Самодельный простой однотранзисторный укв чм приемник

Постановка задачи

О ста­били­зации час­тоты и инди­кации я уже написал, это понят­но. Но есть еще один важ­ный момент: у при­емни­ков с низ­кой ПЧ име­ется труд­ноиз­лечимая проб­лема — зер­каль­ный канал. А про­явля­ет себя эта проб­лема, ког­да надо при­нять сла­бую стан­цию, рядом с которой находят­ся две силь­ные. В резуль­тате мы слы­шим сиг­нал силь­ной стан­ции, задева­ющий зер­каль­ный канал.

Эф­фектив­но бороть­ся с этим мож­но толь­ко повыше­нием ПЧ, нап­ример до стан­дар­тно­го зна­чения 10,7 МГц, а с такой ПЧ уже сле­дует исполь­зовать дроб­ный детек­тор. На том и порешим. В ито­ге вырисо­выва­ется при­емник с циф­ровым гетеро­дином, инди­каци­ей и клас­сичес­ким (поч­ти) лам­повым трак­том.

Сигнальный тракт высококачественного приемника прямого преобразования

Приемник прямого преобразования непосредственно демодулирует ВЧ-сигнал на частоте несущей в основную полосу (полосу модулирующих сигналов), где сигнал можно детектировать и восстановить содержащуюся в нем информацию. Архитектура прямого преобразования была впервые предложена в 1932 году в качестве альтернативы супергетеродинным приемникам. Привлекательность этого решения — в сокращении числа компонентов в схеме за счет исключения из нее каскадов промежуточной частоты (ПЧ).

Также при исключении из схемы каскадов промежуточной частоты и прямом преобразовании сигнала на нулевую ПЧ можно избежать проблем зеркального канала приема, присущих супергетеродинным архитектурам. С другой стороны, ряд проблем, связанных с прямым преобразованием, среди которых утечка сигнала гетеродина, сдвиги постоянной составляющей и высокий уровень искажений, усложняют его реализацию на практике. Однако последние достижения в технологиях производства интегрированных ВЧ-схем сделали возможным использование традиционной архитектуры прямого преобразования (гомодинной архитектуры) при создании высококачественных широкополосных приемников.

На рис. 1 показан широкополосный приемник прямого преобразования и особо выделены некоторые из наиболее критичных параметров компонентов сигнального тракта. Сигнальный тракт приемника начинается с соединения антенного входа и дуплексера. Дуплексеры часто используются в системах с частотным разделением (Frequency Domain Duplex, FDD), таких как W-CDMA и некоторых версиях WiMax. Дуплексный фильтр предотвращает генерацию передатчиком чрезмерных помех вне лицензированного частотного диапазона и, в то же время, помогает подавить любые нежелательные внеполосные сигналы, которые могут привести к перегрузке приемника.

Как правило, за дуплексным фильтром следует несколько каскадов малошумящих усилителей (МШУ) с дополнительными цепями частотно-избирательной фильтрации и согласования, которые позволяют оптимизировать показатели в рабочем диапазоне частот. Показанные в качестве примера на рисунке МШУ обладают очень хорошими характеристиками в широком диапазоне частот и улучшенными показателями в узкой полосе частот при использовании внешних избирательных цепей. В задачах, где приемник должен работать с очень широким спектром частотных диапазонов, может потребоваться применение коммутационной матрицы, которая позволяла бы коммутировать между собой антенные тракты и каскады МШУ, оптимизированные для работы в конкретном диапазоне частот.

После прохождения входного каскада из малошумящих усилителей сигнал требуемой частоты несущей переносится в полосу модулирующих частот при помощи IQ-демодулятора. Для этого на смесители I и Q подается сигнал гетеродина, частота которого равна частоте несущей полезного сигнала. При этом на выходных портах I/Q формируется суммарная и разностная частоты. Сигнал суммарной частоты существенно ослабляется фильтрами нижних частот, которые пропускают на выход только сигнал разностной частоты. При работе на нулевой ПЧ сигнал разностной частоты представляет собой комплексную огибающую полезного сигнала. Зачастую дополнительным преимуществом является возможность масштабирования уровня отфильтрованного I/Q сигнала с переменным коэффициентом усиления. Усилитель с переменным коэффициентом усиления (VGA) позволяет оптимальным образом отрегулировать уровни I/Q сигнала перед выполнением аналого-цифрового преобразования. В общем случае, чтобы избежать проникновения высокочастотного шума, а также интерференционных и иных побочных гармонических составляющих в полосу анализируемого сигнала в результате эффекта наложения, перед подачей сигнала на аналого-цифровые преобразователи (АЦП) может выполняться дополнительная фильтрация.

Принципиальная схема

Принципиальная схема приведена на рисунке в тексте. Входного контура нет. Сигнал от антенны W1, в качестве которой можно использовать любой проводник, например, отрезок монтажного провода, через разделительный конденсатор С1 поступает на первый каскад УРЧ на транзисторе VT1, включенном по схеме с общей базой.

Рабочая точка транзистора задается соотношением сопротивлений резисторов R2 и R3, определяющих напряжение на его базе. Усиленный сигнал с коллектора через катушку связи L1 поступает на контур L2-C4, который является средством настройки приемника на станцию. В контуре используется переменный конденсатор от супергетеродинного приемника.

У этого конденсатора есть две секции по 6-240 пФ. Данные секции включены параллельно. В результате получается переменный конденсатор с перекрытием емкости 12-480 пФ.

Этого достаточно для перекрытия вышеуказанного диапазона, но можно использовать конденсатор и с меньшей максимальной емкостью, в этом случае перекрытие ограничится со стороны НЧ части КВ диапазона. С контура ВЧ сигнал поступает на базу VT2.

Рис. 1. Принципиальная схема простого коротковолнового приемника прямого усиления.

Через катушку L2 на базу VT2 так же поступает и постоянное напряжение смещения, полученное с делителя R4-R5. Диод VD1, включенный в эмиттерной цепи VT2 является детектором.

Более того, благодаря тому, что через данный диод протекает постоянный ток эмиттера VT2, точка детектирования смещена в более крутой участок ВАХ диода.

Продетектированный НЧ сигнал снимается с коллектора VТ2 и поступает через регулятор громкости R7 на однокаскадный УНЧ на VT3. В1 — это один наушник (головной телефон).

Теперь о ПОС (положительная обратная связь). Происходит она с эмиттера VТ2 на его базу через контур. Сигнал с эмиттера VТ2 через R6 и С4 поступает на коллектор VТ1, то есть, на катушку связи L1.

Глубина ПОС регулируется переменным резистором R6. Этим резистором можно регулировать состояние приемника от минимальной чувствительности до возникновения генерации. Оптимальный режим с точки зрения максимальной чувствительности и селективности получается на границе у порога самовозбуждения приемника.

1. Устройство

Блок-схема приёмника прямого усиления

Радиоприёмник прямого усиления (герадеаус) состоит из колебательного контура, нескольких каскадов усиления высокой частоты, квадратичного амплитудного детектора, а также нескольких каскадов усиления низкой частоты.

Колебательный контур служит для выделения сигнала требуемой радиостанции. Как правило, частоту настройки колебательного контура изменяют конденсатором переменной ёмкости. К колебательному контуру подключают антенну, иногда и заземление.

Сигнал, выделенный колебательным контуром, поступает на усилитель высокой частоты. Усилитель высокой частоты (УВЧ), как правило, представляет собой несколько каскадов избирательного транзисторного усилителя. С УВЧ сигнал подаётся на диодный детектор, с детектора снимается сигнал звуковой частоты, который усиливается ещё несколькими каскадами усилителя низкой частоты (УНЧ), откуда поступает на динамик или наушники.

В литературе приёмники прямого усиления классифицируют по числу каскадов усилителей низкой и высокой частоты. Приёмник с n-каскадами усиления высокой и m-каскадами усиления низкой частоты обозначают n-V-m, где V обозначает детектор. Например, приёмник с одним каскадом УВЧ и одним каскадом УНЧ обозначается 1-V-1. Детекторный приёмник, который можно рассматривать как частный случай приёмника прямого усиления, обозначается 0-V-0.

Супергетеродин.

Супергетеродин, приемник с преобразованием частоты — это наиболее распостраненная схема.
Она содержит в себе маломощный генератор колебаний
промежуточной частоты — гетеродин.

Частота генерации гетеродина меняется одновременно с изменением настройки входной частоты.
Для этого применяется двухсекционный конденсатор переменной емкости — одна секция использована
в входном колебательном контуре, вторая — в контуре гетеродина.

Причем, гетеродин настроен так, что разница между собственной его частотой и частотой
радиосигнала остается примерно неизменной на протяжении всего перестраевомого диапазона.
Это и есть промежуточная частота, которая выделяется в смесителе — каскаде где
обе частоты встречаются.
Причем, полученная таким образом промежуточная частота оказывается промодулированой полезным
сигналом.

Далее, происходит усиление промежуточной частоты каскадами усилителя промежуточной частоты.
Такие каскады имеют повышенный коэффициент усиления только на этой частоте, что исключает
самовозбуждение усилителя.
После усиления промежуточной частоты, происходит детектирование и окончательное усиление полезного сигнала.
Супергетеродин обеспечивает высокую селективность и достаточную чувствительность для работы
во всех радиовещательных диапазонах.

Кроме того, появляется возможность приема и детектирования частотно — модулированных сигналов
на частотах УКВ, что значительно улушает качество воспроизведения звука.
Самая распостраненная схема частотного детектора — балансная, содержит в себе два контура,
настроенных на несущую частоту с некоторым отклонением — слегка рассогласоваными.
Частота первого из них настраивается несколько выше, а второго — несколько ниже промежуточной
частоты.

Модулированная промежуточная частота отклоняясь от своего среднего значения наводит
колебания(может быть — звуковые) полезного сигнала выделяемые на резисторах R1 и R2.

Радиомикрофон с низковольтовым питанием

Эта конструкция хотя и имеет небольшую дальность, вполне подойдет в качестве игрушки или проведения домашних мероприятий. Принимать сигнал с конструкции можно на любой УКВ приемник, работающий в диапазоне 87-108 МГц с частотной модуляцией. При этом дальность связи в прямой видимости может достигать 15-20 м. Взглянем на схему радиомикрофона.

Схема радиомикрофона с низковольтным питанием

Генератор несущей собран на транзисторе Т2 по схеме емкостной трехточки. Его рабочая частота – около 100 МГц. Транзистор Т2 является усилителем НЧ. Он усиливает сигнал, поступающий с электретного микрофона Mic. Акустический сигнал, принятый микрофоном, предварительно усиливается и подается на ВЧ генератор, осуществляя частотную модуляцию. Далее промодулированный ВЧ сигнал через катушку связи L2 поступает в антенну.

Глубина модуляции регулируется подбором номинала резистора R2, подбирая номинал С2 можно в некоторых пределах изменять рабочую частоту ВЧ генератора. Это необходимо на случай, если диапазон, на который настроен передатчик, уже занят какой-нибудь радиостанцией.

В конструкции можно использовать любой электретный микрофон со встроенным полевым транзистором. При его подключении необходимо соблюдать полярность. Все конденсаторы керамические. Катушки L1 и L2 бескаркасные. Обе наматываются на оправке диаметром 7 мм проводом (желательно посеребренным) диаметром 0.5 мм. L1 содержит 6, а L2 – 2 витка. При монтаже L2 размещается рядом с L1 на одной оси.

Антенна – спирально-штыревая. Изготавливают ее следующим образом. На отрезок трубки (стержень шариковой авторучки диаметром 3 и длиной 70 мм) наматывается отрезок провода ПЭВ 0.15. Длина отрезка – 165 мм. Шаг намотки – 0.3 мм. Далее катушка фиксируется клеем и остается на трубке. Один конец этой спиральной катушки, обозначенной на схеме как L3, подключается к L2, второй остается свободным.

В качестве штыря используется медный обмоточный провод или любой стальной штырь длиной 100 мм. Диаметр штыря или провода нужно подобрать таким, чтобы он (штырь) с некоторым натягом входил внутрь стержня.  

Налаживание радиомикрофона сводится к подбору номиналов R2, C2, а также элементов С3 и R3, которые должны обеспечивать устойчивую работу устройства при изменении питающего напряжения от 1.5 до 0.9 В. После основной настройки настраивают антенну для максимального согласования с передатчиком. Настройка производится перемещением штыря внутри трубки до получения максимальной дальности. После этого штырь фиксируется в трубке любым удобным способом, к примеру, клеем.

Важно! Схема очень чувствительна к подбору элементов, помеченных звездочкой. Настройку можно считать удачной, если радиомикрофон устойчиво работает при изменении напряжения питания от 1.5 до 0.9 В, ток потребления составляет 1 мА, а дальность передачи достигает 10-15 м

В качестве источника питания можно использовать один гальванический элемент типоразмера ААА или даже батарейку для наручных часов с напряжением 1.5 В. Трехвольтовые «монетки» не подойдут, поскольку такое напряжение слишком велико и с ними передатчик не запустится.

Рефлексный приемник Ю. Прокопцова

Радиоприемник, сконструированный Ю. Прокопцевым (рис. 3), предназначен для приема в средневолновом диапазоне [Р 9/99-52]. Приемник собран также по рефлексной схеме.

Рис. 3. Схема рефлексного радиоприемника на СВ диапазон.

Антенна выполнена из отрезка ферритового стержня 400НН длиной 50 и диаметром 8 мм. Катушка L1 содержит 120 витков провода ПЭЛШО-0,15 мм однослойной намотки, а L2 — 15…20 витков того же провода. Налаживание приемника сводится к установке коллекторного тока транзистора VT2, равным 8… 10 мА, с помощью резистора R2. Затем настраивают коллекторный ток транзистора VT3 в пределах 0,3…0,5 мА подбором резистора R4.

Приемники супергетеродинного типа в рамках настоящего обзора рассматривать не будем. Впрочем, при желании они могут быть получены объединением приемника прямого усиления (рис. 1 — 3) и конвертера (рис. 10), либо из приемника прямого преобразования (рис. 11).

КВ-приемник мирового уровня? Это очень просто!

С чего начать будущему электронщику, какое направление выбрать? Что разрабатывать: компьютеры, телевизоры, видики? Учитывая их колоссальную сложность и специфику, этот вопрос трудноразрешим. Правда, можно «лепить» целые системы из готовых компьютерных плат. Но где же тут особое творчество? Да и микросхемы большого уровня интеграции мало чем могут помочь для развития у радиолюбителя умения «читать» любые схемы. Необходима такая область, такое направление электроники, которое, обеспечивая накопления бесценного опыта в конструировании, имело бы и самостоятельную ценность.

Такая область существует: это создание высокочувствительных (как коротковолновых, так и всеволновых) приемников, основанных на современной профессиональной идеологии создания подобной аппаратуры. От азов электроники и радиотехники — к современному высокочувствительному супергетеродинному приемнику с двойным преобразованием частот и верхней первой ПЧ… Оснащенному высокоэффективной цифровой шкалой настройки — вот о чем эта книга! Те, кто хочет самостоятельно изготовить и отладить приемник мирового уровня, — эта книга для вас!

Часть I Встречи и беседы

Глава 1. Введение Глава 2. Волны электрического моря Глава 3. Индуктивность… Добротность… Резонанс Глава 4. Устремленные в пространство Глава 5. Экскурс в историю Глава 6. Что такое “супергетеродин”? Глава 7. От одиночного преобразования — к двойному! Глава 8. Парадоксы КВ-приемников Глава 9. Что же такое действительно современный радиоприемник? Глава 10. Структурная схема выбрана

Часть II Основные понятия электроники

Глава 11. Что такое р—п-переход? Глава 12. Полупроводниковые диоды — немного истории Глава 13. Биполярные транзисторы Глава 14. Полевые (униполярные) транзисторы Глава 15. От теории — к практике Глава 16. Прогулка по схеме “учебно-тренировочного” Глава 17. Поговорим о микросхемах Глава 18. Что нужно знать о резисторах и конденсаторах? Глава 19. Об индуктивности — подробно! Глава 20. Реле, оптроны, блоки питания

Часть III Мы “ловим” весь мир

Глава 21. Стабилизатор напряжения — тонкости и нюансы Глава 22. Схемотехника полосовых диапазонных фильтров Глава 23. Схемные особенности УВЧ и гетеродинов Глава 24

“Мелочам” — особое внимание! Глава 25. От УПЧ2 к индикации частоты настройки Глава 26

Цифровые схемы в радиоприемнике Глава 27. Универсальная цифровая шкала Глава 28. “Большой приемник” — окончательный вариант Глава 29. Рекомендации по отладке и настройке узлов приемника с преобразованием “вверх” Глава 30. Печатные платы — “живьем”!

Скачать книгу КВ-приемник мирового уровня? Это очень просто! Кульский А.Л.

~ Turb.cc ~ Turbobit.net ~ Uploaded.net КВ-приемник

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: