Коэффициент усиления на троечку
Мост Вина имеет коэффициент пропускания b=1/3. Поэтому условием генерации является то, что ОУ должен обеспечивать коэффициент усиления равный трем. В таком случает произведение коэффициентов пропускания моста Вина и усиления ОУ даст 1. И будет происходить стабильная генерация заданной частоты.
Если бы мир был идеальным, то задав резисторами в цепи отрицательной обратной связи, нужный коэфф усиления, мы бы получили готовый генератор.
Но увы, мир не идеален.… На практике оказывается, что для запуска генерации необходимо, чтобы в самый начальный момент коэфф. усиления был немного больше 3-х, а далее для стабильной генерации он поддерживался равным 3.
При насыщении, на выходе будет поддерживаться напряжение, близкое к одному из напряжений питания. И будут происходить случайные хаотичные переключения между напряжениями питания.
Поэтому, строя генератор на мосте Вина, прибегают к использованию нелинейного элемента в цепи отрицательной обратной связи, регулирующего коэффициент усиления. В таком случае генератор будет сам себя уравновешивать и поддерживать генерацию на одинаковом уровне.
Изображение на электрических схемах
Блокинг генератор: принцип работы
Для начала рассмотрим получение синусоидального типа сигнала. Самый известный генератор на транзисторе такого типа – генератор колебаний Колпитца. Это задающий генератор с одной индуктивностью и двумя последовательно соединёнными ёмкостями. С помощью него производится генерация требуемых частот. Оставшиеся элементы обеспечивают требуемый режим работы транзистора на постоянном токе.
Дополнительная информация. Эдвин Генри Колпитц – руководитель отдела инноваций «Вестерн Электрик» в начале прошлого века. Был пионером в разработке усилителей сигнала. Впервые произвёл радиотелефон, позволяющий разговаривать через Атлантику.
Также широко известен задающий генератор колебаний Хартли. Он, как и схема Колпитца, достаточно прост в сборке, однако требуется индуктивность с отводом. В схеме Хартли один конденсатор и две последовательно соединённые катушки индуктивности производят генерацию. Также в схеме присутствует дополнительная ёмкость для получения плюсовой обратной связи.
Схемы генераторов на транзисторах
Основная область применения вышеописанных приборов – средние и высокие частоты. Используют для получения несущих частот, а также для генерации электрических колебаний малой мощности. Принимающие устройства бытовых радиостанций также используют генераторы колебаний.
Все перечисленные области применения не терпят нестабильного приёма. Для этого в схему вводят ещё один элемент – кварцевый резонатор автоколебаний. В этом случае точность высокочастотного генератора становится практически эталонной. Она достигает миллионных долей процента. В принимающих устройствах радиоприёмников для стабилизации приёма применяют исключительно кварц.
Что касается низкочастотных и звуковых генераторов, то здесь есть очень серьёзная проблема. Для увеличения точности настройки требуется увеличение индуктивности. Но увеличение индуктивности ведёт к нарастанию размеров катушки, что сильно сказывается на габаритах приёмника. Поэтому была разработана альтернативная схема генератора Колпитца – генератор низких частот Пирса. В ней индуктивность отсутствует, а на её месте применён кварцевый резонатор автоколебаний. Кроме того, кварцевый резонатор позволяет отсечь верхний предел колебаний.
В такой схеме ёмкость не даёт постоянной составляющей базового смещения транзистора дойти до резонатора. Здесь могут формироваться сигналы до 20-25 МГц, в том числе звуковые.
Производительность всех рассмотренных устройств зависит от резонансных свойств системы, состоящей из емкостей и индуктивностей. Отсюда следует, что частота будет определена заводскими характеристиками конденсаторов и катушек.
Важно! Транзистор – это элемент, произведённый из полупроводника. Имеет три вывода и способен от поданного входного сигнала небольшой величины управлять большим током на выходе
Мощность элементов бывает разная. Используется для усиления и коммутации электрических сигналов.
Дополнительная информация. Презентация первого транзистора была проведена в 1947 г. Его производная – полевой транзистор, появился в 1953г. В 1956г. за изобретение биполярного транзистора была вручена Нобелевская премия в области физики. К 80-м годам прошлого века электронные лампы были полностью вытеснены из радиоэлектроники.
Схема генератора на 100 Гц
На рисунке 3 показана схема генератора частоты 100 Гц. Частота стабилизирована кварцевым резонатором Q1 на 32768 Гц, с его выхода внутри микросхемы D1 импульсы поступают на двоичный счетчик. Коэффициент деления частоты задан диодами VD1-VD3 и резистором R1, которые обнуляют счетчик каждый раз, когда его состояние достигает 328. При этом, 32768 / 328 = 99,902439.
Рис. 3. Принципиальная схема генератора сигнала частотой 100 Гц.
Это не совсем 100 Гц, но близко. К тому же, подбором емкостей конденсаторов С1 и С2 можно немного изменить частоту кварцевого генератора и получить результат более близкий к 100 Гц.
Генерирование треугольного сигнала
Следующие команды могут использоваться для генерирования треугольного сигнала. Мы будем использовать ту же частоту (т.е. 441 Гц), то есть длину в 25 выборок.
LowerLimit = -1; UpperLimit = 1; StepSize = (UpperLimit — LowerLimit)/(length(n)/2); UpwardRamp = LowerLimit:StepSize:(UpperLimit — StepSize); DownwardRamp = UpperLimit:-StepSize:(LowerLimit + StepSize); TriangleWave_OneCycle = ; TriangleWave_Full = -1; for k=1:(10/CycleDuration) > TriangleWave_Full = ; > end sound(TriangleWave_Full)
Сгенерированный треугольный сигнал
Прежде чем мы закончим, я хочу отметить, что эта система обеспечивает не только удобное управление амплитудой, но и быструю настройку частоты: вы можете изменить частоту аналогового сигнала, не изменяя цифровые значения, а указав другую частоту дискретизации при вызове функции sound(). Например, если указанная частота дискретизации выше исходной частоты дискретизации в 2 раза, то новая частота сигнала будет выше, чем исходная частота, в 2 раза.
sound(TriangleWave_Full, SamplingFrequency*2)
Сгенерированный сигнал с частотой вдвое больше исходной частоты sound(TriangleWave_Full, SamplingFrequency/2)
Сгенерированный сигнал с частотой вдвое меньше исходной частоты
Классификация
Транзисторные генераторы имеют несколько классификаций:
- по диапазону частот выходного сигнала;
- по типу выходного сигнала;
- по принципу действия.
Диапазон частот – величина субъективная, но для стандартизации принято такое деление частотного диапазона:
- от 30 Гц до 300 кГц – низкая частота (НЧ);
- от 300 кГц до 3 МГц – средняя частота (СЧ);
- от 3 МГц до 300 МГц – высокая частота (ВЧ);
- выше 300 МГц – сверхвысокая частота (СВЧ).
Таково деление частотного диапазона в области радиоволн. Существует звуковой диапазон частот (ЗЧ) – от 16 Гц до 22 кГц. Таким образом, желая подчеркнуть диапазон частот генератора, его называют, например ВЧ или НЧ генератором. Частоты звукового диапазона в свою очередь также подразделяются на ВЧ, СЧ и НЧ.
По типу выходного сигнала генераторы могут быть:
- синусоидальные – для генерации синусоидальных сигналов;
- функциональные – для автоколебания сигналов специальной формы. Частный случай – генератор прямоугольных импульсов ;
- генераторы шума – генераторы широкого спектра частот, у которых в заданном диапазоне частот спектр сигнала равномерный от нижнего до верхнего участка частотной характеристики.
По принципу действия генераторов:
- RC-генераторы;
- LC-генераторы;
- Блокинг-генераторы – формирователь коротких импульсов.
Ввиду принципиальных ограничений обычно RC-генераторы используются в НЧ и звуковом диапазоне, а LC-генераторы в ВЧ диапазоне частот.
Как происходит формирование синусоидальных колебаний?
Любой генератор (не только синусоидальных колебаний) представляет собой замкнутую цепь, состоящую из усилителя и селективной цепи (частотно-избирательная цепь). Причем селективная цепь включена в цепь ПОС (положительная обратная связь) усилителя, где могут быть включены дополнительные усилители.
Допустим, на вход селективной цепи поступает сигнал, состоящий из большого количества синусоидальных колебаний (гармоник). Проходя через селективную цепь, колебания ослабляются (происходит уменьшение амплитуды) в различной степени, а также происходит изменение фазы данных колебаний. В результате на вход усилителя с выхода селективной цепи поступают синусоидальные сигналы с различными уровнями амплитуды и фазовыми сдвигами, где происходит их усиление для компенсации ослабления селективной цепью.
Так как селективная цепь пропускает без изменения фазы только гармонику определённой частоты, то после усилителя на вход селективной цепи поступит та же гармоника с такой же амплитудой и фазой, которую пропускает селективная цепь, а остальные гармоники будут с изменёнными амплитудами и фазами сигнала. В результате сложения исходного сигнала и сигнала поступающего с выхода усилителя только у гармоники, на частоту которой настроена частотно-избирательная цепь, будет происходить значительное увеличение амплитуды.
Из всего выше сказанного можно сделать вывод, что петлевое усиление схемы должно быть не меньше единицы (в идеальном случае равно 1), а полный фазовый сдвиг схемы равен нулю.
Схем генераторов синусоидальных или как их ещё называют гармонических колебаний, существует большое количество, рассмотреть которые в одной статье не представляется возможным. Поэтому ограничимся лишь некоторыми из них, которые построены на ОУ и RC-цепочках.
Формирование синусоидальной волны (колебания) с помощью Arduino
Мы знаем, что микроконтроллеры являются цифровыми устройствами, поэтому они не могут формировать синусоидальную волну в «чистом» виде. Но есть два способа формирования синусоидальной волны с помощью микроконтроллера: первый заключается в использовании ЦАП (цифро-аналогового преобразователя), а второй — в использовании синусоидального ШИМ сигнала (SPWM). К сожалению, в платах Arduino (за исключением платы Arduino Due) нет встроенного ЦАПа для формирования синусоидальной волны. Конечно, можно было бы использовать внешний ЦАП, но мы решили не усложнять таким образом схему проекта и использовать метод формирования синусоидального ШИМ сигнала с дальнейшим преобразованием его в синусоидальный сигнал (волну).
Что такое SPWM сигнал
SPWM расшифровывается как Sinusoidal Pulse Width Modulation и переводится как синусоидальная широтно-импульсная модуляция (синусоидальная ШИМ). Этот сигнал в определенной степени похож на обычный ШИМ сигнал, но в нем коэффициент заполнения контролируется таким образом чтобы получить среднее напряжение похожее на синусоидальную волну
Например, при коэффициенте заполнения (скважности) 100% среднее выходное напряжение будет 5V, а при коэффициенте заполнения 25% оно будет всего лишь 1.25V, таким образом, управляя скважностью (коэффициентом заполнения) мы можем получить заранее определенные изменяемые значения среднего напряжения, то есть синусоидальную волну. Этот метод обычно используется в инверторах
Принцип формирования SPWM сигнала показан на следующем рисунке.
Синим цветом на этом рисунке показан SPWM сигнал
Заметьте, что его скважность (коэффициент заполнения) изменяется от 0% до 100%, а затем снова возвращается в 0%. Представленный график построен для диапазона изменения напряжений от -1.0 до +1.0V, но в нашем случае, поскольку мы используем плату Arduino, масштаб подобного графика будет от 0V до 5V
Мы рассмотрим как в программе для Arduino формировать SPWM сигнал далее в статье.
Преобразование SPWM сигнала в синусоидальную волну
Преобразование SPWM сигнала в синусоидальную волну обычно требует использования схемы H-моста (H-bridge), которая состоит минимум из 4-х переключателей мощности (power switches). Подобные схемы обычно используются в инверторах. Мы не будем в статье подробно рассматривать эти вопросы поскольку нам с помощью нашей синусоидальной волны не нужно запитывать какое-либо устройство, нам всего лишь нужно ее сформировать. К тому же с помощью H-моста невозможно получить чистую синусоидальную волну – для этой цели необходимо использовать фильтр нижних частот (ФНЧ), состоящий из конденсаторов и индуктивностей.
Как выглядят низкочастотные генераторы сигналов?
Стандартные низкочастотные генераторы сигналов синусоидальной формы представлены в виде небольшого короба, на передней панели имеется экран. С его помощью производится контроль колебаний и регулировки. В верхней части экрана имеется текстовое поле – это своеобразное меню, в котором присутствуют разные функции. Управление может производиться кнопками и переменными резисторами. На экране указывается вся информация, необходимая при работе.
Амплитуда и смещение сигнала регулируются при помощи кнопок. Новейшие образцы приборов оснащаются выходами, посредством которых можно произвести запись всех результатов на флеш-накопитель. Для изменения частоты дискретизации в генераторах синусоидального сигнала применяются специальные регуляторы. Благодаря им пользователь может очень быстро осуществить синхронизацию. Обычно внизу, под экраном, располагается кнопка включения, а рядом с ней выходы генератора.
Самодельные приборы
Можно сделать низкочастотные генераторы сигналов своими руками из подручных средств. Основная часть любого генератора – это селектор (англ. select – выбор). В любой конструкции он рассчитан на несколько каналов. В стандартных конструкциях применяется не более двух микросхем. Этого для реализации простейших приборов оказывается достаточно. Идеально подойдут для изготовления генераторов микросхемы из серии КН148. Что касается преобразователей, то они используются только аналоговые.
В некоторых случаях допускается использовать персональный компьютер в качестве генератора сигналов. Своими руками можно сделать небольшой переходник – он устанавливается на выходе звуковой карты. Сигнал снимается с выхода и используется для тестирования аппаратуры. На ПК устанавливается программа, которая будет управлять звуковой картой. Недостаток такой конструкции – слишком узкий диапазон частот, поэтому его нельзя использовать при тестировании некоторых приборов.
Генераторы синусоидального сигнала
Синус – это наиболее распространенная форма низкочастотного сигнала генераторов. Он необходим для тестирования большей части аппаратуры. В конструкции применяются самые простые микросхемы. Они вырабатывают сигнал, который преобразовывается операционным усилителем. Чтобы производить регулировку сигналов, необходимо в схему включить переменные или постоянные резисторы. От типа используемых сопротивлений зависит, ступенчато или плавно будет осуществляться регулировка.
Генераторы синусоидального сигнала широко применяются для настройки не только радиоаппаратуры, но и высокочастотной техники – инверторов, блоков питания, преобразователей частоты для асинхронных двигателей и т. д. Эта техника позволяет производить преобразование исходного синуса бытовой сети (частота 50 Гц). Причем частота увеличивается в десятки раз – до 100 МГц. Это необходимо для нормальной работы импульсного трансформатора.
Низкочастотные генераторы сигналов
Такие конструкции применяются для настройки и тестирования аудиоаппаратуры
Если обратить внимание на схему простейшего низкочастотного генератора сигналов, то можно увидеть, что в нем устанавливаются переменные резисторы – с их помощью производится корректировка формы и величины сигнала. Чтобы осуществить изменение величины импульса, можно использовать модулятор серии КК202
Сигнал в этом случае должен генерироваться через конденсаторы.
Низкочастотный генератор сигналов используется для настройки любой аудио аппаратуры – проигрывателей, усилителей звуковой частоты и т. д. В качестве такого генератора можно использовать персональный компьютер (даже старый ноутбук подойдет). Это бюджетный вариант, который не потребует больших затрат, если в наличии имеется старенький компьютер. Достаточно установить последнюю версию драйверов, программу для работы со звуковой картой и сделать переходник для подключения к аппаратуре.
Генератор синусоидальных колебаний на основе моста Вина
Генератор синусоидальных колебаний на основе моста Вина или просто генератор Вина является одним из самых распространённых RC-генераторов синусоидальных колебаний. Схема данного генератора показана на рисунке ниже
Схема генератора Вина на основе ОУ.
Генератор Вина состоит из ОУ DA1, который охвачен ООС (отрицательная обратная связь) посредством резисторов R1 и R2, а также ПОС (положительная обратная связь) с помощью частотно-избирательной цепи R3C1R4C2.
Частотно-избирательная цепь R3C1R4C2 называется мостом Вина, от названия которого и получил наименование генератор данного типа. Данный мост состоит из последовательно включённых дифференцирующей цепи R4C2 и интегрирующей цепи R3C1. Как известно для генерирования сигнала мост Вина должен обеспечить нулевой фазовый сдвиг сигнала. Это обеспечивается равенством постоянной времени интегрирующей цепи R3C1 и дифференцирующей цепи R4C2
Тогда частота, при которой будет сдвиг фаз равный нулю, определяется следующим выражением
При данном условии коэффициент передачи цепи ПОС будет равен 1/3. Поэтому для того чтобы компенсировать данное условие коэффициент передачи цепи ООС должен быть равен 3, то есть
Генератор с мостом Вина обеспечивает выходной синусоидальный сигнал с небольшими искажениями – порядка 0,05 %. Однако у данного типа генератора существует серьёзная проблема в том, что для получения качественного синусоидального сигнала необходимо обеспечить точные соотношения резисторов в цепи ООС R1 и R2, то есть обеспечить коэффициент передачи цепи равный трём (β = 1/3). Так если β < 1/3 то возникшие колебания будут с сильными искажениями, а в случае β > 1/3 даже если и возникнут колебания их амплитуда будет постепенно уменьшаться и со временем станет равной нулю. Поэтому для стабилизации работы генератора Вина применяют различные автоматические системы стабилизации амплитуды.
Генератор НЧ радиолюбителя-конструктора
Генератор НЧ является одним из самых необходимых приборов в радиолюбительской лаборатории. С его помощью можно налаживать различные усилители, снимать АЧХ, проводить эксперименты. Генератор НЧ может быть источником НЧ сигнала, необходимого для работы других приборов ( измерительных мостов, модуляторов и др. )
Желательно чтобы генератор вырабатывал не только синусоидальное, но и прямоугольное напряжение, логического уровня, скважность и амплитуду которого можно регулировать.Принципиальная схема генератора показана на Рис.1. Схема состоит из низкочастотного синусоидального генератора на операционном усилителе А1 и формирователя прямоугольных импульсов на микросхеме D1
Схема синусоидального генератора традиционная. Операционный усилитель, при помощи положительной обратной связи ( С1-С3, R3, R4, R5, C4-C6 ) выполненной по схеме моста Винна, приведён в режим генерации. Избыточная глубина положительной обратной связи, приводящая к искажению выходного синусоидального сигнала, компенсируется отрицательной ОС R1-R2. Причём R1 подстроечный, чтобы с его помощью можно было установить величину ОС такой, при которой на выходе операционного усилителя неискажённый синусоидальный сигнал наибольшей амплитуды. Лампа накаливания включена на выходе ОУ в его цепи обратной связи. Вместе с резистором R16 лампа образует делитель напряжения, коэффициент деления которого зависит от протекающего через него тока ( лампа Н1 выполняет функции терморезистора, увеличивая своё сопротивление от нагрева, вызванного протекающим током ). Частота устанавливается двумя органами управления, – переключателем S1 выбирают один из трёх поддиапазонов «20-200 Гц», «200-2000 Гц» и «2000-20000 Гц». Реально диапазоны немного шире и частично перекрывают друг друга. Плавная настройка частоты производится сдвоенным переменным резистором R5. Желательно чтобы резистор был с линейным законом изменения сопротивления. Сопротивления и законы изменения составных частей R5 должны быть строго одинаковыми, поэтому применение самодельных сдвоенных резисторов ( сделанных из двух одиночных ) недопустимо. От точности равенства сопротивлений R5 сильно зависит коэффициент нелинейных искажений синусоидального сигнала. На оси переменного резистора закреплена ручка со стрелкой и простая шкала для установки частоты. Для точной установки частоты используют цифровой частотомер. Выходное напряжение плавно регулируют переменным резистором R6. С этого резистора поступает НЧ напряжение на милливольтметр, чтобы можно было установить необходимое выходное напряжение. Понизить установленное значение в 10 и 100 раз можно при помощи аттенюатора на резисторах R12-R14. Максимальное выходное напряжение НЧ генератора 1,0V. Для формирования импульсов служит ключ на транзисторе VT2 и три логических элемента на микросхеме D1. Выходной уровень КМОП логики. Транзистор VT2 включён по схеме ключа. Это значит, что при достижении на эго базе напряжения определённого уровня он лавинообразно открывается. На базу транзистора переменное напряжение с выхода генератора подаётся через делитель R9-R10. При помощи R9 можно установить величину минимального напряжения, при котором открывается VT2. Благодаря диоду VD1, который создаёт на эмиттере транзистора небольшое отрицательное напряжение смещения, этот порог можно устанавливать от 0,1 до 1V. То есть, до максимального значения выходного напряжения генератора. В зависимости от того, как установлен этот порок, транзистор VT2 будет открываться и закрываться на определённых участках положительной полуволны низкочастотного напряжения. И от этого будет зависеть ширина импульсов, возникающих на коллекторе транзистора. Окончательно прямоугольную форму импульсам предают элементы микросхемы D1. С гнёзд Х4 и Х5 можно снимать противофазные импульсы. Регулируют амплитуду выходных прямоугольных импульсов изменяя напряжение питания микросхемы D1 в пределах от 9,5 до 3,5V. Регулятор напряжения выполнен на транзисторе VT1. Выключают генератор тумблером на два положения S2, отключающим генератор от источника двуполярного напряжения ±10V.
Источник
Генератор на 120 Гц
На рисунке 4 показана схема генератора частоты 120 Гц. Частота стабилизирована кварцевым резонатором Q1 на 32768 Гц, с его выхода внутри микросхемы D1 импульсы поступают на двоичный счетчик. Коэффициент деления частоты задан диодами VD1-VD2 и резистором R1, которые обнуляют счетчик каждый раз, когда его состояние достигает 272. При этом, 32768 / 272 = 120,470588.
Это не совсем 120 Гц, но близко. К тому же, подбором емкостей конденсаторов С1 и С2 можно немного изменить частоту кварцевого генератора и получить результат более близкий к 120 Гц.
Рис. 4. Принципиальная схема генератора сигнала частотой 120 Гц.
Напряжение источника питания может быть от 3 до 15V, в зависимости от напряжения питания схемы, вернее, от необходимой величины логического уровня. Выходные импульсы во всех схемах несимметричные, это нужно учитывать при конкретном их применении.
Тестирование работы генератора сигналов
Соберите аппаратную часть проекта и загрузите программу в плату Arduino. В идеале тестировать работу данного генератора нужно с помощью осциллографа, но если у вас его нет, то можно использовать простой светодиод – им можно оценить работу схему на частотах, которые видит человеческий глаз.
Подключите зонд к выходу прямоугольной и синусоидальной волны в схеме. Подключите к этим двум контактам светодиоды если у вас нет осциллографа. Подайте питание на схему и вы увидите приветственное сообщение на экране ЖК дисплея. Затем, вращая ручку углового кодера, вы можете установить желаемое значение частоты сигнала. Формируемые сигналы будет наглядно видно на экране осциллографа. Если вы используете для проверки схемы светодиоды, то вы увидите что частота их мигания будет изменяться с вращением ручки углового кодера.
Более подробно работу проекта вы можете посмотреть на видео, приведенном в конце статьи.