 до 200 пФ, для установки нуля, в пределах +/- 20 пФ, время одного измерения 2-3 секунды.
Таблица допустимых погрешностей при измерениях, индивидуально по диапазонам. Представлена изготовителем.
На задней половине корпуса имеется интегрированная подставка. Она даёт возможность более компактно разместить измеритель на рабочем месте и изменяет в лучшую сторону обзор жидкокристаллического индикатора.
Батарейный отсек выполнен полностью автономно, для смены элемента питания достаточно сдвинуть в сторону его крышку. Удобство из разряда неприметных, когда оно есть.
Для того чтобы снять заднюю крышку корпуса достаточно открутить один саморез. Самый массивный компонент печатной платы — предохранитель на 500 мА.
В основу работы измерительного прибора положен метод двойного интегрирования. Собран он на логических счётчиках HEF4518BT — 2 шт, ключе HEF4066BT, десятичном счётчике с дешифратором HCF4017 и смд транзисторах: J6 — 4 шт, М6 — 2 шт.
Открутив ещё шесть саморезов можно увидеть другую сторону печатной платы. Переменный резистор, при помощи которого производится установка на «0» стоит так, что его можно легко заменить при необходимости. Слева контакты для подключения измеряемого конденсатора, те, что выше, для непосредственного подключения (без проводов).
Прибор выставляется на нулевую точку отсчёта не сразу, но выставленный показание удерживает. С отключёнными проводами сделать это гораздо проще.
Для наглядной демонстрации разницы в точности измерения при различный способах измерений (с проводами и без) взял конденсаторы малой ёмкости с заводской маркировкой — 8,2 пФ
Как проверять емкость конденсатора
Не всегда исправность конденсаторов можно определить, заряжая его от постороннего источника и контролируя зарядный ток. При небольших значениях емкости (менее 0,5 мкФ) они заряжаются настолько быстро, что за этим не сможет уследить ни один прибор. В таких случаях нужно определить, насколько емкость детали соответствует номинальной. Для этого используются специализированный прибор для проверки конденсаторов: измеритель емкости или LC-метр.
Одна из разновидностей электронных LC-метров
Профессиональные приборы выполняют измерения с большой точностью, но они имеют большие габаритные размеры, дороги и сложны в эксплуатации. Применение их оправдано только при профессиональной деятельности, связанной не только с ремонтом, но и наладкой сложных радиотехнических устройств, требующих точной подгонки емкостей конденсаторов.
Для использования в бытовых условиях используются компактные цифровые измерители емкости, по габаритам не отличающиеся от обычного мультиметра. Они имеют точно такие же щупы для подключения измеряемого элемента, жидкокристаллический дисплей и переключатель пределов измерения. Для проверки конденсаторов сначала узнают его емкость по надписям на корпусе, выбирают соответствующий предел измерения и подключают элемент к прибору. Некоторые модели способны измерять емкость деталей без выпаивания их из схемы.
Как известно, у радиодеталей существует разброс параметров, который регламентируется величиной допуска. Измеренное значение должно укладываться в этот допуск. В этом случае конденсатор считается исправным.
Третий вариант схемы измерителя ESR
Чтобы иметь возможность проверять тракты ЗЧ, в схему прибора необходимо ввести еще один переключатель, с помощью которого частота генератора импульсов понижается до 1 кГц.
Кроме того, измерения показали, что потребляемый прибором ток не превышает 3…5 мА, и его лучше сделать малогабаритным переносным, чтобы иметь всегда под рукой. Питать такой вариант прибора можно от батареи типа «Крона» через маломощный 5-вольтовый стабилизатор.
Схема такого варианта прибора показана на рис.З. Переключателем S2 выбирают частоту генератора, а переключателем S3 включают питание прибора.
Рис. 3. Схема самодельного измерителя ESR с питанием от батареи.
Длительная работа с прибором позволила выявить еще один «скрытый резерв»: с помощью него можно проверять катушки индуктивности (обмотки трансформаторов) на наличие короткозамкнутых витков.
При этом прибор измеряет все то же реактивное сопротивление, только на этот раз индуктивное Х|_. Индуктивное сопротивление можно рассчитать по формуле:
где Xl ~ индуктивное сопротивление, Ом; f — частота, Гц; L — индуктивность, Гн. Например, катушка индуктивностью в 100 мкГн на частоте 100 кГц имеет индуктивное сопротивление Хр=62,8 Ом.
Ели такую катушку подключить к нашему прибору, стрелка измерителя практически останется в положении «бесконечность», отклонение будет едва заметно. Наличие же в обмотке катушки короткозамкнутого витка (витков) приведет к резкому уменьшению индуктивного сопротивления, до единиц ом, и стрелка прибора в этом случае покажет какое-то малое сопротивление.
Индуктивность катушек, применяемых в радиотехнических устройствах, может находиться в очень широких пределах: от единиц микрогенри в ВЧ дросселях до десятков генри в силовых трансформаторах.
Поэтому проверка катушек с большой индуктивностью на частоте 100 кГц может вызвать затруднения. Чтобы проверять такие катушки (например, первичные обмотки маломощных силовых трансформаторов), частоту генератора нужно установить в 1 кГц (переключателем S2).
Основные элементы устройства
В основе схемы ESR-метра лежит микросхема генератора импульсов типа К561ЛН2, работающая на частоте до 120 кГц. Для дополнительного удобства саму микросхему можно не впаивать напрямую в плату, а использовать специальную панель с необходимым количеством ножек. Это позволит оперативно сменить вышедшую из строя деталь и заменить её без дополнительных операций с паяльником и отсосом припоя. В качестве аналога этого генератора можно использовать похожий по характеристикам К1561ЛН2.
Настройка частоты выполняется цепью, состоящей из резистора и конденсатора. Регулировка и настройка измерения ESR осуществляется подстроечным резистором.
В качестве питания используется либо стандартная CR2032, выдающая напряжение до 3 вольт, либо, если этого не хватает для работы, аккумуляторная батарейка на 9 вольт, подключаемая через специальную клемму (такие можно найти в некоторых часах с автономным питанием, например, или в старых батарейках типа Крона). В состав измерителя переменного напряжения входит мультиметр, который необходимо перевести в соответствующий режим, и германиевые диоды.
Сборку тестера конденсаторов можно производить как на макетной плате размером примерно 4 на 6 сантиметров, так и на специальных печатных платах. Второй вариант получится немного дороже, но его преимуществом является наличие на плате обозначений всех нужных элементов и дорожек, их соединяющих.
Печатные платы изготавливаются из фольгированного текстолита и перед проведением монтажа элементов контакты на них необходимо залудить припоем.
При использовании макетных плат, размещение элементов и их соединение производится самостоятельно. Для создания схемы используются провода достаточной толщины с фторопластовой изоляцией, чтобы предотвратить их повреждение при тепловом воздействии.
В качестве щупов можно использовать как покупные, так и самодельные. Во втором случае необходимо самостоятельно позаботиться о хорошей проводящей способности используемого материала и достаточной толщине провода, идущего к мультиметру. Использовать длинные провода, более 10 сантиметров, не рекомендуется.
Возможные недостатки и замечания по работе этого устройства:
- При нестабильном питании от батарейки возможны сильные отклонения по точности измерений, следует не забывать периодически проверять батарейку мультиметром и не допускать её разряда больше, чем на 1 вольт.
- Даже при полностью исправной батарейке, прибор, выполненный таким образом, не претендует на звание высокоточного. Его можно использовать как некий индикатор работоспособности элементов и определить подойдёт ли конденсатор для установки или замены.
Первый и второй недостатки имеют общее решение — достаточно установить в схему стабилизатор, питающийся напрямую от батарейки, и два конденсатора. Это повышает надёжность и точность прибора, что даёт возможность отбрасывать ситуации, при которых, если у измеряемого элемента сопротивление было слишком малым, мультиметр сигнализировал о коротком замыкании вместо ожидаемого значения.
Ссылки
- Amaral A.M.R., Cardoso A.J.M.: An experimental technique for estimating the ESR and reactance intrinsic values of aluminium electrolytic capacitors. Proc. Instrumentation and Measurement Technology Conf., IMTC 2006, April 2006, pp. 1820–1825.
- Sankaran V.A., Rees F.L., Avant C.S.: Electrolytic capacitor life testing and prediction. Proc. 32nd Annual Meeting IEEE Industry Applications Society, October 1997, vol. 2, pp. 1058–1065
- Venet P., Perisse F., El-Husseini M.H., Rojat G.: Realization of a smart electrolytic capacitor circuit, IEEE Ind. Appl. Mag., 2002, 8, (1), pp. 16–20
- Chen Y.-M., Chou M.-W., Wu H.-C.: Electrolytic capacitor failure prediction of LC filter for switching-mode power converters. Proc. 40th Annual Meeting IEEE Industry Applications Society, October 2005, vol. 2, pp. 1464–1469.
- Amaral A.M.R., Cardoso A.J.M.: An ESR meter for high frequencies. Proc. Int. Conf. on Power Electronics and Drives Systems, PEDS, 2005, pp. 1628–163
- D.W. Hart, «Power electronics,» Mc Graw Hill, 2010.
- N. Mohan,T. M. Undeland , W. P. Robbins, «Power Electronics: Converters, Applications and Design,» John Wiley and Sons, 2002.
- R.W. Ericson, D. Maksimovic, «Fundamental of power electronics,» Springer, 2001.
- A.M.R. Amaral, A.J.M Cardoso: «An ESR meter for high frequencies». Proc. Int. Conf. on Power Electronics and Drives Systems, PEDS, 2005, pp. 1628–1633.
- R. Chen, J.D.V. Wyk, S. Wang, W.G. Odendaal: Improving the characteristics of integrated EMI filters by embedded conductive layers. IEEE Trans. Power Electron., 2005, pp. 611–619.
- A.M.R. Amaral, A.J.M Cardoso: An experimental technique for estimating the ESR and reactance intrinsic values of aluminium electrolytic capacitors. Proc. Instrumentation and Measurement Technology Conf., IMTC 2006, April 2006, pp. 1820–1825.
Измеритель ESR конденсаторов, четвертый вариант
В заключение автор приводит схему еще одного варианта прибора (рис.4) Предпосылки для создания этого «монстра» были следующие: наличие корпуса от неисправного пульта управления видеомагнитофона (с питанием от двух батареек типоразмера ААА, 3 В); наличие много лет лежащего без применения кварца на 119 кГц; наличие не реализованных много лет ИМС К561ЛА7.
Рис. 4. Принципиальная схема измерителя ESR для оксидных конденсаторов на микросхемах К176ЛА7.
Собирать мультивибратор на транзисторах не хотелось (слишком много дискретных элементов), поэтому была проведена проверка работоспособности микросхем К561ЛА7 при пониженном напряжении питания.
Оказалось, что схема прибора, собранная на этих ИМС, начинает работать уже при Un=2,5 В, что вполне приемлемо при питании от батареек (есть запас по питанию при разряде батареи). Из-за низкой нагрузочной способности элементов КМОП на выходе генератора в качестве буферного усилителя пришлось включить пару дополнительных ИМС, однако, на по мнению автора, это не сильно усложнило схему.
Реально на плате микросхемы DD2 и DD3 запаяны «ножка в ножку» одна над другой, поэтому конструктивно добавляется как бы одна микросхема — буферный усилитель с 8-ю параллельно включенными инверторами.
Потребляемый прибором ток при Un=3 В составляет примерно 2,5 мА. Внешний вид прибора показан на рис.5, а расположение деталей внутри корпуса — на рис.6.
Налаживание прибора такое же, как и для описанных выше: отклонения стрелки измерителя на конечную отметку шкалы в положении «ESR» переключателя S1 добиваются, вращая движок подстроечного резистора R3, а в положении «Пробой» — движок резистора R4.
Достоинством схемы является низкое напряжение питания и малый потребляемый ток. Двух батареек питания хватит на много месяцев работы. А вместо кварцевого генератора можно собрать и использовать обычный RC-генератор, например, по схеме, показанной на рис.7.
Рис. 5. Внешний вид прибора.
Рис. 6. расположение деталей внутри корпуса.
Рис. 7. Схема RC-генератора.
Данный прибор — хорошее подспорье радиолюбителям в их домашней измерительной лаборатории. Особенно он будет полезен ремонтникам РЭА. Попробуйте его собрать, и Вы в этом скоро убедитесь.
Г.В. Воличенко, г. Лозовая.
↑ Мой вариант схемы измерителя ESR
Я внес минимальные изменения.
Корпус — от неисправного «электронного дросселя» для галогеновых ламп. Питание — батарея «Крона» 9 Вольт и стабилизатор78L05 . Убрал переключатель — измерять LowESR в диапазоне до 200 Ом надо очень редко (если приспичит, использую параллельное подключение). Изменил некоторые детали. Микросхема74HC132N , транзисторы2N7000 (to92) иIRLML2502 (sot23). Из-за увеличения напряжения с 3 до 5 Вольт отпала необходимость подбора транзисторов.При испытаниях устройство нормально работало при напряжении батареи свежей 9,6 В до полностью разряженной 6 В. Кроме того, для удобства, использовал smd-резисторы. Все smd-элементы прекрасно паяются паяльником ЭПСН-25. Вместо последовательного соединения R6R7 я использовал параллельное соединение — так удобнее, на плате я предусмотрел подключение переменного резистора параллельно R6 для подстройки нуля, но оказалось, что «нуль» стабилен во всем диапазоне указанных мною напряжений.
Удивление вызвало то, что в конструкции «разработанной в журнале» перепутана полярность подключения VT1
— перепутаны сток и исток (поправьте, если я неправ). Знаю, что транзисторы будут работать и при таком включении, но для редакторов такие ошибки недопустимы.
Возможности универсального тестера
Это устройство называется тестером транзисторов, так как это одна из наиболее востребованных функций. Но это только одна строчка из списка возможностей. Также можно встретить название Markus tester, универсальный или многофункциональный тестер, измеритель радиокомпонентов, мультитестер, ESR-тестер и многие другие более-менее похожие варианты. А все потому, что он много умеет и каждый их называет в соответствии с теми функциями, которые для него важны. Вот примерный список возможностей:
- Проверьте емкость конденсатора любого типа. Кроме того, он также устанавливает дополнительные параметры — ESR — сопротивление конденсатора и Vloss — падение напряжения, которое отображается в процентах. Фактически последний параметр отражает степень «износа» конденсатора (в частности, высыхания электролита). Чем больше число, тем хуже.
Вот как он выводит результаты измерений / тестов транзисторов
- Проверить транзисторы плавно, определить распиновку. Описывает, к какому выводу подключено основание катод-анод. Может быть указано значение порогового напряжения открытия затвора.
- Проверить исправность светодиодов, диодов, триодов, оптронов. Определите усиление, распиновку.
- Его можно использовать как генератор заданной частоты.
- Некоторые позволяют измерять частоту, временные параметры синусоидального напряжения, параметры прямоугольных импульсов.
- Они могут управлять датчиками температуры (для теплого пола — очень полезный, но редкий вариант).
- Есть модификации с более редкими характеристиками. Например, измеряют и проверяют два резистора в пучке, потенциометр (переменное сопротивление) и т.д. В общем, необходимый аппарат. А работа довольно простая. С ним легче обращаться, чем с электронным мультиметром.
Фирменный или «китаец», готовый или конструктор
Вы можете купить универсальный тестер радиокомпонентов от торговой марки или одного из китайских клонов. Разница в цене более чем ощутимая. Но надежность и точность фирменных устройств гарантированы, и, к счастью, с клонами.
Внешне между брендом и клоном есть солидная разница
На всем известном «Али» есть универсальные тестеры радиодеталей с кейсом и без. Без футляра, конечно, дешевле. Китайские счетчики в футляре стоят довольно недорого (около 20-30 долларов), а без футляра даже дешевле. Но многие страдают ненадежностью: твердо лгут. Приходится руководствоваться отзывами.
Комплект деталей — конструктор для сборки универсального измерителя параметров деталей
Готовые полупроводниковые тестеры хоть и стоят дешево на Али, но есть еще более дешевый вариант — так называемые сборщики. Производитель универсального счетчика — это печатная плата и набор деталей, которые необходимо установить / припаять самостоятельно. Изначально выберите набор функций. Под ним вам будет отправлена серия деталей. Некоторые сложные детали (микропроцессор) могут быть уже установлены. Остальное — конденсаторы, резисторы, конденсаторы и прочее нужно будет припаять самостоятельно .
Как определить емкость конденсатора?
Основной характеристикой конденсатора является его емкость. Очень часто замеры емкости требуется проводить в электролитическом конденсаторе. В отличие от керамических и оксидных конденсаторов, которые редко выходят из строя (разве что в результате пробоя диэлектрика), электролитическим деталям свойственна потеря ёмкости из-за высыхания электролита. Поскольку работа электронных схем сильно зависит от емкостных характеристик, то необходимо знать, как определить емкость конденсатора.
Существуют разные способы определения ёмкости:
- по кодовой или цветной маркировке деталей;
- с помощью измерительных приборов;
- с использованием формулы.
Измерить емкость проще всего с помощью измерителя C и ESR. Для этого контакты измерительных щупов подсоединяют к выводам конденсатора, соблюдая полярность электролитических деталей. При этом результаты измерений выводятся на дисплей. (Рисунок 1). Радиолюбители, которым часто приходится делать измерения, приобретают такой прибор или изготавливают его самостоятельно.
Рис. 1. Измерение ёмкости с помощью измерителя C и ESR
Пошаговая инструкция проверки конденсатора мультиметром
Наиболее распространенная проблема, связанная с конденсатором — пробой, который приводит к снижению сопротивления в диэлектрике.
Неисправность можно определить с помощью внешнего осмотра на факт вздутия, потемнения или появления черных пятен, а также более глубокой проверки с помощью прибора.
Изучение конденсатора на факт исправности возможно после выпаивания или прямо на плате. Ниже приведем разные варианты выполнения этой работы.
Внешний осмотр
Во многих ситуациях достаточно одного взгляда, чтобы определить неисправность детали. В этом случае можно ускорить проверку и избежать применения мультиметра.
Конденсатор нужно поменять в следующих случаях:
- вздутие;
- течь жидкости изнутри;
- вмятины или механические повреждения;
- сколы или трещины (характерно для керамических изделий).
При выявления любого из указанных выше повреждений использовать деталь запрещено, и ее нужно поменять.
Проверка мультиметра полярного конденсатора
Проверке подлежат конденсаторы емкостью больше 0,25 мкФ.
Сопротивление таких емкостей небольшое, поэтому при выборе диапазона важно быть внимательным.
Во многих мультиметрах предельный диапазон равен 100 кОм, а у более мощных он может достигать 1 мОм.
Алгоритм действий, следующий:
- Снимите оставшийся заряд путем выкорачивания. Как это сделать правильно, рассмотрено выше.
- Установите подходящий предел измерений и подключите устройство к конденсатору с учетом «плюса» и «минуса» (руками к щупам касаться запрещено).
- Смотрите на параметр, указанный на экране. Он должен составлять более 100 кОм.
Отметим, что весь период замера параметр сопротивления будет меняться в большую сторону. Эта особенность будет заметна на экране.
Это связано с тем, что конденсатор заряжается от мультиметра, а в конечном итоге достигает отметки «1».
Если цифра «1» появится сразу, то это будет указывать на обрыв внутренней цепи.
Если показания не изменились, а прибор начал издавать звук, значит произошло короткое замыкание.
Проверка мультиметром неполярного конденсатора
На контроль неполярного конденсатора необходимо еще меньше времени.
Сделайте следующие шаги:
- Снимите оставшийся заряд подручным инструментом, к примеру, отверткой.
- Установите на мультиметре предел измерения в мегаомах.
- Коснитесь щупами к выводам емкости.
- При наличии сопротивления меньше 2 Мом конденсатор можно выбросить.
Особенность неполярных устройств в том, что в них не требуется соблюдение полярности. Для сравнения можно взять два устройства, чтобы один гарантированно был целым.
Если нужно проверить деталь с емкость до 0,5 мкФ, с помощью измерительного прибора сделать это не выйдет. В таком случае мультиметр будет показывать КЗ.
Для проверки неполярного конденсатора напряжением более 400 В работа делается после зарядки от источника, который защищен от короткого замыкания.
Последовательно с конденсатором подключается резистор, который рассчитан на сопротивление больше 100 Ом. Применение такого элемента позволяет уменьшить первичный бросок тока.
Существует также метод проверки на искру. В таком случае устройство нужно зарядить до рабочей величины, а после закоротить выводы с помощью отвертки (ручка инструмента должна быть изолирована).
По интенсивности искрения можно приблизительно узнать о силе разряда (для конденсаторов с небольшой емкостью, смотрите меры безопасности).
Сразу после заряда можно изменить напряжение. Конденсатор исправен, если он длительное время сохраняет заряд.
Разрядка устройства происходит постепенно через резистор. По причине сильного искрения разрядить его, к примеру, отверткой не получится.
Использование аналоговых измерителей
Для проверки конденсатора не обязательно иметь новый и современный мультиметр. Можно использовать обычную Ц4313, если она осталась со времен СССР или YX-1000A.
Способ измерения такой же, но сами проверки более наглядны с визуальной точки зрения.
Здесь нужно смотреть не на цифры, а на движение стрелки прибора.
Для проверки сделайте следующее:
- Жмите на кнопку RX.
- Вставьте щупы в специальные разъемы.
- Берите конденсатор и разрядите его.
- Прикоснитесь щупами к конденсатору.
- Если деталь исправна, стрелка будет отклоняться, а потом плавно вернется в первоначальную позицию. Скорость движения зависит от емкости проверяемого конденсатора.
Если при проверке стрелка не отклоняется или зависла в конкретной позиции, это свидетельствует о неисправности детали.
Градуировка прибора
Градуируют прибор с помощью нескольких постоянных резисторов сопротивлением 1 Ом. Замкнув щупы, отмечают, где будет нулевая отметка шкалы. Из-за наличия сопротивления в соединительных проводах, она может не совпадать с положением стрелки при выключенном питании.
Поэтому провода, идущие к щупам, должны быть по возможности короткими, сечением 0,75…1 мм2. Далее подключают два параллельно соединенных резистора на 1 Ом и отмечают положение стрелки, соответствующее измеряемому сопротивлению 0,5 Ом.
Затем подключают резисторы но 1, 2, 3, 5 и 10 Ом и отмечают положения стрелки при измерении этих сопротивлений. На этом можно остановиться, так как электролитические конденсаторы емкостью более 4,7 мкФ с ESR больше 10 Ом хотя и могут работать, например, в качестве разделительных в УНЧ, но, скорее, не очень долго.
↑ Итого
Данный прибор работает у меня около месяца, его показания при измерениях конденсаторов с ESR в единицы Ом совпадают с прибором по схеме Ludens
. Он уже прошёл проверку в боевых условиях, когда у меня перестал включаться компьютер из-за емкостей в блоке питания, при этом не было явных следов «перегорания», а конденсаторы были не вздувшимися.
Точность показаний в диапазоне 0,01…0,1 Ом позволила отбраковать сомнительные и не выбрасывать старые выпаянные, но имеющие нормальную ёмкость и ESR конденсаторы. Прибор прост в изготовлении, детали доступны и дёшевы, толщина дорожек позволяет их рисовать даже спичкой. На мой взгляд, схема очень удачна и заслуживает повторения.