Генератор шим с кнопочным контролем

Сравнение с ШИМ на NE555

Прямоугольный сигнал конечно может быть получен с использованием популярнейшей микросхемы NE555, плюс два выпрямительных диода, несколько резисторов и конденсаторов. Это естественно гораздо более дешевое решение. И не нужно ничего программировать.

Но разница в том, что генератор 555 является аналоговым, и вы никогда не знаете точно, какое именно значение скважности установили в данный момент времени. Он также не позволяет точно установить уровень скважности с разрешением 1%

В случае AtTiny программирование может быть выполнено по i2s, последовательно с пульта дистанционного управления или с использованием энкодера. Единственное, что нужно добавить, это дополнительный код. С таймером 555 таких возможностей не будет. Прилагаемый архив содержит схему в Eagle, плату в DipTrace, исходный текст программы и документацию в PDF.

Модели с конденсаторами РР5

Генератор высоковольтных импульсов с указанными конденсаторами можно встретить довольно часто. При этом использоваться он способен даже с блоками питания на 15 В. Пропускная способность его зависит от типа адаптера

В данном случае важно определиться с резисторами. Если подбирать полевые модели, то адаптер целесообразнее устанавливать именно бесконденсаторного типа

В том случае параметр отрицательного сопротивления будет находиться в районе 3 Ом.

Стабилитроны в данном случае используются довольно часто. Связано это с резким понижением уровня предельной частоты. Для того чтобы ее выровнять, стабилитроны подходят идеально. Устанавливаются они, как правило, возле выходного порта. В свою очередь, резисторы лучше всего припаивать возле адаптера. Показатель колебательного возбуждения зависит от емкости конденсаторов. Рассматривая модели на 3 пФ, отметим, что вышеуказанный параметр никогда не превысит 6 мс.


Смотреть галерею

Видео. Высоковольтный генератор импульсов своими руками

Чтобы своими руками было проще собрать генератор импульсов определённой частоты, лучше использовать универсальную монтажную плату. Она пригодится для экспериментов с разными принципиальными электрическими схемами. После приобретения навыков и соответствующих знаний, будет нетрудно создать идеальное устройство для успешного решения конкретной задачи.

Генераторы импульсов — это устройства, которые способны создавать волны определенной формы. Тактовая частота в данном случае зависит от многих факторов. Основным предназначением генераторов принято считать синхронизацию процессов у электроприборов. Таким образом, у пользователя есть возможность настраивать различную цифровую технику.

Как пример можно привести часы, а также таймеры. Основным элементом устройств данного типа принято считать адаптер. Дополнительно в генераторы устанавливаются конденсаторы и резисторы вместе с диодами. К основным параметрам устройств можно отнести показатель возбуждения колебаний и отрицательного сопротивления.

Преобразователя напряжения 1,5 В/-9 В

Рис. 8. Схема преобразователя напряжения 1,5 В/-9 В.

Преобразователь (рис.

В преобразователе использовано обратное включение выпрямительного диода VD1, т.е. при открытом транзисторе VT2 к обмотке автотрансформатора приложено напряжение питания Un, и на выходе автотрансформатора появляется импульс напряжения. Однако включенный в обратном направлении диод VD1 в это время закрыт, и нагрузка отключена от преобразователя.

В момент паузы, когда транзистор закрывается, полярность напряжения на обмотках Т1 изменяется на противоположную, диод VD1 открывается, и выпрямленное напряжение прикладывается к нагрузке.

При последующих циклах, когда транзистор VT2 запирается, конденсаторы фильтра (С4, С5) разряжаются через нагрузку, обеспечивая протекание постоянного тока. Индуктивность повышающей обмотки автотрансформатора Т1 при этом играет роль дросселя сглаживающего фильтра.

Для устранения подмагничивания сердечника автотрансформатора постоянным током транзистора VT2 используется перемагничивание сердечника автотрансформатора за счет включения параллельно его обмотке конденсаторов С2 и C3, которые одновременно являются делителем напряжения обратной связи.

Когда транзистор VT2 закрывается, конденсаторы С2 и C3 в течение паузы разряжаются через часть обмотки трансформатора, перемагничивая сердечник Т1 током разряда.

Частота генерации зависит от напряжения на базе транзистора ѴТ1. Стабилизация выходного напряжения осуществляется за счет отрицательной обратной связи (ООС) по постоянному напряжению посредством R2.

При понижении выходного напряжения увеличивается частота генерируемых импульсов при примерно одинаковой их длительности. В результате увеличивается частота подзарядки конденсаторов фильтра С4 и С5 и падение напряжения на нагрузке компенсируется. При увеличении выходного напряжения частота генерации, наоборот, уменьшается.

Так, после заряда накопительного конденсатора С5 частота генерации падает в десятки раз. Остаются лишь редкие импульсы, компенсирующие разряд конденсаторов в режиме покоя. Такой способ стабилизации позволил уменьшить ток покоя преобразователя до 0,5 мА.

Транзисторы ѴТ1 и ѴТ2 должны иметь возможно больший коэффициент усиления для повышения экономичности. Обмотка автотрансформатора намотана на ферритовом кольце К10x6x2 из материала 2000НМ и имеет 300 витков провода ПЭЛ-0,08 с отводом от 50-го витка (считая от «заземленного» вывода). Диод VD1 должен быть высокочастотным и иметь малый обратный ток. Налаживание преобразователя сводится к установке выходного напряжения равным -9 В путем подбора резистора R2.

ГЕНЕРАТОР ПАЧЕК ИМПУЛЬСОВ

Генератор пачек импульсов может быть реализован с помощью двух одинаковых микросхем генератора импульсов, при этом выход Pulses первой микросхемы соединяется с входом Run второй, а вход IdleState первой микросхемы заземляется (см. схему справа).

Включение и выключение генерации пачек импульсов осуществляется с помощью входа Run первой микросхемы, а состояние покоя при выключенной генерации – входом IdleState второй микросхемы.

Входы Ur / RX, M0 и M1 первой микросхемы определяют параметры пачек, а входы Ur / RX, M0 и M1 второй микросхемы – параметры импульсов внутри пачек. При этом, если необходимо, первая и вторая микросхемы могут работать в разных режимах (например, одна от потенциометра, а другая по настройкам Flash-памяти).

Возможное применение генераторов пачек импульсов: прерывистая звуковая сигнализация, прерывистая световая индикация с регулированием яркости и другое.

Схемы генераторов на 555

   Тогда решил изменить принципиально схему и сделать независимую длительность на конденсаторе, диоде и резисторе. Возможно многие посчитают эту схему абсурдной и глупой, но это работает. Принцип такой: сигнал на драйвер идет до тех пор пока конденсатор не зарядится (с этим думаю никто не поспорит)

NE555 генерирует сигнал, он идет через резистор и конденсатор, при этом если сопротивление резистора 0 Ом, то идет только через конденсатор и длительность максимальна (на сколько хватает емкости) не зависимо от скважности генератора. Резистор ограничивает время заряда, т.е

чем больше сопротивление, тем меньшей времени будет идти импульс. На драйвер идет сигнал меньшей длительностью, но тоже частоты. Разряжается конденсатор быстро через резистор (который на массу идет 1к) и диод.

Мультивибраторы

Симметричный мультивибратор на транзисторах

Симметричный мультивибратор Симметричный мультивибратор

Принцип работы состоит в переходе из одного нестабильного состояния (Q1 закрыт, Q2 открыт) в другое (Q1 открыт, Q2 закрыт).

Начнем с первого состояния: Q1 закрыт, Q2 открыт.

Конденсатор С1 быстро заряжается идет через «меньший» резистор R4 и базовый переход Q2. Одновременно с этим через открытый Q2 через «больший» резистор R2 медленно разряжается C2, отрицательное напряжение на котором держит в запертом состоянии Q1.

В процессе дальнейшего перезаряда С2 на базе Q1 появляется уже положительное, отпирающее напряжение, и Q1 начинает открываться. Ток через него возрастает, снижается напряжение на коллекторе Q1 и базе Q2, что вызывает его запирание.

Напряжение на коллекторе Q2 увеличивается и через конденсатор C2 еще сильнее открывает Q1.

Процесс открывания Q1 ускоряет запирание Q2, и процесс происходит практически лавинообразно, и переход из одного состояния в другое происходит очень быстро.

Напряжения на конденсаторе C1, база-эмиттер и коллектор-эмиттер транзистора Q2Напряжения на конденсаторе C1, база-эмиттер и коллектор-эмиттер транзистора Q2

В общем, транзисторы периодически друг друга открывают и закрывают.

Теперь немного о расчете элементов.

Период состоит из двух частей t1 и t2, зависящих от сопротивлений R2, R3 и емкостей C1, C2:

t1 = 0,7 x R3 x C1;

t2 = 0,7 x R2 x C2

Для примера, в схеме на картинке выше период равен t1 + t2 = 2*0,7*22 кОм*0,1 мкФ = 3,08 мс.

Период 3,3 мсПериод 3,3 мс

От сопротивления резисторов R1 и R4 зависит длительность спада импульсов: чем меньше сопротивление, тем быстрее спад.

При R1 = R4 = 470 ОмПри R1 = R4 = 470 Ом

Главный недостаток такой схемы — медленные спады.

Мультивибратор с корректирующими диодами

Симметричный мультивибратор с корректирующими диодами Симметричный мультивибратор с корректирующими диодами

Через эти диоды параллельно коллекторным нагрузкам включены дополнительные резисторы.

После запирания транзистора и повышения потенциала коллектора подключенный к нему диод запирается. Заряд конденсатора происходит через дополнительный резистор R23 / R22, а не через коллекторный R19 / R20, и потенциал коллектора запирающегося транзистора почти скачком становится практически равным напряжению питания.

Мультивибратор с регулируемой скважностью

Если хочется изменять скважность, можно регулировать сопротивления «плеч» одновременно вращением потенциометра:

Ну, и для наглядности гифка:

Предыдущие схемы были автогенераторами и не требовали запуска (запуск при первом включении возникает из-за «несимметричности» компонентов (транзисторы имеют разные коэффициенты усиления, например), и какая-то из «сторон» мультивибратора включится быстрее другой, что и запустит колебания).

Помогла ли вам статья?

ДаНе особо

ГЕНЕРАТОР НА ТАЙМЕРЕ 555

В широком доступе в магазинах имеется таймер 555, продаётся за сущие копейки – микросхема в SMD исполнении, как правило, стоит порядка 5 рублей, в дипе — 7-10 рублей. Радиолюбителю, как в частности и мне, рано или поздно требуется относительно точный регулируемый и простой генератор для различных конструкций. Мне понадобился таковой для ознакомления с работой осциллографа. Нашел интересную схему в статье, которая описана как тестер для таймера, дабы проверить его исправность.

Принципиальная схема генератора импульсов на таймере

Генератор вырабатывает прямоугольные импульсы. Период колебаний связан с номиналами резисторов R1, R2 и конденсатора С1. Чуть доработал схему, нарисовал свою печатку, правда рисовал под SMD, но решил в конечном итоге поставить Dip.

Вместо постоянных резисторов установлено два регулирующих резистора на 100 кОм для подстройки, новеньких, с хорошей регулировкой.

Выход таймера (вывод 3) разделен конденсатором на 100 нанофарад, обычным керамическим, чтобы исключить замыкание выхода или слишком завышенный уровень сигнала. По входу питания микросхемы установлен стеклянный диод который защищает схему от переполюсовки батареи – чтобы не сгорела, если подключишь полярность неправильно. Для индикации установлен светодиод с токоограничительным резистором – так видно когда устройство включено и работает. Большинство резисторов в схеме применены в планарном исполнении, чтоб снизить размеры и упростить монтаж без сверловки, типоразмер применен 1206.

Схема генератора хорошо регулируется в широких пределах, подстройка, благодаря большим номиналам регуляторов, хорошая. Питается устройство во время тестов от аккумулятора в 6 вольт, ток потребления 15-25 мА, в зависимости от режима роботы которые выводятся движками регуляторов. Крайнее положение ставить не рекомендую, желательно последовательно с резисторами регулировки в схему поставить еще и дополнительно по несколько килоОм резисторы для надежности, но эта несложная платка сделанная на скорую руку для простейших тестов, поэтому устраивает и так.

На таймере 555 можно построить также генератор пилообразных колебаний.

Схема генератора пилообразного сигнала

Когда на выходе таймера присутствует напряжение высокого уровня, конденсатор С1 заряжается медленно от источника тока на полевом транзисторе. Как только напряжение на конденсаторе достигнет уровня 2Uпит / 3, высокий уровень напряжения на выходе таймера сменится на низкий и конденсатор быстро разрядится через открытый внутренний транзистор микросхемы.

Видео работы схемы

Частоту генерации определяют уровень источника постоянного тока на полевом транзисторе и емкость конденсатора С1. Период колебаний генератора равен Т=C1.Uпит/(3I). Схему собрал и проверил redmoon.

Originally posted 2019-01-14 09:11:18. Republished by Blog Post Promoter

NE555 – модуль генератора импульсов

Москва и МО: Самовывоз Курьерская доставка Россия и СНГ: Почта РФ СДЭК / Boxberry

  • Описание
  • Характеристики
  • Отзывы (0)

Купить NE555 — модуль генератора импульсов в Москве или с доставкой по России и СНГ очень просто! До покупки осталось всего 3 клика:

  • Добавьте товар в корзину
  • Оформите заказ, выбрав наиболее удобный способ доставки и оплаты
  • Дождитесь подтверждения от менеджеров или позвоните самостоятельно
  • Оплатите заказ удобным способом и получите его в ближайшее время

Модуль генератора импульсов на базе NE555

При помощи перемычки, имеющей четыре положения, можно настраивать частоту выходных импульсов в 4 диапазонах:

  • 0.5 – 50 Гц;
  • 35 Гц – 3.5 кГц;
  • 650 Гц – 65 кГц;
  • 50 кГц – 600 кГц.

Данные приведены для питания в 12 В. Когда вы изменяете частоту, всегда выключайте генератор! Питаться генератор может как от внешнего источника, так и от контроллера, которые могут обеспечить от 5 до 15 В постоянного тока. Генератор имеет красный светодиод, который начинает моргать при малой частоте на выходе.

В схеме есть два резистора: R1 и R2

Первый резистор «отвечает» за длительность паузы импульсов, а второй – за скважность

Если требуется управлять нагрузкой, которая превышает на выходе 35 мА, используйте усилитель тока выходного каскада. Максимальная нагрузка, которую выдерживает генератор, равна 200 мА.

Генератор импульсов с регулируемой скважностью и частотой

9zip.ru Катушки Теслы Генератор на TL494 с регулировкой частоты и скважности

Очень полезным устройством при проведении экспериментов и настроечных работ является генератор частоты. Требования к нему невелики, нужны лишь:

регулировка частоты (периода следования импульсов)
регулировка скважности (коэффициент заполнения, длина импульсов)
широкий диапазон

Этим требованиям вполне удовлетворяет схема генератора на известной и распространённой микросхеме TL494. Её и многие другие детали для этой схемы можно найти в ненужном компьютерном блоке питания. Генератор имеет силовой выход и возможность раздельного питания логической и силовой частей. Логическую часть схемы можно запитать и от силовой, также её можно питать от переменного напряжения (на схеме имеется выпрямитель).

Диапазон регулировки частоты генератора чрезвычайно высок — от десятков герц до 500 кГц, а в некоторых случаях — и до 1 МГц, зависит от микросхемы, у разных производителей разные реальные значения максимальной частоты, которую можно «выжать».

Перейдём к описанию схемы:

— питание цифровой части схемы, постоянным и переменным напряжением соответственно, 16-20 вольт. Vout — напряжение питания силовой части, именно оно будет на выходе генератора, от 12 вольт. Чтобы запитать цифровую часть схемы от этого напряжения, необходимо соединить Vout и Пит± с учётом полярности (от 16 вольт). OUT(+/D) — силовой выход генератора, с учётом полярности. + — плюс питания, D — drain полевого транзистора. К ним подключается нагрузка. G D S — винтовая колодка для подключения полевого транзистора, который выбирается по параметрам в зависимости от ваших требований к частоте и мощности. Разводка печатной платы выполнена с учётом минимальной длины проводников к выходному ключу и необходимой их ширины.

Rt — переменный резистор управления диапазоном частот генератора, его сопротивление необходимо выбрать под ваши конкретные требования. Онлайн калькулятор расчёта частоты TL494 прилагается ниже. Резистор R2 ограничивает минимальное значения сопротивления времязадающего резистора микросхемы. Его можно подобрать под конкретный экземпляр микросхемы, а можно ставить таким, как на схеме. Ct — частотозадающий конденсатор, отсыл, опять же, к онлайн калькулятору. Позволяет задать диапазон регулировки под ваши требования

Rdt — переменный резистор для регулировки скважности. Резистором R1 можно точно подогнать диапазон регулировки от 1% до 99%, также вместо него можно поставить вначале перемычку

Ct, нФ:
R2, кОм:
Rt, кОм:

Несколько слов о работе схемы. Подачей низкого уровня на 13 вывод микросхемы (output control) она переведена в однотактный режим. Нижний по схеме транзистор микросхемы нагружен на резистор R3 для создания выхода для подключения к генератору измерителя частоты (частотометра). Верхний же транзистор микросхемы управляет драйвером на комплиментарной паре транзисторов S8050 и S8550, задача которого — управлять затвором силового выходного транзистора. Резистор R5 ограничивает ток затвора, его значение можно менять. Дроссель L1 и конденсатор ёмкостью 47n образую фильтр для защиты TL494 от возможных помех, создаваемых драйвером. Индуктивность дросселя, возможно, следует подобрать под ваш диапазон частот. Следует отметить, что тразнисторы S8050 и S8550 выбраны не случайно, так как они имеют достаточную мощность и скорость, что обеспечит необходимую крутизну фронтов. Как видите, схема предельно проста, и, в то же время, функциональна.

Переменный резистор Rt следует выполнить в виде двух последовательно соединённых резисторов — однооборотного и многооборотного, если вам нужна плавность и точность регулировки частоты.

В качестве силового транзистора можно использовать практически любые полевые транзисторы, подходящие по напряжению, току и частоте. Это могут быть: IRF530, IRF630, IRF640, IRF840.

Чем меньше сопротивление транзистора в открытом состоянии, тем меньше он будет нагреваться при работе. Тем не менее, наличие радиатора на нём обязательно.

Собрано и проверено по схеме, которую предоставил flyer.

Обзор модуля генератора импульсов на NE555

Сегодня расскажу о модуле генератора импульсов на микросхеме NE555 (YS-32), которая способна работать от 10 до 200 кГц. Данный модуль используется для намотки спидометра, ремонте и так далее.

Технические параметры

► Микросхема: NE555; ► Форма генерируемых импульсов: прямоугольные импульсы; ► Рабочее напряжение: 5-15 В; ► Диапазоны частот: 1-50Гц, 50Гц — 1кГц, 1-10кГц, 10-200 кГц; ► Потребляемый ток: 100 мА; ► Выходной ток: 35 мА; ► Размеры: 31 х 22 х 17 мм; ► Вес: 7 г.

Обзор модуля NE555

Модуль основан на микросхеме NE555, которая была выпущена еще в 1971 году, компанией Signetics и которая на сегодняшний день остается популярной. Сам модуль имеет небольшие размеры, всего 31 на 17 мм. Частота выходного сигнала регулируется с помощью потенциометра, в определенном диапазоне, который задается с помощью перемычек: 1-50Гц, 50Гц — 1кГц, 1-10кГц и 10-200 кГц

Вторым потенциометром регулируется скважность. Для подключения используется трех контактный штыревой разъем, шагом 2,54 мм

Назначение контактов: ► GND – Вывод питания, земля. ► OUT – Сигнальный вывод. ► VCC – Вывод питания, от 5 до 15 В.

Принципиальная схема:

Показания осциллограмм выходного сигнала NE555

Покажу показания выходного сигнала снятые с помощью осциллографа, потенциометр частоты и скважности выкрутил на минимум и на максимум. 1

Перемычка установлен на 1 Гц — 50 Гц, потенциометры на минимуме.

2. Перемычка установлен на 50 Гц — 1 кГц, потенциометры на минимуме.

3. Перемычка установлен на 1 кГц — 10 кГц, потенциометры на минимуме.

4. Перемычка установлен на 10к Гц — 200 кГц, потенциометры на минимуме.

5

Перемычка установлен на 1 Гц — 50 Гц, потенциометр частоты на максимуме, а потенциометр скважности выкручен максимально (до спада импульса)

6

Перемычка установлен на 50 Гц — 1 кГц, потенциометр частоты на максимуме, а потенциометр скважности выкручен максимально (до спада импульса)

7

Перемычка установлен на 1 кГц — 10 кГц, потенциометр частоты на максимуме, а потенциометр скважности выкручен максимально (до спада импульса)

8

Перемычка установлен на 10 кГц — 200 кГц, потенциометр частоты на максимуме, а потенциометр скважности выкручен максимально (до спада импульса)

Подключение модуля NE555 к Arduino

Необходимые детали: ► Arduino UNO R3 x 1 шт. ► Генератор импульсов на NE555 (от 1 Гц до 200 кГц ) x 1 шт. ► Провода DuPont M-F, 20 см x 1 шт.

Подключение: Для наглядности подключим модуль генератора импульсов NE555 к аналоговому выводу Arduino, принципиальная схема подключена показана ниже.

Программа: Скетч не сложный, просто считываем показания с аналогово порта А0 и полученные данные передаем в последовательный порт.

Как выглядят низкочастотные генераторы сигналов?

Стандартные низкочастотные генераторы сигналов синусоидальной формы представлены в виде небольшого короба, на передней панели имеется экран. С его помощью производится контроль колебаний и регулировки. В верхней части экрана имеется текстовое поле – это своеобразное меню, в котором присутствуют разные функции. Управление может производиться кнопками и переменными резисторами. На экране указывается вся информация, необходимая при работе.

Амплитуда и смещение сигнала регулируются при помощи кнопок. Новейшие образцы приборов оснащаются выходами, посредством которых можно произвести запись всех результатов на флеш-накопитель. Для изменения частоты дискретизации в генераторах синусоидального сигнала применяются специальные регуляторы. Благодаря им пользователь может очень быстро осуществить синхронизацию. Обычно внизу, под экраном, располагается кнопка включения, а рядом с ней выходы генератора.

Самодельные приборы

Можно сделать низкочастотные генераторы сигналов своими руками из подручных средств. Основная часть любого генератора – это селектор (англ. select – выбор). В любой конструкции он рассчитан на несколько каналов. В стандартных конструкциях применяется не более двух микросхем. Этого для реализации простейших приборов оказывается достаточно. Идеально подойдут для изготовления генераторов микросхемы из серии КН148. Что касается преобразователей, то они используются только аналоговые.

В некоторых случаях допускается использовать персональный компьютер в качестве генератора сигналов. Своими руками можно сделать небольшой переходник – он устанавливается на выходе звуковой карты. Сигнал снимается с выхода и используется для тестирования аппаратуры. На ПК устанавливается программа, которая будет управлять звуковой картой. Недостаток такой конструкции – слишком узкий диапазон частот, поэтому его нельзя использовать при тестировании некоторых приборов.

Генераторы синусоидального сигнала

Синус – это наиболее распространенная форма низкочастотного сигнала генераторов. Он необходим для тестирования большей части аппаратуры. В конструкции применяются самые простые микросхемы. Они вырабатывают сигнал, который преобразовывается операционным усилителем. Чтобы производить регулировку сигналов, необходимо в схему включить переменные или постоянные резисторы. От типа используемых сопротивлений зависит, ступенчато или плавно будет осуществляться регулировка.

Генераторы синусоидального сигнала широко применяются для настройки не только радиоаппаратуры, но и высокочастотной техники – инверторов, блоков питания, преобразователей частоты для асинхронных двигателей и т. д. Эта техника позволяет производить преобразование исходного синуса бытовой сети (частота 50 Гц). Причем частота увеличивается в десятки раз – до 100 МГц. Это необходимо для нормальной работы импульсного трансформатора.

Низкочастотные генераторы сигналов

Такие конструкции применяются для настройки и тестирования аудиоаппаратуры

Если обратить внимание на схему простейшего низкочастотного генератора сигналов, то можно увидеть, что в нем устанавливаются переменные резисторы – с их помощью производится корректировка формы и величины сигнала. Чтобы осуществить изменение величины импульса, можно использовать модулятор серии КК202

Сигнал в этом случае должен генерироваться через конденсаторы.

Низкочастотный генератор сигналов используется для настройки любой аудио аппаратуры – проигрывателей, усилителей звуковой частоты и т. д. В качестве такого генератора можно использовать персональный компьютер (даже старый ноутбук подойдет). Это бюджетный вариант, который не потребует больших затрат, если в наличии имеется старенький компьютер. Достаточно установить последнюю версию драйверов, программу для работы со звуковой картой и сделать переходник для подключения к аппаратуре.

www.newcom.cv.ua — Генератор ВЧ (2-160 Мгц)

Подробности Опубликовано 01.01.2013 11:59 Генератор ВЧ работает в диапазоне частот от 2 Мгц до 160 Мгц. Предназначен для проведения работ по настройки высокочастотной радиоаппаратуры, в том числе приемников, передатчиков, трансиверов, радиомикрофонов, устройств дистанционного радиоуправления и т.д.

Для более точного задания частоты, основной диапазон частот разбит на шесть поддиапазонов — четыре в диапазоне КВ и два в диапазоне УКВ.

Уровень выходного напряжения регулируется ступенчато с помощью антенюатора в пределах 1 mV, 10mV, 100 mV и 1 V.

Схема генератора ВЧ очень простая в повторении и состоит из трех основных модулей :

1. Высокочастотного автогенератора собранный по схеме индуктивной трехточки на индуктивностях и транзисторе VT1 KT345. Параметры индуктивностей L1- L6, для поддиапазонов указаны в таблице.

Номер катушки Поддиапазон Мгц Индуктивность мкГн Диаметр провода Число витков Способ намотки
L1 2-5 106 0,2 90 Виток к витку. Рядовая. Диаметр каркаса 8 мм с ферритовым сердечником.

Отвод — от 30 витка.

L2 5-10 17 0,3 50 Виток к витку. Рядовая. Диаметр каркаса 8 мм с ферритовым сердечником. Отвод — от 17 витка.
L3 10-20 4,3 0,4 30 Виток к витку. Рядовая. Диаметр каркаса 8 мм с ферритовым сердечником. Отвод — от 10 витка.
L4 20-50 1,2 0,6 15 Виток к витку. Рядовая. Диаметр каркаса 8 мм с ферритовым сердечником. Отвод — от 50 витка.
L5 50-90 0,18 0,8 6 Шаг 1,3 мм.

Рядовая. Диаметр каркаса 8 мм без ферритового сердечника. Отвод — от 2 витка.

L6 90-160 0,055 1,0 2 Шаг 2,5 мм. Рядовая. Диаметр каркаса 8 мм без ферритового сердечника. Отвод — от 1 витка.

Конденсатор СЗ предназначен для грубой настройки , С4 — для точной. Калибровать автогенератор удобнее с помощью цифрового частотомера. Значения частоты в Мгц-ах наносятся на шкале С3 для каждого поддиапазона.

2. Усилитель ВЧ, выполненного на транзисторах VT2 и VT3 КТ361.

3. Модулятор — построенный на базе RC генератора на VT4 КТ315 с частотой колебаний в районе 1 кГц. С помощью выключателя SB2 он может быть при желании отключен.

Питание генератора ВЧ — стабилизированное 12 В.

Модели с кварцевой стабилизацией

Схема генератора импульсов данного типа предусматривает использование только бесконденсаторного адаптера. Все это необходимо для того, чтобы показатель возбуждения колебаний был как минимум на уровне 4 мс. Все это позволит также сократить термальные потери. Конденсаторы для устройства подбираются исходя из уровня отрицательного сопротивления. Дополнительно необходимо учитывать тип блока питания. Если рассматривать импульсные модели, то у них уровень выходного тока в среднем находится на отметке 30 В. Все это в конечном счете может привести к перегреву конденсаторов.

Чтобы избежать таких проблем, многие специалисты советуют устанавливать стабилитроны. Припаиваются они непосредственно на адаптер. Для этого необходимо прочистить все контакты и проверить напряжение катода. Вспомогательные адаптеры для таких генераторов также используются. В этой ситуации они играют роль коммутируемого трансивера. В результате параметр возбуждения колебаний повышается до 6 мс.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector