Модифицированная широкополосная антенна T2FD
Предложена модификация известной многим антенны T2FD, которая позволяет перекрыть весь диапазон радиолюбительских КВ частот, совсем немного проигрывая полуволновому диполю в 160 метровом диапазоне (0,5 дБ на ближних и около 1,0 дБ на DX трассах). При точном повторении, антенна работать начинает сразу и в настройке не нуждается. Подмечена особенность антенны: не воспринимаются статические помехи, и по сравнению с классическим полуволновым диполем. В таком исполнении приём эфира получается довольно-таки комфортный. Нормально прослушиваются совсем слабые DX станции, особенно на низкочастотных диапазонах.
Длительная эксплуатация антенны (более 8 лет) позволила заслуженно отнести её к малошумящим приёмным антеннам. В остальном, по эффективности, эта антенна практически не уступает диапазонному полуволновому диполю или Inverted Vee на любом из диапазонов от 3,5 до 28 МГц.
И ещё одно наблюдение (основанное на отзывах дальних корреспондентов) — во время проведения связи отсутствуют глубокие QSB. Из произведённых 23 вариантов модификаций этой антенны, предложенный здесь, заслуживает особого внимания и может быть рекомендован для массового повторения. Все предложенные размеры антенно-фидерной системы рассчитаны и точно выверены на практике.
Полотно антенны
Размеры вибратора приведены на рисунке. Половины (обе) вибратора симметричны, лишняя длина «внутреннего угла» урезается на месте, там же крепится и небольшая площадка (обязательно изолированная) для соединения с питающей линией. Балластный резистор 240 Ом, плёночный (зелёного цвета), рассчитанный на мощность 10 Вт. Можно также использовать любое другой резистор той же мощности, главное, чтобы сопротивление было обязательно безиндукционное. Медный провод — в изоляции, сечением 2,5 мм. Распорки — деревянные рейки в разрезе с сечением 1 х 1 см с лаковым покрытием. Расстояние между отверстиями равно 87 см. На растяжки применяем капроновый шнур.
Воздушная линия питания
Для линии питания применяем медный провод ПВ-1, сечением 1мм, распорки винипластовые. Расстояние между проводниками составляет 7,5 см. Длина всей линии равно 11 метров.
Авторский вариант установки
Применяется металлическая, заземленная снизу, мачта. Мачта установлена на 5-этажном доме. Мачта — 8 метров из трубы Ø 50 мм. Концы антенны размещены в 2 м от крыши. Сердечник согласующего трансформатора (ШПТР) сделан из строчного трансформатора ТВС-90ЛЦ5. Катушки там удалены, сам же сердечник склеен клеем «Супермомент» до монолитного состояния и с тремя слоями лакоткани.
Намотка произведена в 2 провода без скрутки. Трансформатор содержит 16 витков одножильного изолированного медного провода Ø 1 мм. Трансформатор имеет квадратную (иногда прямоугольную) форму, поэтому на каждую из 4-х сторон наматывают по 4 пары витков — наилучший вариант распределения тока.
КСВ во всем диапазоне получается от 1,1 до 1,4. ШПТР помещается в хорошо пропаянный с оплёткой фидера экран из жести. С внутренней стороны к нему надёжно припаивается средний вывод обмотки трансформатора.
После сборки и установки антенна будет работать сразу и практически в любых условиях, то есть располагаясь низко над землей или над крышей дома. У неё отмечен очень низкий уровень TVI (телевизионных помех), и это дополнительно может заинтересовать радиолюбителей, работающих из сёл или дачников.
RK1AC
Антенна Loop Feed Array Yagi на диапазон 50 МГц
Антенны Yagi (Яги) с рамочным вибратором, расположенным в плоскости антенны называются LFA Yagi (Loop Feed Array Yagi) и характеризуются большим, чем у обычных Яги рабочим диапазоном частот. Одной из популярных LFA Yagi является 5-элементная конструкция Джастина Джонсона (G3KSC) на 6-метровый диапазон.
Схема антенны, расстояния между элементами и размеры элементов, показаны ниже в таблице и на чертеже.
Размеры элементов, расстояний до рефлектора и диаметров алюминиевых трубок, из которых выполнены элементы согласно таблицы: Элементы установлены на траверсе длиной около 4,3 м из квадратного алюминиевого профиля сечением 90×30 мм через изоляционные переходные планки. Вибратор питается по 50-омному коаксиальному кабелю через симметрирующий трансформатор 1:1.
Настройка антенны по минимальному КСВ в середине диапазона производится путем подбора положения торцевых П-образных частей вибратора из трубок диаметром 10 мм. Изменять положение этих вставок нужно симметрично, т.е., если правую вставку выдвинули на 1 см, то и левую нужно выдвинуть на столько же.
Антенна имеет следующие характеристики: максимальное усиление 10,41 дБ на 50,150 МГц, максимальное отношение фронт/тыл 32.79 дБ, рабочий диапазон частот 50,0-50,7 МГц по уровню КСВ=1,1
«Prakticka elektronik»
Антенна наклонная рамка
Горизонтальные рамки весьма популярны. Рик Роджерс (KI8GX) провел эксперименты с «наклонной рамкой», крепящейся к одной мачте.
Для установки варианта «наклонной рамки» с периметром 41,5 м, необходима мачта высотой 10…12 метров и вспомогательная опора высотой около двух метров. К этим мачтам крепятся противоположные углы рамки, которая имеет форму квадрата. Расстояние между мачтами выбирают таким, чтобы угол наклона рамки по отношению к земле был в пределах 30…45°.Точка питания рамки расположена в верхнем углу квадрата. Питается рамка коаксиальным кабелем с волновым сопротивлением 50 Ом. По измерениям KI8GX в этом варианте рамка имела КСВ=1,2 (минимум) на частоте 7200 кГц, КСВ=1,5 (довольно «тупой» минимум) на частотах выше 14100 кГц, КСВ=2,3 во всем диапазоне 21 МГц, КСВ=1,5 (минимум) на частоте 28400 кГц. На краях диапазонов значение КСВ не превышало 2,5. По данным автора некоторое увеличение длины рамки сместит минимумы ближе к телеграфным участкам и позволит получить КСВ меньше 2 в пределах всех рабочих диапазонов (кроме 21 МГц).
QST №4 2002 год
УКВ приемник с ФАПЧ
Предлагаемое вниманию читателей радиоприемное устройство с ФАПЧ рассчитано на прием программ радиовещательных станций в диапазоне УКВ (65.8…73 МГц). Его отличают низкое напряжение питания (6 В) и повышенная термостабильность.
Принципиальная схема радиочастотной части приемника приведена на рис. 1. Сигнал, принятый антенной WA1, поступает на входной контур L1C1C2, настроенный на среднюю частоту УКВ диапазона, а с него — черед цепь R2C3 — на смеситель, выполненный на встречно-параллельно включенных диодах VD2, VD3. Гетеродин собран по схеме мультивибратора со стабилизацией напряжения генерации коллекторными переходами транзисторов VT1, VT2. Частота настройки гетеродинного контура L2C8C9VD4 в два раза ниже частоты принимаемого сигнала. По диапазону гетеродин перестраивается конденсатором переменной емкости С9. Автоподстройку обеспечивает включенная параллельно контуру гетеродина варикапная матрица VD4. На смеситель напряжение гетеродина поступает через цепь R5C6. Резистор R5 уменьшает возможность преобразования смесителя на гармониках гетеродина, что существенно повышает стабильность системы смеситель — гетеродин при перестройке последнего по частоте.
Регенератор
Идея решения этой проблемы — использовать положительную обратную связь — витала в воздухе давно. На рисунке представлена схема типичного для тех времен регенеративного приемника, она взята из более позднего издания, но лишь для того, чтобы больше напоминала современную манеру начертания схем — смотреть привычнее, а суть та же. Ее можно назвать схемой Армстронга. Отличительная черта этой схемы — индуктивная обратная связь.
Типичный регенеративный приемник 1910–20-х годов
Выигрыш в усилении достигается благодаря частичному возврату усиленного сигнала из анодной цепи в сеточную. Тем самым компенсируются потери в контуре, в результате повышается его добротность. А так как амплитуда сигнала в контуре пропорциональна добротности, то интенсивность сигнала растет. Кроме того, полоса пропускания сужается обратно пропорционально добротности, что в данном случае тоже хорошо. Однако накручивать усиление положительной обратной связью можно лишь до известного предела — порога генерации. По достижении этого порога потери в контуре полностью компенсируются и сигнал начинает экспоненциально расти, пока лампа не достигнет насыщения, а усилитель не превратится в генератор.
После этого усиление принятого сигнала уже невозможно, и амплитуда собственных колебаний не зависит от уровня входного сигнала, при условии, что амплитуда сигнала намного меньше амплитуды собственных колебаний. Впрочем, работу регенератора можно представить себе и по‑другому. Так, благодаря положительной обратной связи входной сигнал многократно проходит через усилительный каскад, каждый раз усиливаясь. Очевидно, что наибольшее усиление получается в непосредственной близости от порога генерации, и это главная проблема регенераторов, поскольку около порога к генерации могут привести совершенно незначительные изменения параметров схемы или величины входного сигнала.
Усугубляется это наличием гистерезиса, то есть порог генерации лежит выше порога срыва генерации. Иными словами, чтобы остановить генерацию, нужно значительно ослабить обратную связь. В представленной схеме обратную связь регулировали сближением и отдалением катушек. Что же касается самого детектирования сигналов, то здесь за него отвечает участок «катод — сетка — гридлик R» (резистор утечки сетки, прямая калька с английского). Участок «катод — сетка» работает как диод, а выпрямленное напряжение фильтруется конденсатором и потом усиливается лампой. Такой детектор в нашей литературе назывался сеточным, а в зарубежной — Grid-leak detector.
Впрочем, о гридлике мы еще поговорим. Параллельно схеме Армстронга существовала схема упомянутого Ли де Фореста, названая им «ультраудион» (позднее название переиначили на «ультрааудион»). Схема базируется на трехточечном генераторе.
Ультрааудион Фореста
Эта иллюстрация позаимствована прямиком из патента от 1914 года, по поводу которого и была тяжба длиной в двадцать лет. В более привычном нам исполнении схема существовала во второй половине 1920-х.
Ультрааудион
Однако широкого распространения в качестве регенератора ультрааудион не получил из‑за сложности регулировки обратной связи. Часто обратную связь не трогали, а регулировали усиление лампы изменением тока накала или анодного напряжения. Стоит отметить, что в раннем варианте отсутствовал резистор утечки, это связано с тем, что в первых лампах был плохой вакуум и роль сопротивления утечки выполнял ионный ток. Впоследствии вакуум стал глубже, ионный ток сделался пренебрежимо мал, и инженеры добавили в схему резистор.
Радиоприемник для начинающих
Александр ДМИТРИЕНКО (RA4NR). Радио №5, 2001, с.66,67.
Постройка радиоприемника для прослушивания любительских станций была и остается проблемой для начинающих коротковолновиков и наблюдателей. Журнал «Радио» уже предлагал достаточно простой вариант KB приемника на 160 м, выполненного на одной микросхеме. Автор данной статьи описывает доработку и усовершенствование этого приемника.
Очень понравилась работа приемника прямого преобразования В.Т. Полякова, опубликованного в журнале «Радио» . Конструкция легко повторяема и весьма эффективна. Например, в диапазоне 160 м на не слишком длинную антенну в зимнюю ночь были приняты SSB сигналы радиостанций всех радиолюбительских районов России, а телеграфом и стран Европы: ОН. DL. LZ. SM и др. Приемник оказался простым в налаживании и потому весьма подходящим в качестве первой конструкции начинающего радиолюбителя-коротковолновика. Под впечатлением его хорошей работы была разведена печатная плата и собрано несколько экземпляров на различные диапазоны. Для повышения удобства эксплуатации схема приемника немного усложнена. В основном это коснулось входной цепи, где добавлен плавный аттенюатор R1R2T1, и выходной — собран дополнительный каскад усиления мощности на транзисторах VT1, VT2. В самом приемнике после смесителя улучшена фильтрация сигнала за счет введения П-образного ФНЧ. Реализована также упомянутая автором регулировка усиления по низкой частоте. Полностью схема приведена на рис. 1. Теперь, кроме ручки настройки. в приемнике есть еще три регулятора — «аттенюатор входа», «усиление ВЧ» и «усиление НЧ». с помощью которых общее усиление можно распределить по тракту приемника более рационально в соответствии с конкретной обстановкой в эфире.
Вертикальный диполь
Хорошо известно, что для работы на дальних трассах вертикальная антенна имеет преимущество, так как её диаграмма направленности в горизонтальной плоскости круговая, а главный лепесток диаграммы в вертикальной плоскости прижат к горизонту и имеет малый уровень излучения в зенит.
Однако изготовление вертикальной антенны сопряжено с решением ряда конструктивных проблем. Применение алюминиевых труб в качестве вибратора и необходимость для его эффективной работы установить в основании «вертикала» систему «радиалов» (противовесов), состоящую из большого числа проводов длиной в четверть волны. Если использовать в качестве вибратора не трубу, а провод, мачта, его поддерживающая, должна быть выполнена из диэлектрика и все оттяжки, поддерживающие диэлектрическую мачту, также диэлектрическими, либо разбиты на нерезонансные отрезки изоляторами. Всё это связано с затратами и часто невыполнимо конструктивно, например, из-за отсутствия необходимой площади для размещения антенны. Не забываем, что входное сопротивление «вертикалов» обычно ниже 50 Ом, а это ещё и потребует его согласования с фидером.
ПРОСТОЙ УКВ ЧМ СВЕРХРЕГЕНЕРАТОР
Е.СОЛОДОВНИКОВ, г.Краснодар.
В статьях приведена схема простого УКВ ЧМ приемника типа «сверхрегенератор». От классического сверхрегенератора эта схема отличается способом получения и подачи на базу транзистора колебаний экспоненциальной формы, обеспечивающих «автосуперизацию» (генерацию «вспышек», или, иначе, пакетов высокочастотных колебаний). В данном случае это достигается при помощи базовой RC-цепи R1-R2-C4. Сразу после включения питания переход база-эмиттер транзистора VT1 имеет большое сопротивление. Это продолжается до тех пор, пока напряжение на конденсаторе С4, заряжающемся от источника питания через R1, R2, не достигнет порога открывания. После этого начинает течь ток через переход база-эмиттер, что приводит к увеличению коллекторного тока и, соответственно, к увеличению усиления транзистора. По достижении некоторого значения усиления начинается генерация высокочастотных колебаний. Ток через переход база-эмиттер разряжает конденсатор С4, и процесс повторяется снова.
История
Здесь стоит начать несколько издалека, а именно с изобретения Ли де Форестом трехэлектродной лампы в 1906 году.
Первый триод
На фотографии не видно нити накала — она, вероятно, сгорела или осыпалась. Но так или иначе это первая лампа, способная усиливать сигнал, с нее все и началось. Примерно в 1912 году Ли де Форест и независимо от него Эдвин Армстронг изобретают регенеративный приемник. На самом деле на первенство в этом вопросе претендовали еще несколько человек, но это не так важно. Любопытнее, что начиная с 1914 года Форест с Армстронгом судились за право считаться изобретателем этого девайса и успокоились только в 1934-м, когда патент стал уже неактуален.
Первенство переходило из рук в руки четырнадцать раз и в итоге осталось за Форестом. На этом мы оставим Фореста и будем дальше говорить об Армстронге. Перед инженерами и любителями в то время стояла острая проблема: как выжать из лампы все, что она может. Ведь тогдашние лампы обладали очень скромными параметрами (низкий коэффициент усиления, низкая предельная частота) и при этом очень нескромной ценой.
ПРОСТОЙ УКВ ПРИЕМНИК
Ю.АРАКЕЛОВ, Д.ОПАРИН, С.КОРЖ, г.Харьков. Радио №5, 2001г., с.15.
Эта конструкция разработана членами кружка радиоэлектроники «Сонар» Центра детского и юношеского творчества г.Харькова. Несмотря на свою простоту, приемник позволяет с хорошим качеством принимать сигналы радиостанций даже в условиях «густозаселенного» диапазона.
УКВ приемники на микросхемах К174ХА34, К174ХА42 и других аналогичных пользуются большой популярностью у радиолюбителей. В частности, многих заинтересовали публикации в журнале «Радио» . К сожалению, при всей их простоте в реализованных конструкциях не всегда удается добиться качественного приема радиостанций, так как в УПЧ данных микросхем используется низкая промежуточная частота (около 70 кГц). Главный недостаток приемников с низкой ПЧ — наличие зеркального канала приема, который из-за близости по частоте к основному не может быть подавлен входными контурами. В обычных промышленных супергетеродинных УКВ приемниках промежуточная частота принята равной 10,7 МГц, что обеспечивает хорошее подавление помех зеркального канала. Однако повторение такой конструкции начинающими радиолюбителями связано с большими трудностями, так как здесь не обойтись без применения сложной измерительной аппаратуры. Поэтому для создания кружковцами простого УКВ радиоприемника был выбран промышленный модуль усилителя промежуточной частоты звука телевизионных приемников (УПЧЗ-1) с промежуточной частотой 6,5 МГц, частотный детектор и фильтры которого не требуют настройки. В качестве смесителя использована широко распространенная микросхема К174ПС1.