Инерция нагрузки
На реальное время разгона и замедления также влияют различные механические и электрические параметры системы электропривода. Например, при установке очень малого времени разгона или торможения фактическое время может быть больше из-за инерции нагрузки на валу двигателя.
Инерция нагрузки при разгоне может привести к перегрузке по току, при этом преобразователь частоты выходит в ошибку. Чтобы такого не произошло, время разгона нужно выбирать по нескольким критериям. Если данный параметр не принципиален, можно выставить автоматический разгон. В этом случае преобразователь будет выбирать максимальный скоростной режим разгона или замедления, чтобы избежать ошибки перегрузки по току (разгон) или перенапряжению на звене постоянного тока (замедление).
Когда время торможения должно быть минимальным, применяют тормозные резисторы для выделения «лишней» энергии, полученной в результате торможения.
Дополнительная инерция при разгоне и торможении может проявляться также при аналоговом способе задания выходной частоты. Это происходит, когда на аналоговом входе устанавливается низкочастотный фильтр для уменьшения помех, либо в настройках выставлена большая инерционность задающего аналогового сигнала.
Производители рекомендуют ограничить число пусков/остановов двигателя в единицу времени, поскольку при разгоне и торможении происходит наибольшая тепловая нагрузка на частотный преобразователь.
Во многих ПЧ имеется несколько вариантов времени разгона и торможения, которые можно применить для различных этапов технологического процесса. Переключение производится посредством подачи сигнала на соответственно запрограммированный дискретный вход.
Принципиальные схемы щупов
Собственно схема щупа, которую я применил, предельно проста:
Это делитель на 10 для осциллографа с входным сопротивлением 1 мегом. Сопротивление лучше составить из нескольких, соединенных последовательно. Переключатель просто замыкает напрямую добавочное сопротивление. А подстроечный конденсатор позволяет согласовать щуп с конкретным прибором.
Пожалуй вот более правильная схема, которую стоило бы рекомендовать:
Она явно лучше по допустимому напряжению, так как пробивное напряжение резисторов и конденсаторов СМД обычно принимают за 100 вольт. Встречал утверждения, что они выдерживают и 200-250 вольт. Не проверял. Но если вы исследуете достаточно высоковольтные цепи, стоит применить именно такую схему.
Я ее никогда не делал, рекомендаций по настройке (подбору конденсаторов С2, С3, С4) дать не могу.
Немного теории
Звук – распространение механических колебаний в газообразной или жидкой среде. Как у любой волны, у звука есть такие параметры как амплитуда (характеризует громкость) и частота (характеризует тональность).
Ухо среднестатистического человека способно улавливать звук с частотой от 16-20 Гц до 15-20 кГц. В свою очередь, этот диапазон имеет три «ступеньки»:
- 20-150 Гц – низкие частоты.
- 150-7000 Гц – средние частоты.
- 7-20 кГц – высокие частоты.
Чем выше частота колебаний, тем выше тон звука. Например, шмель, который машет крыльями медленно, гудит, а комар, частота взмахов крыльев которого существенно выше, мерзко пищит, затаившись во тьме.
Звук ниже диапазона слышимости называют инфразвуком, от 20 кГц ультразвуком. Человеческий слух их не воспринимает, однако такие звуки с большой амплитудой могут оказывать влияние на организм.
Кроме того, с возрастом почти каждый человек подвержен старческой тугоухости, когда не воспринимается звук высокой частоты.
Биологически так обусловлено, что женщины лучше воспринимают высокие частоты, а также лучше различают интонации и тональности, на что влияет необходимость заботы о потомстве.
По этой же причине большинство представительниц прекрасного пола сложно обмануть – они способны уловить любую фальшь в голосе. Также стоит отметить, что у женщин слух начинает ухудшаться к 40 годам, тогда как у мужчин этот процесс стартует с 30.
Применительно к колонкам, интерес представляют, в первую очередь, звуки человеческой речи и музыка. Эстетов, слушающих звуки дикой природы на компьютере, существенно меньше по сравнению с киноманами и меломанами.
Фильтр высоких частот для пищалок
Строение такого фильтра довольно простое. Он будет состоять всего лишь из двух деталей – конденсатора и сопротивления.
Роль фильтра, который будет отсеивать среднечастотные и низкочастотные составляющие в аудиосигнале, будет исполнять непосредственно роль самого конденсатора. И простите за тавтологию, сопротивление будет выполнять роль сопротивления, то есть уменьшать уровень громкости.
Важно: высокие частоты эквалайзером с главного устройства не отрезаются — это будет вести к плохому звучанию. Лучше уменьшать их количество при помощи сопротивления
Оптимальным сопротивлением будет считаться 4,0 и 5,5 Ом.
Режимы управления частотными преобразователями
В большинстве моделей современных частотных преобразователей реализована возможность управления в нескольких режимах:
1) Ручное управление.
Пуск и остановка электродвигателя осуществляются с панели или пульта управления частотника. При этом преобразователь осуществляет регулировку частоты вращения и остановку при возникновении аварийных ситуаций автоматически.
2) Внешнее управление.
ЧП с поддержкой интерфейсов передачи данных можно подключать к удаленному ПК для контроля текущих параметров и задания режимов работы привода.
3) Управление по дискретным входам или “сухим контактам”.
4) Управление по событиям.
Некоторые модели ЧП позволяют запрограммировать время пуска или остановки, работу двигателя в другом режиме. Преобразователи такого типа применяют для полностью или частично автоматизированного технологического оборудования.
Преимущества частотных преобразователей.
Основные преимущества использования частотных преобразователей:
1) Экономия электроэнергии.
Применение ЧП позволяет снизить пусковые токи и регулировать потребляемую мощность двигателя в зависимости от фактической нагрузки.
2) Увеличение срока службы промышленного оборудования.
Плавный пуск и регулировка скорости вращения момента на валу позволяют увеличить межремонтный интервал и продлить срок эксплуатации электродвигателей.
Возможность отказаться от редукторов, дросселирующих задвижек, электромагнитных тормозов и другой регулирующей аппаратуры. снижающей надежность и увеличивающей энергопотребление оборудования.
3) Отсутствие необходимости проводить техническое обслуживание.
4) Возможность удаленного управления и контроля параметров оборудования с электроприводом.
5) Широкий диапазон мощности двигателей.
Частотные преобразователи устанавливают как на однофазные конденсаторные двигатели мощностью менее 1 кВт, так и на синхронные электромашины мощностью в десятки МВт.
6) Защита электродвигателя от аварий и аномальных режимов работы.
ЧП комплектуют защитой от перегрузок, коротких замыканий, пропадания фаз. Преобразователи также обеспечивают перезапуск при возобновлении подачи электроэнергии после ее отключения.
Возможность бесступенчатой точной регулировки частоты вращения без потерь мощности, что невозможно при использовании редукторов.
7) Снижение уровня шума работающего двигателя.
Возможность замены двигателей постоянного тока асинхронными электрическими машинами с частотными регуляторами. Для оборудования, требующего регулировки момента и скорости вращения, часто используются двигатели постоянного тока, скорость вращения которых пропорциональна поданному напряжению. Такие электрические машины стоят дороже асинхронных и требуют дорогостоящих промышленных выпрямителей. Замена двигателей постоянного тока на асинхронные электромашины с частотным управлением дает хороший экономический эффект.
Сферы применения
Частотно-регулируемые приводы применяют:
- Для кранов и грузоподъемных машин. Крановые двигатели работают в режиме частых пусков, остановок, изменяющейся нагрузки. ЧП обеспечивают отсутствие рывков и раскачивания груза при пусках и остановках, остановку крана точно в требуемом месте, снижают нагрев электродвигателей и максимальный пусковой момент.
- Для привода нагнетательных вентиляторов в котельных и дымососов. Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный к.п.д . котельных агрегатов.
- Для транспортеров, прокатных станов, конвейеров, лифтов. ЧП регулирует скорость перемещения транспортного оборудования без рывков и ударов, что увеличивает срок службы механических узлов.Для насосных агрегатов. ЧП позволяют обойтись без задвижек и вентилей, регулирующих давление и производительность, и существенно увеличить общий к.п.д системы водоподачи.
- Для электродвигателей станков. Использование преобразователя частоты вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. ЧП широко используются для станков с ЧПУ и высокоточного промышленного оборудования.
Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.
Количество каналов
Диапазон хороших колонок во многом зависит от количества каналов. Динамики разного размера способны воспроизводить только определенный диапазон частот. При этом наблюдается такая закономерность: чем больше диаметр, тем более басовито может «гудеть» такой излучатель.
Для того, чтобы передать звуковые частоты в полной мере, их разделяют по каналам, оснащая каждую несколькими динамиками под каждый диапазон. Сегодня самыми распространенными являются:
- Двухканальные – один НЧ динамик, плюс излучатель для СЧ и ВЧ;
- Трехканальные – по одному динамику на НЧ, СЧ и ВЧ.
Это касается не только стереофонических систем, но колонок 2.1. Разница лишь в том, что массивный НЧ динамик в последнем случае вынесен в отдельный корпус. Замечено, что звучит такая стереосистема лучше, так как «бочка» обычно располагается отдельно и не перебивает звук СЧ и ВЧ излучателей.Это же справедливо по отношению к колонкам 5 1. Конструкция фронтальных и тыльных колонок у них обычно не различается, поэтому они воспроизводят те же звуковые частоты.
Впрочем, на позиционирование источника звука при просмотре фильма на ПК или домашнем кинотеатре, это никак не влияет, а именно для этого и устанавливается такая акустика.
Настройка телевизора для приема кабельного ТВ (DVB-C)
Спутниковое ТВ является самым старым способом передачи картинки в цифровом формате. На данный момент существует еще два варианта приема «цифры» – это кабельное и эфирное вещание. Последний способ передачи имеет одно преимущество: он бесплатный.
Спутниковое и кабельное ТВ – более продвинутые технологии, открывающие доступ к большому количеству телепрограмм, но для них предусмотрена абонентская плата. Для программирования приставки DVB-C в меню ТВ приемника необходимо задать следующие параметры:
- Начальная частота – 298 000 КГц.
- Символьная скорость – 6875.
- Количество транспондеров – 16, шаг равный 8 МГц.
- Для модуляции выбирается значение 256 QAM.
Для каждой торговой марки телевизоров поиск цифровых каналов может несколько отличаться, далее будет описана пошаговая инструкция на примере ТВ приемников марки LG:
- Необходимо перейти в главное меню, выбрать вкладку «Опции».
- Во вкладке «Страна» выбрать место проживания.
- Выполнить переход в пункт «Настройки».
- Далее указать тип источника сигнала, необходимо указать «Кабель», а затем – «Цифровые», после чего активируется команда «Поиск».
В разделе настройки потребуется ввести указанные выше параметры, поскольку они подходят для большинства марок телевизоров. Если все действия были выполнены правильно, через 5-10 минут устройство найдет список доступных телепрограмм.
Приемники LG имеют одну особенность: в меню можно увидеть функцию «Автоматическое обновление каналов». Абонентам рекомендуется отключить данную опцию, иначе прибор через какое-то время может автоматически сбросить список настроенных программ.
Имеет ли смысл менять свой одночастотник на многочастотник
Следуя заветам опытных кладоискателей, стоит пробивать участок сначала на высоких, а потом на низких частотах. Много ли найдётся людей, которые будут таскать с собой два металлоискателя? Вывод очевиден — берём многочастотный.
Но есть одно маленькое но. Против законов физики не попрёшь. И с одной и той же катушкой многочастотный прибор будет работать хуже, чем одночастотный с катушкой, рассчитанной специально для одной частоты.
Исключение составляют металлодетекторы, у которых переключение частоты сопровождается заменой катушки. Это, например, отечественный АКА Сорекс Про или тот же Minelab X-Terra 705.
У АКА есть ещё и модель Сигнум, для которого предлагаются две катушки, рассчитанные на переключение частоты на 3, 7 и 14 кГц без потери эффективности поиска.
В принципе, повышение эффективности поиска не всегда связано с изменением частоты. Заменой штатной катушки на стороннюю кладоискатели добиваются неплохих результатов. В качестве примера можно привести катушки NEL для Fisher F70/F75, которые дают результаты на 20% лучше, чем штатные.
Эффективность обнаружения металлоискателей Гарретт поднимают, используя, например, катушки от Mars MD.
Подведём небольшой итог.
Многочастотный прибор пригодится опытному кладоискателю, который сможет реализовать весь потенциал металлоискателя.
Обычному же любителю лучше будет остановиться на приборе с одной частотой — и денег сэкономит, и заморочек меньше. А задач для мультичастотного прибора у любителя, скорее всего, не будет. С металлоискателем средней частоты можно идти на коп и по монетам, и по войне.
Предисловие
Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные. правила, рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»
Сведения о стандарте
1 РАЗРАБОТАН Акционерным обществом «Системный оператор Единой энергетической системы» (АО «СО ЕЭС»)
2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 июня 2021 г. Ne 100-П)
За принятие проголосовали:
Краткое наименование страны по МК | Код страны
по МК (ИСО 3166) 004-97 |
Сокращенное наименование национальное органа по стандартизации |
Армения | AM | Минэкономики Республики Армения |
Беларусь | BY | Госстандарт Республики Беларусь |
Казахстан | KZ | Госстандарт Республики Казахстан |
Киргизия | KG | Кыргыэствндарт |
Россия | RU | Росстандарт |
4 Приказом Федерального агентства по техническому регулированию и метрологии от 3 августа 2021 г. № 801 -ст межгосударственный стандарт ГОСТ 34184—2017 введен в действие в качестве национального стандарта с 1 марта 2021 г.
5 ВВЕДЕН ВПЕРВЫЕ
Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а текст изменении и поправок — в ежемесячном информационном указателе кНациональные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет ()
Стандартинформ. 2017
В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен. тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии
ГОСТ 34184—2017
Частоты сольфеджио могут улучшить ваше здоровье
Включение частотного исцеления в ваш распорядок ухода за собой может улучшить вашу повседневную жизнь множеством способов.
Снижение стресса
Прослушивание высокочастотных аудиозаписей может наполнить слушателя успокаивающим покоем и уменьшить чувство накопившегося разочарования или стресса. Снижение стресса, связанное со звуковым исцелением, усиливается при использовании в сочетании с сидячей медитацией и другими упражнениями на осознанность.
Уменьшение боли
Поскольку активное прослушивание музыки может снизить ваше восприятие боли, лечебные звуки могут уменьшить зависимость пациента от обезболивающих и других лекарств. Также считается, что некоторые частоты активно борются с болью у страдающих людей и способствуют заживлению травм.
Духовное развитие
Многие частоты звука связаны с просветлением и активацией частей мозга, связанных с духовностью. Эти частоты можно использовать вместе с другими ритуалами для развития более глубокой общей духовной практики.
Содействие здоровым отношениям
Несколько частот в звуковом исцелении специально разработаны для поощрения чувства благополучия и доброжелательности по отношению к другим. Это делает их эффективной формой терапии для тех, кто чувствует разочарование в других людях или эмоциональную изоляцию от них.
Эмоциональный катарсис
Прослушивание мощной музыки в качестве формы звуковой терапии может стимулировать сильные эмоциональные реакции, которые затем могут вызвать положительные изменения в химии тела. Людям, которым трудно использовать свои эмоциональные резервуары, музыкальная терапия может помочь растворить эти эмоциональные блокировки.
Улучшение сна
Многие формы звуковой терапии используются для тех, кто пытается хорошо выспаться, особенно в средах, которые содержат много низкочастотного окружающего шума, который может вызвать расстройство слуха. Высокочастотный белый шум может обеспечивать успокаивающую фоновую частоту, блокируя низкочастотные шумы, способствуя здоровому сну и улучшая его гигиену.
Содействие духовному осознанию
Начало практики звуковой терапии дает не только мгновенные преимущества прослушивания звуков — сам акт звуковой терапии заставляет слушателя лучше осознавать свое духовное благополучие и способствует принятию других духовных практик. Это может привести к общему увеличению счастья и духовного осознания.
Свобода от головных болей
Музыкальная терапия помогает облегчить симптомы хронических головных болей у тех, кто ими страдает. Музыкальная терапия не только помогает людям лучше контролировать свои боли в ответ на мигрень, но также снижает их количество в течение месяца.
Умножитель напряжения многократный
Процессы в схеме утроения напряжения протекают в такой последовательности: сначала заряжаются конденсаторы С1 и С3 через сопротивление R и соответствующие диоды VD1 и VD3. В следующий полупериод С2 через VD2 заряжается до удвоенного напряжения (С1 + обмотка) и на сопротивлении нагрузки получается утроенное значение.
Больший интерес имеет следующий умножитель напряжения. Рассмотрим принцип его работы. Когда потенциал точки 1 положителен относительно точки 2 ток протекает по пути через VD1 и С1 заряжая конденсатор.
В следующий полупериод, когда ток изменил свое направление, заряжается второй конденсатор через второй диод до величины, равного сумме напряжений на С1 и обмотке трансформатора. При этом С1 разрядится. В третий полупериод, когда первый конденсатор снова начнет заряжаться, С2 через третий диод разрядится на С3, зарядив его до двойного значения относительно выводов обмотки.
К концу третьего полупериода на нагрузку будет подано суммарное напряжение заряженных конденсаторов С1 и С3, т. е. примерно утроенное значение.
Если данную схему применить без трансформатора, непосредственно подключить к 220 В, то на выходе получим приблизительно 930 В.
По аналогии с рассмотренными схемами могут быть построены схемы с большей кратностью умножения. Но следует помнить, что с увеличением числа умножений по причине большего содержание в схеме диодов и конденсаторов возрастает внутренне сопротивление выпрямителя, что приводит к дополнительной просадке напряжения.
Схемы с умножением напряжения применяются для питания малой нагрузки, т.е. сопротивление нагрузки должно быть высоким. В противном случае нужно использовать неполярные конденсаторы большой емкости, рассчитанные на высокое напряжение. Это связано с тем, что при значительном токе нагрузки конденсаторы будут быстро разряжаться, что вызовет недопустимо большие пульсации на нагрузке.
Изготавливая умножитель напряжения, следует всегда помнить о том, что конденсаторы и диоды должны быть рассчитаны на соответствующие напряжения.
Частотомер — цифровая шкала. Схема и инструкция по монтажу
Рассматриваемое устройство выполняет функции:
- частотомера с выводом измеренного значения частоты в герцах (до 8 разрядов);
- цифровой шкалы с АПЧ генератора плавного диапазона (ГПД) для радиолюбительского трансивера;
- электронных часов.
Основу устройства составляет программируемый контроллер PIC16F84 фирмы Microchip. Быстродействие и широкие функциональные возможности этого контроллера позволяют подавать сигнал частотой до 50 МГц прямо на его счетный вход, то есть можно обойтись без предварительного делителя, обычно применяемого в устройствах подобного типа.
Основные характеристики цифрового частотомера
- Диапазон измеряемых частот — 0–50 МГц.
- Диапазон программируемых значений ПЧ — 0–16 МГц.
- Минимальный уровень входного сигнала — 200 мВ.
- Время измерения частоты — 1 с.
- Погрешность измерения — ±1 Гц.
- Напряжение питания — 5±0,5 В.
- Ток потребления устройства — не более 30 мА.
Наличие электрически перепрограммируемой памяти данных внутри PIC16F84 позволило без специального оборудования перепрограммировать значение промежуточной частоты (ПЧ). Это дает возможность оперативно встраивать цифровую шкалу в трансивер с любым (0–16 МГц) значением промежуточной частоты.
Смотрите схему измерителя емкости конденсаторов
В качестве устройства индикации применен модуль ЖКИ от телефонных аппаратов типа Panaphone. Ввод информации в модуль осуществляется по двум линиям в последовательном коде. Полезной оказалась встроенная функция электронных часов. Малый ток потребления обуславливает малые помехи радиоприемной аппаратуре, в которую может встраиваться данное устройство.
Цифровой частотомер — схема и её описание, необходимые комплектующие
Список необходимых радиоэлементов:
- Микросхема (DD1) — КР1554ЛА3.
- МК PIC 8-бит (DD2) — PIC16F84A.
- 2 биполярных транзистора (VT1, VT2) — КТ368А и КТ315Б.
- 6 диодов (VD1–VD6) — КД521Б.
- 3 конденсатора (С1, С2, С6) — 0.1 мкФ, 0.033 мкФ, 68 пФ.
- Электролитический конденсатор (С3, С4, С7) — 6.8 мкФ и 2х100 мкФ.
- Подстроечный конденсатор (С5) — 68 пФ.
- 14 резисторов — R1 (330 Ом); R2 (47 кОм); R3, R4, R6, R8–R11 (7х15 кОм); R5, R12–R14 (4х5.1 кОм); R7 (430 Ом).
- Кварцевый резонатор (ZQ1) — 4 МГц.
- LCD-дисплей (HG1) — КО-4В, от телефонного аппарата.
- 3 тактовых кнопки S1, S2, WR_IF.
- Кнопка на размыкание НК.
- Батарея питания — 1.5 В.
- Блок питания — 5В.
На транзисторе VT1 и микросхеме DD1 выполнен формирователь входного сигнала. Микросхема DD2 выполняет функции контроллера частотомера, цифровой шкалы с АПЧ, управления модулем ЖКИ, а также позволяет оперативно изменять режим работы устройства.
Если на выводе 1 микросхемы DD2 присутствует уровень логической «1», то прибор выполняет функцию частотомера, если уровень логического «0» — цифровой шкалы. В режиме цифровой шкалы на индикатор выводится значение частоты входного сигнала равное Рвх+Р„ч при наличии уровня логической «1» на выводе 2 микросхемы DD2; или Fвх-Fпч — при уровне логического «0» на выводе 2 DD2.
Смотрите, как сделать щуп для осциллографа
Для записи необходимого значения Fпч надо в режиме частотомера подать на вход устройства сигнал с частотой Fпч (сигнал опорного генератора или телеграфного гетеродина, настроенных на центральную частоту полосы пропускания фильтра ПЧ), а на вывод 8 микросхемы DD2 на время 1,5–2 с подать уровень логического «0». Значение Fпч сохраняется в памяти при отключении питания и может неоднократно (не менее 106 раз) перепрограммироваться приведенным выше способом.
Система АПЧ ГПД работает следующим образом. После измерения частоты входного сигнала производится анализ числа равного сотням герц и, если оно четное, на вывод 8 микросхемы DD2 выдается уровень логического «0». Если нечетное, на вывод 8 микросхемы DD2 выдается уровень логической «1». Эти логические сигналы, предварительно проинтегрировав, можно использовать для управления емкостью варикапа в контуре ГПД. В результате осуществляется стабилизация частоты возле четных значений сотен герц с точностью ±10 Гц.
В режиме цифровой шкалы можно осуществить гашение десятков и единиц герц, если установить уровень логического «0» на выводе 9 микросхемы DD2.
Для перевода устройства в режим электронных часов необходимо нажать кнопку «НК». Для корректировки часов и минут служат кнопки «S1» и «S2».
Печатная плата частотомера:
Скачать прошивку и исходный код можно ниже:
Минимизация высокочастотной обработки
Еще одним интуитивным преимуществом архитектуры приемника с ПЧ является уменьшенное количество компонентов, которые должны работать на высокой (а иногда и на очень высокой) частоте принимаемого сигнала. Всё становится труднее, когда частоты поднимаются в диапазон гигагерц: транзисторы дают меньшее усиление, пассивные компоненты всё больше отличаются от своих идеализированных моделей, влияние линий передачи становится более заметным.
Конечно, у нас всегда будет, по крайней мере, несколько компонентов, которые совместимы с принимаемой несущей частотой: нам нужен смеситель, который выполняет преобразование РЧ в ПЧ, а перед смесителем может стоять малошумящий усилитель и фильтр подавления зеркального канала (проблема зеркального канала обсуждается в следующей статье). Но подход с промежуточной частотой позволяет нам выполнять в радиочастотном диапазоне только самую необходимую обработку.
17.4. Путаница с «входным сопротивлением»
Для схемы «последовательного» детектора в книгах обычно дается формула: RBX = 0,5 R.
С входным сопротивлением нелинейных схем дело обстоит непросто. При гармоническом напряжении входной ток детектора является резко несинусоидальным.
В этих условиях, если уж вести речь о входном сопротивлении, следует прежде ясно оговорить, какой смысл будет придаваться этому понятию.
Допустим, источник сигнала имеет внутреннее сопротивление RИ. Следует ожидать, что выпрямленное напряжение UH будет (даже
при «идеальном» диоде) теперь заметно меньше амплитуды ЭДС сигнала eBX, и тем меньше, чем больше RИ. Этот факт можно приписать
влиянию «входного сопротивления» детектора RBX, снижающему напряжение пропорционально RBX /(RИ +
RBX).
Даже не решая сложное уравнение, можно будет сделать вывод: искомая величина входного сопротивления не является постоянной; с увеличением RИ
эффект детектирования снижается медленнее, чем можно было бы ожидать. Заметим, однако, что здесь
RBX получается принципиально во много раз меньше, чем 0,5 R (особенно при малых сопротивлениях источника сигнала).
В итоге, при низкоомном источнике расчет «входного сопротивления» детектора вообще теряет смысл, так как в большинстве случаев оказывается верным
простое соотношение:
UH = (0,8…0,9)uBX.
Другое дело, если детектор подключен к колебательному контуру, как чаще всего и бывает в ламповых схемах. Главное, что при этом интересует —
снижение добротности, связанное с отбором энергии. Здесь потребуется по-иному определить входное сопротивление детектора:
,
где Р — мощность, отбираемая детектором из контура. Из условия баланса мощностей, учитывая, что:
P = U2H/R,
и принимая UH = uBX, получаем знакомое:
RBX = 0,5 R.
Подбор провода
Отдельного упоминания заслуживает подбор провода. Правильный провод выглядит так:
Миниджек 3,5 мм расположен рядом для масштаба
Правильный провод представляет из себя более-менее обычный экранированный провод, с одним существенным отличием – центральная жила у него одна. Очень тонкая и выполнена из стальной проволоки, а то и проволоки с высоким удельным сопротивлением. Почему именно так поясню немного позже.
Такой провод не сильно распространен и найти его достаточно непросто. В принципе, если вы не работаете с высокими частотами порядка десятка мегагерц, особой разницы, использовав обычный экранированный провод, вы можете и не ощутить. Встречал мнение, что на частотах ниже 3-5 МГц выбор провода не критичен. Ни подтвердить, ни опровергнуть не могу – нет практики на частотах выше 1 МГц. В каких случаях это может сказываться тоже скажу позже.
Самодельные осциллографы нечасто имеют полосу пропускания в несколько мегагерц, поэтому используйте тот провод, который найдете. Просто стремитесь подобрать такой, у которого центральные жилы потоньше и их поменьше. Встречал мнение, что центральная жила должна быть потолще, но это явно из серии «вредных советов». Малое сопротивление проводу осциллографа без надобности. Там токи в наноамперах.
Если подключаете напрямую на выход логического элемента либо в ИБП, т.е. к достаточно мощному источнику сигнала, имеющему достаточно малое собственное сопротивление, то все будет отображаться нормально. Но если в цепи есть значительные сопротивления, то емкость щупа будет сильно искажать форму сигнала, т.к. будет заряжаться через это сопротивление. А это означает, что вы уже не будете уверены в достоверности осциллограммы. Т.е. чем ниже собственная емкость щупа, тем шире диапазон возможных применений вашего осциллографа.
Встроенное графическое ядро
Процессор может быть оснащен графическим ядром, отвечающим за вывод изображения на ваш монитор. В последние годы, встроенные видеокарты такого рода хорошо оптимизированы и без проблем тянут основной пакет программ и большинство игр на средних или минимальных настройках. Для работы в офисных приложениях и серфинга в интернете, просмотра Full HD видео и игры на средних настройках такой видеокарты вполне достаточно, и это Intel.
Что касается процессоров от компании AMD, их встроенные графические процессоры более производительные, что делает процессоры от AMD приоритетнее для любителей игровых приложений, желающих сэкономить на покупке дискретной видеокарты.
Ручная настройка
Иногда автоматический поиск не приносит результатов. Когда известна частота для настройки цифрового ТВ, можно приступать к ручному поиску каналов. Для примера из таблицы будет выбрана Москва. Пошаговая инструкция будет выглядеть следующим образом:
- В таблице для Мультиплекса 2 номеру частотного канала соответствует цифра 24, а значение частоты составляет 498 МГц.
- Необходимо перейти в меню приставки и выбрать команду «Поиск каналов».
- В настройках указать номер ТВК, то есть 24, после чего отобразится уровень сигнала. Если шкала под названием «Качество» дошла до зеленой отметки, значит, были выбраны оптимальные параметры.
- После этого нажать на кнопку «ОК» и дождаться, пока устройство найдет все телепрограммы пакета.
Для отображения каналов информационного Мультиплекса выполняются аналогичные действия.
Электрификация железных дорог на переменном токе[править]
Российский пассажирский электровоз переменного тока ЭП1П, выпускается на Новочеркасском электровозостроительном заводе.
В России и в республиках бывшего СССР около половины всех железных дорог электрифицировано на однофазном переменном токе частотой 50 Гц. Напряжение ~ 25 кВ (обычно до 27,5 кВ, с учётом потерь) подаётся на контактный провод, вторым (обратным) проводом служат рельсы. Также проводится электрификация по системе 2 × 25 кВ (два по двадцать пять киловольт), когда на отдельный питающий провод подаётся напряжение ~ 50 кВ (обычно до 55 кВ, с учётом потерь), а на контактный провод от автотрансформаторов подаётся половинное напряжение от 50 кВ (то есть 25 кВ). Электровозы и электропоезда переменного тока при работе на участках 2 × 25 кВ в переделке не нуждаются.
Проводится политика на дальнейшее расширение полигона тяги переменного тока как за счёт вновь электрифицируемых участков, так и за счёт перевода некоторых линий с постоянного тока на переменный ток. Переведены в 1990-е — 2000-е годы:
- — на Восточно-Сибирской железной дороге: участок Слюдянка — Иркутск — Зима;
- — на Октябрьской железной дороге: участок Лоухи — Мурманск;
- — на Приволжской железной дороге: Саратовский и Волгоградский железнодорожные узлы;
- — на Северо-Кавказской железной дороге: участки Минеральные Воды — Кисловодск и Бештау — Железноводск.
Следует отметить, что также выпускаются двухсистемные электровозы, способные работать как на переменном, так и на постоянном токе (см. ВЛ61Д, ВЛ82 и ВЛ82М, ЭП10, ЭП20).