Быстрый старт с ардуино

Arduino Uno

При напряжении питания ниже 7 В, вывод 5V может выдавать менее 5 В, при этом платформа может работать нестабильно.

Arduino мигает светодиодом В этом примере мы соединим схему со светодиодом к одному из цифровых выводов Arduino и будем включать и выключать его с помощью программы, а так же вы узнаете несколько полезных функций.

Чтобы зажечь светодиод мы должны подать сигнал ИЗ Arduino. Отличие от других плат Сегодня на рынке можно встретить множество вариантов плат ардуино. Mode-задает, как пин будет работать.

Принципиальная схема. INT в первой строке указывает на тип переменной. Ток больше этого может вывести их из строя, а ток меньшей силы снизит их яркость, не причинив никакого вреда.

См. также: Укладка кабеля в траншее пуэ

Можно использовать, батарейки, аккумуляторы и разнообразные блоки питания. После этого Windows завершит установку драйвера. В данной функции задается номер контакта, которым мы в дальнейшем собираемся управлять. Правда прошивать их нужно через такую штуку: Ну перепрошивать-то часто их не нужно Преимущества Arduino UNO r3 Универсальный форм-фактор.

А вот как вы будете соединять резистор, разницы совсем нет. Для тех кто не знает или забыл, закон ома говорит, что существует линейная зависимость тока от напряжения. Сюда можно записывать данные, которые при выключении питания не исчезнут.

Post navigation

Самым простым вариантом будет установка бесплатной Arduino IDE, скачать ее можно с официального сайта. Вы не сможете считать или записать данные с пина, пока не установите его соответственно в pinMode.

Mode-задает, как пин будет работать. Шим применяется довольно часто, так как с ее помощью можно управлять «аналоговым» компонентом с помощью цифрового кода. Этот пин является не только выводом, но и вводом. Включая разные светодиоды с различной яркостью можно комбинировать и получать разные цвета. Здесь хранятся переменные и объекты, создаваемые в скетче.
РАЗБОР ПРОСТОЙ СХЕМЫ — Читаем электрические схемы 2 ЧАСТЬ

Что такое ШИМ?

Хотя ШИМ (широтно-импульсная модуляция) или широтно-импульсная модуляция, имеет цифровую основу, форма его сигнала напоминает несколько «квадратный» аналоговый сигнал. Это позволяет с помощью цифровых импульсов изменять сигнал для имитации аналоговой системы, как я уже комментировал ранее. Фактически, если вы посмотрите на название, оно уже дает вам представление о том, что оно делает, по ширине цифровых импульсов.

Это полезно для Arduino поскольку есть много автоматизмов или электронных компонентов, которые вы можете добавить в свои проекты, и это не способны обеспечить настоящий аналоговый сигнал, но они используют эту ШИМ для работы. Они также не могут использовать дискретный аналоговый сигнал, то есть, который имеет скачки напряжения, чтобы напоминать цифровой. Что они могут сделать, так это использовать цифровой выход -Vcc или Vcc цифрового типа для генерации этого своеобразного сигнала …

Следовательно, ШИМ — это своего рода «трюк», с помощью которого Arduino и другие системы могут взаимодействовать с этим типом сигналов, которые они не становятся полностью аналоговыми или традиционными цифровыми. Чтобы сделать это возможным, они постоянно держат цифровой выход активным в течение определенного времени или выключенным, в зависимости от интереса. Это далеко не то, что было бы цифровым тактовым сигналом или сигналом двоичного кода, импульсы которого имеют одинаковую ширину.

В своих проектах с Arduino вы можете проверить этот тип сигналов ШИМ, в которых поддерживается постоянная частота импульсных триггеров с течением времени, но ширина этих импульсов варьируется. Фактически, это называется рабочим циклом, когда сигнал поддерживается на высоком уровне по отношению к общему циклу. Следовательно, рабочий цикл указан в%.

Помните, что ШИМ не работает, как аналоговый сигнал, между различными значениями напряжения и колеблется между ними. В случае ШИМ это квадратный сигнал в цифровом стиле и максимальное значение Vcc. Например, если вы работаете с источником питания 3 В, вы можете давать импульсы 3 В или 0 В, но не 1 В или любое другое промежуточное значение, как в реальном аналоге. В этом случае будет меняться ширина импульса, которую мы можем сохранить 30% при таком высоком значении Vcc или 60%, чтобы придать ему большую мощность и т. Д.

Но будьте осторожны, потому что, если устройство поддерживает предел Vcc и превышается с помощью PWM, оно может быть повреждено. Поэтому всегда необходимо соблюдать значения, указанные в таблицах данных, предоставленных производителями. Кроме того, в некоторых устройствах, таких как двигатели постоянного тока, реле, электромагнитов и т. д., пропадание напряжения после рабочего цикла может означать, что индуктивные нагрузки могут вызвать повреждение. Вот почему защиты своевременно.

Прием последовательных данных

Принимающее устройство UART проверяет принятый пакет (через вывод RX) на наличие ошибок, вычисляя число единиц и сравнивая его со значением бита четности, содержащегося в пакете.

Если ошибки при передаче отсутствуют, то для получения блока данных он перейдет к обработке стартового бита, стоповых битов и бита четности. Возможно, ему понадобится получить несколько пакетов, прежде чем он сможет пересобрать весь байт данных из фреймов данных. После восстановления байт сохраняется в буфере UART.

Принимающее устройство UART использует бит четности для определения факта потери данных при передаче. Потеря данных при передаче происходит, когда бит во время передачи изменил свое состояние. Бит может меняться, в том числе, из-за расстояния передачи, магнитного излучения, несовпадения скоростей передачи.

Arduino UNO Board Layout

Arduino UNO Board Layout(Updated)

Atmega328P Microcontroller– The ATmega328p is a single-chip, high-performance, efficient microcontroller created by Atmel in the megaAVR family. It is an 8-bit AVR RISC-based microcontroller chip. It consists of 32 KB ISP flash memory with read-while-write capabilities, 2 KB SRAM(Static RAM), 1 KB of EEPROM, 23 general-purpose I/O pins.

Atmega 16U2 Microcontroller– The Atmega 16U2 is used as a USB to serial converter in Arduino UNO.

Voltage Regulator-The voltage regulator converts the input voltage to 5V. The primary use of a voltage regulator is to control the voltage level in the Arduino board. Even if there are any fluctuations in the input supply voltage of the regulator, the output voltage remains constant and near 5 volts.

Regulator, Oscillator, and Reset Button

Crystal Oscillator– The Crystal oscillator has a frequency of 16MHz, which provides the clock signal to the microcontroller. It provides the basic timing and control to the board.

RESET Button–It is used to reset the board. It’s recommended to press this button every time we flash the code to the board.

Barrel Jack – The Barrel jack or DC Power Jack is used to power the Arduino board using an external power supply. The barrel jack is usually connected to an adapter. The board can be powered by an adapter that ranges between 5-20 volts but the manufacturer recommends keeping it between 7-12 volts.

Barrel jack, USB port, and Vin Pin

Note:  Above 12 volts, the board may overheat and below 7 volts, the voltage might not be sufficient to power the board.

USB B-port–The USB Interface is used to plug in the USB cable. This port can be used to power the device from the 5V supply. It allows us to connect the board to the computer. The program is uploaded to the board serially from the computer through the USB cable.

ICSP header– It stands for In-Circuit Serial Programming. We can use these pins to program the Arduino board’s firmware. The firmware changes with the new functionalities are sent to the microcontroller with the help of the ICSP header.

The ICSP header consists of 6 pins.

Описание пинов и распиновка платы Arduino Nano

На рисунке показаны номера и назначения контактов Arduino Nano (вид со стороны, на которой расположен микроконтроллер Atmega328):

Каждый из 14 цифровых контактов Nano может быть настроен как вход или выход с помощью функций pinMode (), digitalWrite () и digitalRead (). Контакты работают при 5 В. Каждый вывод имеет подтягивающий резистор 20-50 кОм и может выдерживать до 40 мА. Некоторые пины имеют специальные функции:

  • Последовательная шина: 0 (RX) и 1 (TX). Контакты используются для приема (RX) и передачи (TX) данных TTL. Эти контакты подключаются к соответствующим контактам последовательного чипа FTDI USB to TTL.
  • Внешнее прерывание: 2 и 3. Эти выводы могут быть настроены на запуск прерывания по наименьшему значению, по нарастающему или спадающему фронту или при изменении значения. Подробнее см. Функцию attachInterrupt().
  • ШИМ: 3, 5, 6, 9, 10 и 11. Любой вывод обеспечивает 8-битный ШИМ с помощью функции analogWrite().
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Эти контакты используются для связи SPI, которая, хотя и поддерживается оборудованием, не включена в язык Arduino.
  • Светодиод: 13. Встроенный светодиод, подключенный к цифровому выводу 13. Если вывод имеет высокий потенциал, светодиод горит.

Платформа Nano имеет 8 аналоговых входов, каждый с разрешением 10 бит (т. Е. Может принимать 1024 различных значения). Стандартно контакты имеют диапазон до 5 В относительно земли, однако верхний предел можно изменить с помощью функции analogReference (). Некоторые пины имеют дополнительные функции:

I2C: A4 (SDA) и A5 (SCL). Связь I2C (TWI) осуществляется через контакты. Для создания используется библиотека Wire.

Дополнительная пара штифтов платформы:

  • AREF. Опорное напряжение для аналоговых входов. Используется с analogReference().
  • Сброс настроек. Низкий уровень сигнала на выводе перезапускает микроконтроллер. Обычно он используется для подключения кнопки сброса на плате расширения, которая предотвращает доступ к кнопке на самой плате Arduino.

Расшифровка цвета

– серый цвет – физический вывод микроконтроллера Atmega328;

– светло-серый цвет (PD0, PD1 и т д.) – номер порта микроконтроллера, доступный для программ на ассемблере;

– зеленый цвет (ADC0 и т д.) – номера аналоговых выводов;

– синий цвет – контакты портов UART и SPI.

Назначение и обозначения выводов

USB – это USB-порт, предназначенный для подключения ардуины к компьютеру через USB-кабель (требуется разъем USB Mini-B).

VIN – сюда можно подавать питание от внешнего блока питания 7-12 В (блок питания приобретается отдельно). Напряжение будет подаваться на стабилизатор и упадет до 5 В. Поэтому оптимально на этот вывод подать примерно 9 В.

5V – через этот вывод можно запитать плату и от источника питания 5 вольт, однако напряжение должно быть более-менее стабильным, так как оно подается напрямую на микроконтроллер (стабилизатор не задействован), а значит высокое напряжение может убить основной микроконтроллер.

На этот вывод будет зафиксировано напряжение 3,3–3,3 В, которое генерируется внутренним стабилизатором платы. Этот вывод необходим для подключения некоторых внешних устройств, которым для работы требуется 3,3 В, обычно всех типов ЖК-дисплеев. Однако максимальный выходной ток не должен превышать 50 мА.

GND – Земля (заземляющий контакт).

AREF – это опорное напряжение для аналоговых входов. Используется по мере необходимости (настраивается с помощью analogReference()).

IOREF – позволяет узнать рабочее напряжение микроконтроллера. Редко используемый. На китайских столах он полностью отсутствует.

Reset – сбросить микроконтроллер, подать низкий уровень на этот вход.

SDA, SCL – вывод интерфейса TWI / I2C.

D0… D13 – цифровые входы / выходы. На контакте D13 висит встроенный светодиод, который загорается, если на контакте D13 ВЫСОКИЙ.

0 (RX), 1 (TX) – вывод порта UART (последовательный порт).

A1… A5 – аналоговые входы (также могут использоваться как цифровые).

Внешний вид платы Arduino Nano с подписанными выводами

Здесь:

Светодиоды RX + TX – светодиоды – мигают, когда данные передаются через последовательный порт UART (контакты RX и TX).

Кнопка сброса – кнопка перезапуска микроконтроллера;

(другие номиналы см выше)

FTDI USB Chip – микросхема FTDI FT323RL, используемая для подключения Arduino к компьютеру через USB-кабель. Со стороны Arduino это последовательный интерфейс. Этот интерфейс будет доступен на компьютере как виртуальный COM-порт (драйверы для микросхемы FTDI, обычно входящие в состав Arduino IDE, должны быть установлены).

Будет интересно Самые популярные проекты на Arduino

Схематично это выглядит так:

Номер пина, название, тип и описание пинов:

Arduino IDE и программирование для Леонардо

Программировать Arduino Leonardo, как и остальные платы Arduino, можно с разных платформ, таких как macOS, Windows и Linux. Это благодаря тому, что ваша среда разработки Arduino IDE он доступен для этих платформ.

Для получения дополнительной информации о программировании, чтобы начать с этой платы, я советую вам скачать наш бесплатный курс PDF для Arduino IDE. Правда в том, что у Леонардо нет большей тайны для начать создавать эскизы

Вам просто нужно принять во внимание различия в соединениях и выбрать правильную плату в меню Arduino IDE для загрузки программы

То есть откройте Arduino IDE, перейдите в Инструменты> Платы> Выберите Леонардо… И начните получать удовольствие от проектов, которые вы создаете самостоятельно или тех, которые мы публикуем на Hwlibre.com

Повторяю, язык и коды будут такими же, единственное, на что следует обратить внимание, это те варианты, которые я упомянул в контактах ввода / вывода и их функциях ..

Платы расширения

В магазинах, специализирующихся на робототехнике и микроконтроллерах, можно встретить слово «шилд». Это специальная плата, которая напоминает Arduino Uno. Совпадает она с ней не только по форме, но и по количеству выводов.

Шилд устанавливается в клеммные колодки, при этом часть их них задействуется под функции шилда, а другая часть остаётся свободной для использования в проекте. В результате вы можете получить такой себе многоэтажный «бутерброд» из плат, которые реализуют множество функций.

Одним из самых популярных является Arduino Ethernet Shield. Он нужен для связи с Ардуино по обычному сетевому кабелю, витой паре. На нём расположен разъём rj45.

С подобным шилдом можно управлять вашим микроконтроллером по сети через веб-интерфейс, а также считывать параметры с датчиков, не отрываясь от компьютера. Существуют проекты с использованием такого комплекта в домашнем облачном хранилище, с ограничением по скорости, всё-таки Атмега328 слабовата для таких задач, и для этого лучше подойдут одноплатные компьютеры типа Raspberry pi.

Работа в комплексе с другими системами

Самое первое, с чем вы можете познакомиться, даже без приобретения дополнительных устройств для разработки – это связь по последовательному порту. Он активируется по команде Serial.begin (скорость, например 9600). Подробно о каждой команде вы можете прочитать в обучающем разделе на официальном сайте проекта Arduino.ru. Вы можете обмениваться с компьютером информацией. Плата, в зависимости от программного кода, может вам присылать данные, а вы их, через монитор портов в Arduino IDE, можете читать.

Кроме последовательного порта, в ардуино UNO реализована поддержка таких интерфейсов:

  • I2C;
  • SPI.

Через них можно осуществлять «общение» между несколькими платами, а также подключать разную периферию: датчики и дисплеи.

Arduino — коммуникационные контакты — интерфейс SPI

Другим интерфейсом, является SPI (Serial Peripheral Interface — последовательный периферийный интерфейс ). Это последовательный протокол, который позволяет микроконтроллеру обмениваться данными с одним или несколькими устройствами. Данный протокол обеспечивает синхронную связь с другим микроконтроллером в топологии Master — Slave.

В Arduino UNO R3 шина SPI имеет следующие контакты:

  • SS (Slave Select) — пин «D10» — выбор адреса ведомого устройства, с которым должен связаться микроконтроллер
  • SCK (Serial Clock) — пин «D13» — тактовый сигнал, синхронизирующий передачу данных в обе стороны
  • MISO (Master Input Slave Output) — пин «D12» — линия отправки информации от ведомых устройств к ведущему устройству
  • MOSI (Master Output Slave Input) — пин «D11» — линия, которая отправляет информацию от ведущего устройства к ведомым устройствам

Фотографии разных версий платформы

Ниже представлены фотографии платформы разных версий и разных производителей.
Многие задаются вопросом, чем китайский карлик ардуино отличается от оригинала? Можно с уверенностью сказать, что основное отличие официальных платформ от сторонних только в цене и упаковке товара.

  • Все
  • Официальная версия
  • Аналог на базе CH340G

Официальная версия

Официальная версия

Официальная версия

Китайский аналог Nano на базе CH340G

Китайский аналог Nano на базе CH340G

Китайский аналог Nano на базе CH340G

Есть ли качественная разница между официальными комиссиями и их коллегами? Нет! Все платформы Arduino работают точно так же, с соблюдением заявленных характеристик.

Размеры Уно

Arduino Uno R3 – самая популярная плата, построенная на базе процессора ATmega328. В зависимости от конкретной модели платы этой линейки используются различные микроконтроллеры, на момент написания статьи самой распространённой является версия именно R3.

Плату используют для обучения, разработки, создания рабочих макетов устройств. Ардуино, по своей сути, – это AVR микроконтроллер с возможностью упрощенного программирования и разработки. Это достигнуто с помощью специально подготовленного загрузчика, прошитого в память МК, и фирменной среды разработки.


Плата Ардуино Уно

Размеры платы представлены на схеме ниже. Общие размеры Уно составляют 53,4 мм на 68,6 мм.

ESP8266 vs ESP32

Вкратце сравню ESP8266 с ESP32.

  ESP8266 ESP32
MCU Xtensa Single-core 32-bit L106 Xtensa Dual-Core 32-bit LX6 with 600 DMIPS
802.11 b/g/n Wi-Fi HT20 HT40
Bluetooth X Bluetooth 4.2 and BLE
Typical Frequency 80 MHz 160 MHz
SRAM X
Flash X
GPIO 17 36
Hardware /Software PWM None / 8 channels None / 16 channels
SPI/I2C/I2S/UART 2/1/2/2 4/2/2/2
ADC 10-bit 12-bit
CAN X
Ethernet MAC Interface X
Touch Sensor X
Temperature Sensor X
Hall effect sensor X
Working Temperature -40ºC to 125ºC -40ºC to 125ºC
Price $ (3$ — $6) $$ ($6 — $12)
Where to buy

Использовать GPIO входы/выходы на этих чипах можно по-разному.

Функциональное назначение выводов чипа ESP8266.

При приобретении ESP32 devkit на Aliexpress нужно обращать внимание на количество PIN-ов. Наиболее распространенный вариант — 30 PIN-овый, такой-же как ESP8266

Он стоит в районе 5 USD. Есть вариант на 36 PIN и 38 PIN. На 38 PIN стоит в районе 8 USD. Отличить легко, PIN-ы опускаюся до нижнего края кнопок.

Здесь уже нужно смотреть, что нужно от платы, поскольку може оказаться выгоднее приобрести расширение на 16 GPIO за 1,5 USD, чем переплачивать за PIN-ы на devkit.

Функциональное назначение выводов чипа ESP32 с 36 PIN-ами

В ESP32 встроен ряд датчиков, которые можно использовать при разработке простых решений. Например, можно периодически опрашивать датчик температуры для мониторинга состояния «здоровья» самого чипа, чтобы не допускать его перегрева.

У ESP32 можно использовать 10 входов в качестве емкостных (TOUCH). Присоединенный к ним провод будет изменять емкость при поднесении руки. Например, можно реализовать вечные емкостные кнопки, которые могут быть реализованы на печатной плате, без использования механических компонент.

Аналого-цифровой преобразователь АЦП (ADC)

В ESP8266 только один АЦП (ADC), в то время как в ESP32 доступно 18!!! АЦП, причем 12 битных, в отличие от 10-ти битного АЦП ESP8266. Напряжение срабатывания АЦП в ESP32 можно менять от 0 до 4 V.

I2C адресация модуля ADS1115

16-ти битные внешние модули АЦП с чипом ADS1115 4-х канальные и стоят с доставкой в Россию в районе 1,5 USD. Примерно столько же стоит 12-ти разрядный ADS1015. Datasheet здесь.

Чтобы в ESP8266 получить такое-же количество каналов АЦП, как у ESP32 потребуется 4 шт. внешних АЦП и цена только этих модулей получится в районе 6 USD. Сам чип ESP32 распаянный на плате можно приобрести примерно за 7 USD с доставкой в Россию. Схема подключения здесь.

Если есть сомнения по поводу входного напряжения, то целесообразно использовать внешний АЦП, поскольку выход из строя платы на 4 канала обойдется несколько дешевле, чем потеря микроконтроллера. Либо подстраховываться установкой стабилитрона.

  • 4-х канальный 18-ти разрядный АЦП MCP3424 обойдется примерно в 5 USD. Младший одноканальный брат MCP3421 примерно в 2,5 USD.
  • 2-х канальный 24-х разрядный АЦП ADS1232 обойдется примерно в 4 USD. Есть 4-х канальный вариант ADS1234, но платы с этим чипом отсутствуют на Aliexpress. Доступен только сам чип.
  • 24-битный АЦП ADS 1256 будет уже 8-ми канальным, небольшая экономия, но при этом цена в районе 15 USD за качество оцифровки.
  • 24-х битный АЦП для цифровых весов HX711 обойдется меньше, чем в 2 USD.
  • 3-х канальный 24-х битный АЦП AD7793 обойдется примерно в 7 USD. Datasheet здесь.

Помимо АЦП в ESP32 есть два 8-ми битных ЦАП (DAC).

Мультиплексор/демультиплексор аналоговых входов

Помимо увеличения аналоговых входов с помощью АЦП есть вариант расширения мультиплексором. Хорошая статья на эту тему в которой подробно рассмотрен аналоговый мультиплексор/демультиплексор CD4051/74HC4051. Много вариантов от других производителей.

CD4051 — это 8 канальный аналоговый CMOS мультиплексор/демультиплексор. ДЛя увеличения количества аналоговых входов на 7 потребуется 1 аналоговый и 3 цифровых входа.

Функциональная схема работы мультиплексора/демультиплексора CD4051

Мультиплексор передает сигнал с одного из нескольких входов на единственный выход. Демультиплексор, напротив, передает сигнал с единственного входа на один из информационных выходов.

Если приобретать модуль на Aliexpress, то цена будет в районе 0,8 USD за 8 каналов, 16-ти разрядное АЦП ADS1115 — 1,5 USD за 4 канала. Если же приобретать только микросхему CD4051, то цена будет гораздо ниже микросхемы АЦП.

Отличие от других плат

Сегодня на рынке можно встретить множество вариантов плат ардуино. Самыми популярными конкурентами Уно являются платы Nano и Mega. Первая пойдет для проектов, в которых важен размер. Вторая – для проектов, где у схема довольно сложна и требуется множество выходов.

Отличия Arduino Uno от Arduino Nano

Современные платы Arduino Uno и Arduino Nano версии R3 имеют, как правило, на борту общий микроконтроллер: ATmega328. Ключевым отличием является размер платы и тип контактных площадок. Габариты Arduino Uno: 6,8 см x 5,3 см. Габариты Arduino Nano: 4,2 см x 1,85 см. В Arduino UNO используются коннекторы типа «мама», в Nano – «гребень» из ножек, причем у некоторых моделей контактные площадки вообще не припаяны. Естественно, больший размер UNO по сравнению с Nano в некоторых случаях является преимуществом, а в некоторых – недостатком. С платой большого размера гораздо удобнее производить монтаж, но она неудобна в реальных проектах, т.к. сильно увеличивает габариты конечного устройства.

На платах Arduino Uno традиционно используется разъем TYPE-B (широко применяется также для подключения принтеров и МФУ). В некоторых случаях можно встретить вариант с разъемом Micro USB. В платах Arduino Nano стандартом является Mini или Micro USB.

Естественно, различия есть и в разъеме питания. В плате Uno есть встроенный разъем DC, в Nano ему просто не нашлось места.

Кроме аппаратных, существуют еще небольшие отличия в процессе загрузки скетча в плату. Перед загрузкой следует убедиться, что вы выбрали верную плату в меню «Инструменты-Плата».

Отличия от Arduino Mega

Плата Mega в полном соответствии со своим названием является на сегодняшний день самым большим по размеру и количеству пинов контроллеров Arduino. По сравнению с ней в Uno гораздо меньше пинов и памяти. Вот список основных отличий:

  • Плата Mega использует иной микроконтроллер: ATMega 2560. Но тактовая частота его равна 16МГц, так же как и в Уно.
  • В плате Mega большее количество цифровых пинов – 54 вместо 14 у платы Uno. И аналоговых – 16 / 6.
  • У платы Mega больше контактов, поддерживающих аппаратные прерывания: 6 против 2. Больше Serial портов – 4 против 1.
  • По объему памяти Uno тоже существенно уступает Megа. Flash -память 32/256, SRAM – 2/8, EEPROM – 4/1.

Исходя из всего этого можно сделать вывод, что для больших сложных проектов с программами большого размера и активным использованием различных коммуникационных портов лучше выбирать Mega. Но эти платы дороже Uno и занимают больше места, поэтому для небольших проектов, не использующих все дополнительные возможности Mega, вполне сойдет Uno – существенного прироста скорости при переходе на “старшего” брата вы не получите.

Общение с Arduino

Как же процессор узнаёт, что именно ему следует делать? Вы должны рассказать ему это. Существует язык для общения с микроконтроллером, упрощённый и адаптированный специально для Arduino. Освоить этот язык совсем не сложно при желании и определённой настойчивости, даже если вы никогда раньше не программировали.

Написание сообщений для Arduino называется программирование. И для упрощения этого процесса разработана специальная программная среда — Arduino IDE. В её состав включены десятки примеров хороших, работающих программ. Изучив их, вы очень быстро многое узнаете о языке общения с Arduino.

Arduino nano

Arduino позволит вашим программам выйти из виртуального мира в мир реальный. Вы сможете увидеть, как написанные вами программы заставляют мигать светодиод или вращать вал двигателя, а затем делать и более сложные и полезные вещи. Arduino позволит вам узнать много нового и интересного и в электронике, и в программировании. В итоге это может стать вам отличным хобби, увлекательным занятием с детьми, замечательным и полезным времяпровождением.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: