Модуль повышающего преобразователя на uc3843a

Как собрать лабораторный блок из китайских модулей

На торговых площадках в интернете можно приобрести готовые китайские модули, на основе которых можно построить неплохой лабораторный источник питания.

ЛБП строится по структуре линейного источника, но составляющие имеют совершенно другой принцип работы. Так, вместо обмоточного трансформатора можно применить плату WX-DC2416 36V-5, которая при питании от сети 220 вольт переменного тока на выходе выдает 36 вольт постоянного при токе до 5 А.

Плата импульсного преобразователя 220VAC/26VDC.

В качестве стабилизатора можно применить плату на базе микросхемы LM2596. В продаже имеется несколько вариантов таких плат, удобнее всего использовать модуль с готовым техническим решением по регулировке максимального тока. Отличить такой модуль можно по наличию трех (а не одного) подстроечных резисторов на плате.

Плата на базе LM2596 с регулировкой максимального тока, расположение выводов и потенциометров.

При подаче на вход 35 вольт путем регулировки на выходе можно получить 1,5..30 вольт постоянного напряжения. Производитель декларирует наибольший ток в 3 ампера, но на практике уже при токах, превышающих 1 А микросхема начинает греться. Для отдачи максимальной мощности нужен дополнительный радиатор достаточной площади. Есть сведения, что микросхема комфортно работает и при нагрузке до 4 А при условии организации принудительного обдува теплоотвода.

Для оперативной регулировки надо выпаять два крайних подстроечных резистора и заменить их потенциометрами, которые надо вывести на переднюю панель блока питания. Чтобы получился полноценный блок питания надо добавить еще прибор для измерения тока и напряжения. Его также можно приобрести через интернет. Удобнее применять измеритель в едином блоке, чем два прибора отдельно.

Цифровой блок вольтметр-амперметр.

Осталось только добавить тумблер питания, клеммник для подключения потребителя, связать модули в единую систему и поместить в корпус. По габаритам неплохо подойдет корпус от неисправного компьютерного блока питания.

Соединение китайских модулей в БП.

Некоторые пользователи жалуются, что выходное напряжение грязновато. Это не удивительно, ведь блок питания импульсный. Если это не устраивает владельца БП, можно попробовать исправить проблему установкой дополнительных конденсаторов (показаны на схеме). Емкость подбирается экспериментально, но не менее 1000 мкФ.

Для наглядности рекомендуем к просмотру серию тематических видеороликов.

Лабораторный источник питания при самостоятельном изготовлении обходится совсем недорого. Многие комплектующие могут быть извлечены из куч радиохлама, имеющегося у каждого любителя электронных самоделок. Но служить ЛБП будет долго и принесет большую пользу.

Как сделать лабораторный блок питания своими руками — печатная плата и пошаговая сборка

Теперь рассмотрим пошагово сборку лабораторного блока питания своими руками. Трансформатор у нас есть уже готовый от усилителя. Напряжение на его выходах составило порядка 22 В. Подготавливаем корпус для БП.

Видеоинструкция по сборке лабораторного блока питания своими руками:

Программируемые и управляемые модули для ЛБП

Программируемый модуль RD6006 Управляемый модуль DPX6005S Мощный преобразователь DPS5015

Простой способ собрать для себя лабораторный источник питания — это взять управляемый модуль-преобразователь со стабилизацией питания. Одни из самых мощных на Алиэкспресс — это модули RD DPS5015 и DPS5020, с выходными токами 15 и 20 Ампер соответственно. Для удаленного управления выбирайте версии «С» — communication для работы через USB/Bluetooth/Wi-Fi. Модули RD DPH5005 имеют встроенный Buck Boost конвертер для повышения напряжения (можно питать 12/24 вольта и получить на выходе, 30-40-50В. Один из самых продвинутых программируемых преобразователей питания — это модель RD 6006 (подробный обзор). Предыдущий список модулей с интересными вариантами.

Стационарные источники питания все-в-одном

Блок питания KORAD KA3005D Блок питания NPS 1601 Блок питания Wanptek 3010/6005

Для стационарной работы я бы рекомендовал иметь дома хотя бы один мощный источник типа KORAD. Цифры в названии подобных ЛБП обычно показывают максимальные режимы питания: 30/60 Вольт и 5/10 Ампер. То есть KORAD KA3005 — это 30В/5А, модели 6005 стабилизирует большее выходное напряжение, а типа 3010 — больший ток (до 10 А). Плюс подобных источников — встроенный сетевой преобразователь на 220В.

Модули сетевого питания для сборки ЛБП

Импульсный источник питания 5/12/24/36/48/60V

Для питания управляемых модулей нужен сетевой преобразователь. Я бы не рекомендовал брать дешевые «народные» платы питания, а предложил бы посмотреть в сторону корпусных БП. В таких уже продумано охлаждение и монтаж, присутствует некоторая регулировка выхода. На выбор предлагаются источники с выходным напряжением на 5V, 12V, 24V, 36V, 48V, 60V и мощностью  до 400 Вт. Конечно, можно использовать и компьютерные источники питания АТХ (с выходом 12В и преобразователем типа DPH5005, или с переделкой для повышения выходного напряжения), и другие от старой аппаратуры.

Таким образом, можно на базе готовых модулей и источников тока создать свой удобный и точный блок лабораторного питания. За основу можно взять как старую технику, так и полностью готовые комплектующие с Алиэкспресс и радиомагазинов. Цены варьируются от $5 за простой преобразователь с экраном и стабилизацией, и до $100 за мощное устройство. Из полезных функций — наличие Buck Boost конвертера, который помогает повышать напряжение при недостатке входного, функция заряда аккумуляторов (с наличием встроенной защиты и счетчиков емкости), функция стабилизации тока, функции удаленного управления.

RD6006 лабораторный источник питания точный блок питания мощный блок питания блок питания с алиэкспресс korad gophert dpx6005 dps5020 управляемый источник питания блок питания для гальваники источник питания блок питания блок питания со стабилизацией Автор не входит в состав редакции iXBT.com (подробнее »)

sg3525 — описание, принцип работы, схема включения

Микросхема sg3525 — широтно-импульсный модулятор в интегральном исполнении. Обеспечивает повышение производительности и уменьшение числа внешних деталей при проектировании и производстве всех видов импульсных источников питания. Имеет встроенный источник опорного напряжения +5,1В. Вход генератора обеспечивает синхронизированную работу различны устройств. sg3525 имеет встроенный плавный пуск схемы, что обеспечивается благодаря наличию внешнего конденсатора. Входные каскады микросхемы обеспечивают ток на выходе до 400 мА .

Схема подключения видна на рисунке 5.

Рисунок 5. Схема подключения ШИМ sg3525

Управление по напряжению (Voltage Mode)

В этом режиме скважность ШИМ сигнала, управляющего силовыми ключами, определяется непосредственно выходным напряжением. При гистерезисном управлении, если напряжение на выходе ниже нормы – идет «накачка» источника

Если напряжение на выходе больше порога – компаратор блокирует управление силовым ключом, идет разряд выходной накопительной емкости. В англоязычной литературе такой режим называют «hiccup-mode» – «режим с икотой»

При гистерезисном управлении, если напряжение на выходе ниже нормы – идет «накачка» источника. Если напряжение на выходе больше порога – компаратор блокирует управление силовым ключом, идет разряд выходной накопительной емкости. В англоязычной литературе такой режим называют «hiccup-mode» – «режим с икотой».

Данный режим используется сравнительно редко, так как сопровождается большими пульсациями выходного напряжения и требует накопительного конденсатора сравнительно высокой емкости. Рисунок 5 демонстрирует принцип работы режима управления по напряжению с гистерезисным управлением. Здесь и далее не показана выходная часть источника, так как определяется топологией, выходной мощностью и др. Для иллюстрации принципа работы ШИМ-контроллера иногда будет показан пример с выходной частью.

Рис. 5а. Первая схема – с фиксированным выходным напряжением, вторая – с регулировкой выходного напряжения.

Рис. 5б. Диаграммы выхода ШИМ и выхода компаратора.

Рис. 6. Пример выходного каскада повышающего импульсного источника питания, подключенного к ШИМ контроллеру (см.рис.5).

Конфигурируемые логические ячейки (CLC) на рис .5 можно включить как элемент И. Для предотвращения высокочастотной генерации от компаратора его выход целесообразно пропустить через еще одну CLC – D-триггер с синхронизацией от сигнала ШИМ

В этом случае получим два «бонуса» — отсутствие возникновения высокочастотной генерации и неизменность скважности управляющего ШИМ (см. пояснения на рис

7). Подробнее о конфигурируемых логических ячейках см. в статье «Конфигурируемые логические ячейки в PIC микроконтроллерах» .

Рис.7.а. Укорочение управляющих ШИМ импульсов, возможность появления высокочастотной генерации

Рис. 7.б. Синхронизация сигналов позволяет предотвратить укорочение ШИМ импульсов

Рис. 8. Синхронизация сигналов для предотвращения генерации и укорочения ШИМ.

Схема регулируемого блока питания импульсного типа 0.2V-80V, 0-10A

Импульсный источник питания 0,2–80v построенный на основе теперь почти легендарной микросхеме TL494 может использоваться в различных устройствах, например таких как: двигатели, схемы зарядки аккумуляторов и так далее. Существует дополнительная схема SMPS с импульсным преобразователем переменного напряжения в постоянное TNY267, предназначенного для питания таких элементов, как микросхема TL494, вентиляторы, реле. Как и многие компоненты схемы, используемые в проекте SMPS, добыты были из блоков питания ПК.

Регулируемые параметры цепи импульсного блока питания:

Входное напряжение: 210v — 265v
Потребляемая мощность и ток: макс.860 Вт/4,5А
Выходное напряжение: 0,2–80v
Пульсация напряжения: примерно до 0,3v
Регулируемый выходной ток: 0-10A
Ограничение тока короткого замыкания: 14А
Размеры (корпус) ШxГxВ: 230x220x70 мм

Описание подключения:

Напряжение сети проходит через входной фильтр, состоящий из тороидального дросселя TL1 и конденсаторов C2, C8. Напряжение подается на мостовой выпрямитель через резистор R16, который ограничивает удар тока, вызванный зарядкой сглаживающих конденсаторов после включения источника питания.

После запуска вспомогательного источника реле К1 замыкает резистор R16 и отключает его от цепи. За выпрямителем напряжение фильтруется парой электролитических конденсаторов C10, C11. Это напряжение обеспечивает основное и вспомогательное питание. Резистор R20 разряжает конденсаторы после отключения питания.

В качестве выходного силового трансформатора E65 можно использовать эффективный сердечнике ETD34 из ферритового кольца N87, тогда есть надежда, что трансформатор не будет сильно нагреваться. Расчеты трансформатора SMPS выполняются с помощью специальных программ, например: «Программы расчета обмоток трансформатора преобразователя SMPS». Ниже показан снимок, сделанный во время намотки трансформатора. У микросхемы TL494 рабочая частота составляет 50 кГц.

Шунт амперметра

Я сделал шунтирующий резистор для амперметра из двух медных прямоугольников 15x15x5 мм, и спаянных между собой проводами диаметром 0,56 мм с сопротивлением 1.761Ω на 1 метр длины. Мощность шунта составляет 50 Вт, а его основное предназначение, это — контроль тока в схеме регулируемого блока питания. В качестве прямоугольников были использованы медные подложки корпуса TO220 от транзисторов.

По сути, это проходной преобразователь одностороннего действия, управляемый известной микросхемой TL494. Вспомогательный источник — это блокирующий преобразователь, управляемый схемой TNY267. Интегральную схему TL494 и часть комплектующих можно получить, разобрав старый компьютерный блок питания. БП имеет непрерывную регулировку напряжения и тока, кроме этого, есть защита от перегрузки по току конечных транзисторов и защита от перегрузки по току в случае короткого замыкания на выходных клеммах.

Принципиальная схема регулируемого блока питания ИБП 80v 10А

Схема регулируемого блока питания построена на односторонней печатной плате, и все силовые компоненты, нуждающиеся в охлаждении, расположены на краю платы, поэтому их можно легко прикрепить к радиатору. В схема не предусмотрены сетевой предохранитель, автоматический выключатель или диод защиты от обратной полярности, они должны быть добавлены при установке в корпус. Кроме того, конструкция не решает проблему тепловой защиты, поскольку охлаждение должно решаться только в зависимости от конфигурации используемого корпуса.

Скачать: плата Eagle cad, схема и все остальное, относящаяся к регулируемой цепи SMPS: 10A-80V.rar

Получить более подробную информацию о схеме регулируемого блока питания можно здесь

Предыдущая запись Усилитель класса А — двухканальный ультралинейный УНЧ JLH
Следующая запись Усилитель на германиевом транзисторе — высокая точность звука

Преобразователь с промежуточным звеном постоянного напряжения

Здесь все немного сложнее. Чтоб получить постоянное напряжение необходимой величины применяют еще вспомогательные устройства, а именно инвертор, трансформатор, выпрямитель:

Здесь постоянный ток преобразуют в переменный с помощью инвертора тока, потом с помощью трансформатора понижают или повышают (в зависимости от надобности), а потом снова выпрямляют. Значительно удорожает установку наличие трансформатора и инвертора, укрупняет систему, чем снижает КПД. Но есть и плюс – гальваническая развязка между сетью и нагрузкой из – за наличия трансформатора. На практике такие устройства встречаются крайне редко.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Правило №2: у качественных ИБП в конструкции блока должен работать надежный фильтр в/ч сигналов.

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Структура ШИМ-контроллеров NCP1237, NCP1238, NCP1287 и NCP1288

Микросхемы этих типов практически идентичны по цоколевке и схеме включения. В них используется режим управления по току с фиксированной частотой преобразования. Микросхемы предназначены для применения в обратноходовых преобразователях (Flyback) c гальванической развязкой (трансформатор, управление — обратная связь по напряжению через оптрон, по току — через дополнительную обмотку силового трансформатора). На рис. 4 показана структурная схема ШИМ-контроллера NCP1237.

Рис. 4. Структурная схема ШИМ-контроллера NCP1237

Встроенная схема Dynamic Self-Supply (DSS) упрощает проектирование и обеспечивает уменьшение дополнительных элементов. Наличие режима Soft-Skip с пропуском циклов обеспечивает повышение эффективности преобразования при малых нагрузках с сохранением низкого потребления в дежурном режиме. Также поддерживается и понижение частоты преобразования до 31 кГц (frequency foldback) с гистерезисом. Порог включения режима — 1,5 В, обратный переход в рабочий режим происходит при превышении порога 1 В. При понижении напряжения сигнала обратной связи ниже порога 0,7 В активизируется режим пропуска циклов Soft-Skip, который позволяет уменьшить потребление дополнительно, а также уменьшить возникновение акустического шума на трансформаторе и конденсаторах, использовать более дешевые трансформаторы. Встроенный двухпороговый защитный таймер служит для защиты при сбоях и нарушениях работы схемы управления вследствие скачков тока. Встроенная схема формирования джиттера частоты обеспечивает «размывание» спектра и уменьшение пиковых уровней ЭМИ. Контроллер также включает новую схему высоковольтного каскада, которая совместно со схемой старта позволяет оценивать уровень сигнала с токового датчика как в цепи переменного напряжения, так и в цепи постоянного выпрямленного напряжения. ON Semiconductor использует высоковольтную технологию входных цепей контроллера, поэтому NCP1288 может подключаться по питающим цепям непосредственно к шине высокого напряжения питания.

Режим блокировки для NCP1237 (рис. 5) может активизироваться по одному из двух условий: при повышении уровня напряжения выше порогового на входе Latch за счет перенапряжения или при уменьшении напряжения ниже другого заданного порога за счет терморезистора с отрицательным температурным коэффициентом, стоящего на силовом транзисторе.

Рис. 5. Типовая схема включения ШИМ-контроллера NCP1237

Токовый источник HV startup обеспечивает заряд конденсатора VCC до порогового напряжения VCC (on) и работает, пока входное напряжение более VHV (start), обеспечивая режим включения. Затем контроллер производит плавный пуск Soft-Start, во время которого ток потребления линейно возрастает перед включением режима регулирования. Во время периода плавного старта блокировка игнорируется, а ток блокировки удваивается, обеспечивая быстрый предзаряд конденсатора на входе вывода блокировки.

В микросхемах реализована защита от короткого замыкания на выходе.

Частота преобразования — 65/100/133 кГц и определяется модификацией микросхем. Микросхемы рассчитаны на использование в расширенном температурном диапазоне от -40 до +125 °С, что особенно актуально для промышленных приложений. Типовые применения контроллеров:

  • сетевые источники питания принтеров, мониторов;
  • зарядные устройства для аккумуляторов;
  • встроенные сетевые источники бытовой аппаратуры.

Переделка БП ATX в регулируемый или лабораторный блок питания

А теперь самое время сделать из БП компьютера своими руками импульсный лабораторный блок питания. Дорабатывать будем блок питания, ШИМ-контроллер которого собран на специализированной микросхеме TL494 (она же: μА494, μPC494, M5T494P, KIA494, UTC51494, AZ494AP, KA7500, IR3M02, AZ7500BP, КР1114ЕУ4, МВ3759 и подобные аналоги).

Для примера мы доработаем блок питания, схема которого приведена ниже. Поняв идею вносимых изменений, подобрать алгоритм переделки любого другого блока не составит особого труда.

Разбираем БП, вынимаем плату. Сразу же отпаиваем все ненужные провода шлейфов питания, оставив один желтый, один черный и зеленый.

Также выпаиваем сглаживающие электролитические конденсаторы по всем линиям питания. На схеме они обозначены как С30, С27, С29, С28, С35. Мы собираемся существенно (до 25 В по шине +12 В) поднять выходное напряжение, на которое эти конденсаторы не рассчитаны. На место того, что стоял по шине +12 В, устанавливаем конденсатор той же или большей емкости на напряжение не менее 35 В. Остальные места оставляем пустыми. Зеленый провод припаиваем на место, где был любой черный, чтобы разрешить блоку питания запускаться. Теперь можно заняться доработкой контроллера.

Взглянем на назначение выводов микросхемы TL494. Нас интересуют два узла – усилитель ошибки 1 и усилитель ошибки 2. На первом собран стабилизатор напряжения, на втором – контроллер тока. То есть нас интересует обвязка выводов 1, 2, 3, 4, 13, 14, 15, 16.

Изменим схему обвязки таким образом, чтобы усилитель ошибки 1 отвечал за регулировку выходного напряжения, а усилитель 2 – за регулировку тока. В первую очередь перережем дорожки, обозначенные на приведенной ниже схеме крестиками.

Теперь находим резисторы R17 и R18. Первый имеет сопротивление 2.15 кОм, второй 27 кОм. Меняем их на номиналы 1.2 кОм и 47 кОм соответственно. Добавляем в схему два переменных резистора, один постоянный на 10 кОм (отмечены зеленым), клеммы для подключения внешнего потребителя, амперметр и вольтметр. В результате у нас получится вот такая схема.

Как видно из схемы, резистор на 22 кОм позволяет плавно регулировать напряжение в пределах 3-24 В, резистор 330 Ом – ток от 0 до 8 А. Кл1 и КЛ2 служат для подключения нагрузки. Вольтметр имеет предел измерения 25-30 В, амперметр – 10 А. Приборы могут быть как стрелочными, так и с цифровыми шкалами, главное, малогабаритными – ведь они должны войти в корпус блока питания. Можно начинать проверку и градуировку.

Все в порядке? Включаем БП напрямую в сеть, выводим движки резисторов в нижнее по схеме положение. К клеммам КЛ1, Кл2 подключаем нагрузку –  2 лампы дальнего света, включенные последовательно. Вращаем резистор регулировки напряжения и убеждаемся по встроенному вольтметру, что напряжение плавно изменяется от 3 до 24 вольт. Для верности подключаем к клеммам контрольный вольтметр, к примеру, тестер. Градуируем ручку регулятора напряжения, ориентируясь по показаниям приборов.

Возвращаем движок в нижнее по схеме положение, выключаем блок питания, а лампы соединяем параллельно. Включаем блок питания, устанавливаем регулятор тока в среднее положение, а регулятор напряжения – на отметку 12 В. Вращаем ручку регулятора тока. При этом показания амперметра должны плавно изменяться от 0 до 8 А, а лампы – плавно менять яркость. Градуируем регулятор тока, ориентируясь по показаниям амперметра.

Отключаем устройство и собираем его. Наш лабораторный блок питания готов. С его помощью мы можем получить любое напряжение от 3 до 24 вольт и устанавливать ограничение тока через нагрузку в пределах 0-10 А.

Назначение выводов микросхемы.

Давайте теперь кратко рассмотрим назначение выводов и работу микросхемы (её блоков), а потом посмотрим это практически;

1. CMP — выход усилителя ошибки. Служит для коррекции АЧХ усилителя ошибки, с этой целью между выводами 1 и 2 обычно подключается конденсатор емкостью около 100 пФ. С помощью этого вывода, можно установить коэффициент усиления усилителя ошибки с помощью дополнительного резистора, который подключается к этим же выводам, что и конденсатор, а так же ещё и управлять работой контроллера.
Если на этом выводе уменьшить напряжение ниже 1-го вольта, то на выходе микросхемы (вывод 6) будет уменьшаться длительность импульсов, уменьшая при этом выходное напряжение (мощность) БП.

2. VFB — вход обратной связи усилителя ошибки. Используется в основном для регулировки (стабилизации) выходного напряжения

Если напряжение на этом выводе превысит 2,5 вольта (подаётся с внутреннего источника на не инвертирующий вход усилителя ошибки), то длительность (скважность) выходных импульсов начнёт уменьшаться, уменьшая тем самым выходное напряжение БП

3. IS — сигнал обратной связи по току. Этот вывод обычно присоединен к резистору в цепи истока ключевого транзистора. В момент перегрузки МОП транзистора, напряжение на резисторе увеличивается и при увеличении его более 1-го вольта, импульсы на выходе 6 прекращаются и выходной транзистор закрывается.

4. RC — это вход генератора пилообразного напряжения и сюда подключается задающая RC- цепочка, для установки частоты внутреннего генератора.
Резистор от этого вывода подключается к выводу 8 — это вывод опорного напряжения 5 вольт, а конденсатор к общему проводу.
В основном на практике частота задающего генератора выбирается в диапазоне 35…85 кГц, и в RC-цепочке не рекомендуется использовать керамические конденсаторы.
Частота генератора рассчитывается по следующей формуле; — 1,72/R(кОм) * С(мкФ).

5. GND — общий вывод для первичной цепи. Этот вывод не должен быть напрямую соединён с общим выводом вторичных цепей схемы.

6. OUT — выход ШИМ–контроллера, подключается к затвору ключевому транзистору через резистор или параллельно соединенные резистор и диод (анодом к затвору).

7. VCC — вход питания ШИМ-контроллера, на этот вывод микросхемы подаётся напряжение питания в диапазоне от 16 вольт до 34. Более 34 вольт на микросхему подавать не рекомендуется, так как микросхема обладает защитой от перенапряжения, и если напряжение питания на ней превысит 34 вольта — микросхема отключится.

8. REF — выход внутреннего источника стабильного опорного напряжения 5 вольт, ток его нагрузки может достигать 50 мА.

Назначение выводов микросхемы (краткий обзор)

Для начала нужно рассмотреть назначение всех выводов микросхемы. Описание UC3842 выглядит таким образом:

На первый вывод микросхемы подается напряжение, необходимое для осуществления обратной связи. Например, если понизить на нем напряжение до 1 В или ниже, на выводе 6 начнет существенно уменьшаться время импульса.
Второй вывод тоже необходим для создания обратной связи. Однако, в отличие от первого, на него нужно подавать напряжение более 2,5 В, чтобы сократилась длительность импульса. Мощность при этом также снижается.
Если на третий вывод подать напряжение более 1 В, то импульсы прекратят появляться на выходе микросхемы.
К четвертому выводу подключается переменный резистор – с его помощью можно задать частоту импульсов. Между этим выводом и массой включается электролитический конденсатор.
Пятый вывод – общий.
С шестого вывода снимаются ШИМ-импульсы.
Седьмой вывод предназначен для подключения питания в диапазоне 16..34 В. Встроена защита от перенапряжения

Обратите внимание на то, что при напряжении ниже 16 В микросхема работать не будет.
Чтобы осуществить стабилизацию частоты импульсов, используется специальное устройство, которое подает на восьмой вывод +5 В.

Прежде чем рассматривать практические конструкции, нужно внимательно изучить описание, принцип работы и схемы включения UC3842.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: