Содержание / Contents
- 1 Схема измерителя индуктивности
- 2 Калибровка измерителя индуктивности
- 3 Плата и сборка
- 4 Корпус
- 5 Примеры измерений 5.1 Результаты измерений индуктивности 100 мкГ
- 5.2 Результаты измерений индуктивности 470 мкГ
6 Заключение
7 Источники
8 Файлы
Обычно, измерять индуктивность приходится нечасто. В отношении себя я бы даже сказал — очень редко. Выпаял, например, с какой-нибудь платы катушку, а она без маркировки. Интересно же узнать, какая у неё индуктивность, чтобы потом где-нибудь применить.
Или сам намотал катушку, а проверить нечем. Для таких эпизодических измерений я посчитал нерациональным приобретение отдельного прибора. И вот я начал искать какую-нибудь очень простую схему измерителя индуктивности
Особых требований по точности я не предъявлял, — для любительских самоделок это не столь важно
Схема lc метра на микроконтроллере
Настройка и функции
Сердце устройства — микроконтроллер PIC18F2520. Для стабильной работы генератора лучше всего использовать неполярные или танталовые конденсаторы, такие как C3 и C4. Можно использовать любое реле, соответствующее напряжению (3-5 вольт), но желательно с минимально возможным контактным сопротивлением в замкнутом положении. Для звука используется зуммер без встроенного генератора или обычный пьезоэлемент.
При первом запуске собранного устройства программа автоматически запускает режим регулировки контрастности дисплея. С помощью кнопок 2/4 установите приемлемый контраст и нажмите OK (3). После выполнения этих действий устройство следует выключить и снова включить. В меню есть раздел «Настройка» для некоторых настроек работы прибора. В подменю «Конденсатор» необходимо указать точное значение используемого калибровочного конденсатора (C_cal) в пФ. Точность указанной оценки напрямую влияет на точность измерения. Можно проверить работу самого генератора с помощью частотомера в контрольной точке «B», но лучше использовать систему контроля частоты, уже встроенную в подменю «Генератор».
Выбирая L1 и C1, необходимо получить стабильные показания частоты в диапазоне 500-800 кГц. Высокая частота положительно влияет на точность измерения; при этом с увеличением частоты может ухудшиться стабильность работы генератора. За частотой и стабильностью генератора, как я уже сказал выше, удобно следить в разделе меню «Осциллятор». Если у вас есть внешний откалиброванный частотомер, вы можете откалибровать частотомер LC-метр. Для этого подключите внешний частотомер к контрольной точке «B» и с помощью кнопок +/- в меню «Oscillator» выберите постоянную «K», чтобы показания обоих частотомеров совпадали. Для корректной работы системы индикации состояния аккумулятора необходимо настроить резистивный делитель на резисторах R9, R10, затем установить перемычку S1 и записать значения в поля раздела «Аккумулятор».
Стартер
При подаче напряжения в стартере возникает тлеющий разряд. Нагреваясь биметаллические пластины, из которых сделаны электроды стартера, замыкаются, в результате чего ток в цепи значительно увеличивается. Увеличившийся ток разогревает электроды люминесцентной лампы, и они начинают испускать электроны. Одновременно с этим электроды стартера остывают, биметаллическая пластина изгибается и цепь разрывается. Таким образом, стартер нужен только в момент запуска, в дальнейшей работе он не участвует и его электроды остаются разомкнутыми.
Будет интересно Как подключить комнатную антенну к телевизору: практические советы
При этом на дросселе, благодаря самоиндукции, возникает кратковременный высоковольтный импульс, который приводит к газовому разряду и зажиганию лампы. Когда лампа горит, напряжение на её электродах ниже напряжения сети на величину эдс самоиндукции, возникающей в дросселе при зажигании лампы. Таким образом дроссель препятствует возрастанию тока в рабочем режиме лампы. Недостатками данной схемы являются продолжительное время включения светильника, по мере износа дроссель начинает издавать гул, низкая эффективность при отрицательных температурах.
Стартеры.
↑ Схема измерителя индуктивности
Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.
В качестве средства измерения и индикации в схеме, описанной в статье, применяется цифровой вольтметр с чувствительностью 200 мВ
, который продаётся в виде готового модуля. Я же решил использовать для этой цели обычный цифровой мультиметрUNI-T M838 на пределе измерения200 мВ постоянного напряжения. Соответственно, схема упрощается, и в итоге приобретает вид приставки к мультиметру.
Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.
Я не буду повторять описание работы схемы, всё вы можете прочитать в оригинальной статье (архив внизу). Скажу только немного о калибровке.
Цифровой мультиметр
В отличие от аналоговых, этот мультиметр позволяет с легкостью определять интересуемые величины, при этом его точность измерений гораздо выше по сравнению со стрелочными аппаратами.
Также наличие переключателя между различными характеристиками электричества исключает возможность перепутать то или иное значение, поскольку пользователю не нужно разбираться в градации шкалы показаний.
Результаты измерений отображаются на дисплее (в более ранних моделях – светодиодных, а в современных – жидкокристаллических). За счет этого цифровой мультиметр комфортен для профессионалов и прост и понятен в использовании для новичков.
Что зовется индуктивным сопротивлением
Когда на катушку подается переменное напряжение, ток, протекающий через нее, изменяется в соответствии с приложенным напряжением. Это вызывает изменение магнитного поля, которое создает электродвижущую силу, предотвращающую происходящее.
Схема измерения
В такой схеме существует зависимость электрических параметров двух типов — условная и индуктивная. Они обозначаются R и XL соответственно.
В нормальных условиях блок питания назначается. Однако на реактивных элементах он равен нулю. Это связано с постоянным изменением направления переменного тока на противоположное.
В течение периода колебаний энергия дважды накачивается в катушку и столько же раз возвращается к источнику.
Определение индуктивности
Настройка измерителя индуктивности
Для того чтобы откалибровать приставку для измерения индуктивности понадобятся несколько индукционных катушек с известной индуктивность (например, 100 мкГн и 15 мкГн).
Катушки по очереди подключаются к приставке и, в зависимости от индуктивности, движком подстроечного резистора на экране мультиметра выставляется значение 100,0 для катушки на 100 мкГн и 15 для катушки на 15 мкГн с точностью 5%.
По такому же методу устройство настраивается и в других диапазонах. Важным фактором является то, что для точной калибровки приставки необходимы точные значение тестовых катушек индуктивности.
Альтернативным методом определения индуктивности является программа LIMP. Но этот способ требует некоторой подготовки и понимания работы программы.
Но как в первом, так и во втором случае точность подобных измерений индуктивности будет не очень высока. Для работы с высокоточным оборудованием данный измеритель индуктивности подходит плохо, а для домашних нужд или для радиолюбителей будет отличным помощником.
Приставка к мультиметру для измерения малых индуктивностей без дополнительного источника питания
Имеющийся у меня уже несколько лет мультиметр М8908 измеряет индуктивности, но малые величины (менее 100 мкГн) на низшем пределе 2000 мкГн измерить практически невозможно, так как результат становится соизмерим с погрешностью прибора
Мое внимание привлекло ВИДЕО Артема Касицына «Приставка для измерения индуктивности к мультиметру на таймере 555». Здесь прямой отсчет измеряемой величины индуктивности, без пересчета по формулам
Правда, имея осциллограф С1-49, автор не указал никаких данных (потребляемый ток, частота и амплитуда импульсов генератора), необходимых для повторения и настройки конструкции. Чтобы измерить эти параметры пришлось собрать задающий генератор по схеме автора на макете. Оказалось: частота генератора около 50 кГц, амплитуда импульсов на выходе 3,5 вольта при питании 5 вольт.
Основной задачей было избавиться от источника питания приставки 9 вольт. После обследования моего мультиметра выяснилось, что на гнездах «Е» — эмиттер p-n-p колодки транзисторов присутствует стабилизированное напряжение +3 вольта (относительно вывода «COM»).
Из трех имеющихся у меня мультиметров в режиме измерения «200 мв» на выходе транзисторов в гнезде «Е» p-n-p на двух имелось напряжение +3 вольта. Это М8908 и MAS830L. В мультиметре DT830B напряжение +3 вольта появлялось только в режиме измерения усиления транзисторов – он не подходил для питания приставки. Получилась вот такая схема с питанием от самого мультиметра.
Задающий генератор из-за низкого напряжения питания 3 вольта пришлось собрать на двух элементах микросхемы К561ЛН2, остальные элементы микросхемы работают как буферные каскады. Правая часть схемы осталась без изменений, за исключением диода Д18ВП. Он показал себя значительно более чувствительным и линейным из полутора десятков различных типов диодов. Для получения точных показаний при измерении индуктивностей ниже 30 мкГн параллельно резистору 8,2 кОм следует подобрать конденсатор 4,7 – 6,8 пФ в уже готовой конструкции. Отверстий на печатной плате для него нет, пришлось досверливать. На эмиттерах транзисторов амплитуда меандра составила 2 вольта при частоте 55 кГц. Увеличение емкости в базовой цепи транзисторов с 1000 пФ до 4700 пФ позволило поднять напряжение на индуктивности во время проведения измерений более, чем на 10%. Напряжение меандра 2 вольта на эмиттерах оказалось достаточным для калибровки приставки. Так, при измерении заводской (эталонной) индуктивности 100 мкГн на милливольтметре можно было выставить переменным резистором 50 кОм напряжение до 130 мВ, то есть запас по чувствительности 30%. Работоспособность задающего генератора сохраняется при снижении напряжении питания до 2,4 вольта – это для справки. В мультиметре стабилизированное напряжение 3 вольта.
После всех доработок приставка точно показывала величину заводских (эталонных) индуктивностей (в пределах их допустимой погрешности) от 5 до 140 мкГн . Ниже двух мкГн импульсы на катушке малы и не открывают даже германиевый Д18. Измерить такую катушку можно включив ее последовательно с заведомо известной 10-20 мкГн. Настройка такая же, как в оригинале – по имеющейся заводской индуктивности выставить с помощью переменного резистора 50 кОм ее величину на милливольтметре мультиметра. В моем случае это 100 мкГн.
Приставка собрана в корпусе от старого аккумулятора фонарика размерами 45*25*21 мм и снабжена тремя проволочными выводами: «+3вольта», «общий СОМ» и «вход милливольтметра». Ток, потребляемый приставкой без подключенной индуктивности менее 0,5 мА, а наибольший (до трех мА) – при измерении индуктивности менее 15 мкГн, что совершенно не нагружает внутренний стабилизатор напряжения мультиметра.
Такая конструкция получилась в итоге.
В заключении хочется отметить, что в приставке важна стабильность задающего генератора по частоте и амплитуде, а не значение самой частоты. Теоретически при повышении частоты до 500 – 700 кГц значения измеряемых индуктивностей сдвинутся в пределы 0 – 20 мкГн.
Измеритель индуктивности для мультиметра
Несмотря на то, что при работе с электроникой определять индуктивность требуется редко, иногда это все же необходимо и мультиметры с измерением индуктивности найти сложно. В этой ситуации поможет специальная насадка к мультиметру, позволяющая измерить индуктивность.
Часто для такой приставки используется цифровой мультиметр, который настроен на измерение напряжения с порогом точности измерения 200 мВ, который можно приобрести в любом магазине готовой электро- и радиотехники. Это позволит вам создать простую приставку к цифровому мультиметру.
Измерительные устройства для конкретной оценки значения измеряемой емкости включают микрофарадметры, действие которых основано на зависимости тока или напряжения в цепи переменного тока от величины входящей в нее измеренной емкости. Величина емкости определяется шкалой компаратора.
В более широком смысле, для измерения характеристик конденсаторов и катушек индуктивности используются симметричные мосты переменного тока, позволяющие получить небольшую погрешность измерения (до 1%). Питание моста осуществляется от генераторов, работающих на фиксированной частоте 400-1000 Гц, в качестве индикаторов используются электрические выпрямители или милливольтметры, а также осциллографические индикаторы.
Эта мера достигается за счет уравновешивания моста в результате попеременной регулировки его двух плеч. Показания снимаются с конечностей рук тех плеч, которые служат для уравновешивания моста.
В качестве примера рассмотрим измерительные мосты, являющиеся основой индуктивности EZ-3 (рис. 1) и измерителя емкости E8-3 (рис. 2).
При мостовых весах (рис. 1) индуктивность катушки и ее добротность определяются по формулам Lx = R1R2C2; Qx = wR1C1.
При балансировке перемычек (рис.2) измеряемая емкость и сопротивление потерь определяются по формулам
Измерение емкости и индуктивности методом амперметра-вольтметра
Для измерения малых емкостей (менее 0,01 — 0,05 мкФ) и высокочастотных индукторов в спектре их рабочих частот широко используются резонансные методы. Резонансный контур обычно содержит высокочастотный генератор, индуктивно или через емкость, подключенный к измерительному контуру LC. В качестве индикаторов резонанса используются высокочастотные чувствительные устройства, которые реагируют на ток или напряжение.
Методом амперметра-вольтметра определяются относительно большие емкости и индуктивности при питании измерительной цепи от низкочастотного источника 50 — 1000 Гц. Для измерения можно использовать схемы на рис.
По показаниям приборов импеданс
где это находится
из этих выражений можно найти
Когда можно пренебречь активными потерями в конденсаторе или катушке индуктивности, используйте схему рис. 4. В этом случае
Измерение взаимной индуктивности 2-х катушек можно проводить методом амперметра-вольтметра (рис. 5) и методом попеременно соединенных катушек.
При измерении по второму методу индуктивности 2-х поочередно соединенных катушек измеряются при включении катушек согласным LI и счетчиком LII. Взаимная индуктивность рассчитывается по формуле
Измерение индуктивности можно выполнить одним из описанных выше способов.
Детали ТИИ
В ТИИ применены резисторы R1 … R3 с допуском (допустимым отклонением от номинала) не более 1 … 2 % типа С2-13, С2-14, С2-29В, С2-31. Остальные — типа С2-33, МЛТ с мощностью рассеивания 0,125 Ватт. Подстроечный резистор RP1 — типа СП4-1. Конденсаторы С2, С6 — оксидные К50 — 35 или малогабаритные зарубежного производства. Остальные конденсаторы керамические типа КМ, К10-7, К10-17. Диод VD1 КД520 … КД522 с любым буквенным индексом. Светодиод HL1 можно заменить любыми суперъяркими, например: белым 13W25C-B (3 мм., 20 мА); зелёным 13G20C-B (3 мм., 20 мА); жёлтым 13Y20C-B (3 мм., 20 мА). Интегральный стабилизатор DA1 можно заменить отечественным КР1157ЕН502. Микросхема DD1 К561ТЛ1 имеет зарубежный аналог CD4093А. Галетный переключатель SA1 — МПН-1 (10П1Н). Тумблер SA2 — SМТS-102-A2, SМТS-102-2A2 или любой, подходящий по габаритам. Батарея GB1 «Корунд» 6F22 или никель – кадмиевый аккумулятор зарубежного производства типа «ANSMANN» с номинальным рабочим напряжением +8,4 Вольт и ёмкостью 120 мА / час. Аккумулятор «ANSMANN» имеет такой же типоразмер корпуса, что и батарея «Корунд».
Печатная плата ТИИ выполнена из односторонне фольгированного гетинакса или стеклотекстолита размерами 50 х 40 х 1,5 мм (см. рисунки 2 и 3 ). Диаметр отверстий на печатной плате под микросхемы — 0,7 … 0,8 мм, под остальные радиоэлектронные компоненты – 0,8 … 1 мм, под соединительные проводники — 1…1,2 мм., под крепёжные отверстия – 3 мм.
Рисунок печати (см. рисунок 3) может быть перенесён на медную фольгу методом термопереноса или переведён при помощи копирки и обведён кислотостойкими перманентными маркерами. Подойдут, например, маркеры centropen 2846 CE PERMANENT или другие, используемые для подписывания компьютерных CD – дисков.
Пайку радиоэлектронных компонентов следует вести заземлённым жалом паяльника. Обойтись без заземления можно, применив для ИМС специальные розетки, и установив в них ИМС по окончании пайки остальных деталей.
Плата ТИИ устанавливается в прямоугольном пластмассовом корпусе подходящих размеров (например, в мыльнице с наружными размерами 100 х 60 х 30 мм.). Плата крепится винтами М3 с полукруглыми головками к передней стенке корпуса (к верхней крышке мыльницы). С обратной стороны крышки на винты надеваются полые цилиндры (h = 17 мм.), «одевается» ПП, а затем накручиваются гайки с прокладкой простых и пружинных плат. Возможные варианты фальшпанелей ТИИ в масштабе 1:1 (размер 95 х 54 мм.) для корпуса — мыльницы с указанными выше размерами приводятся на рисунках 4А, 4Б, 4В, 4Г .
Гнезда XS1 «Lx» и XS2 «Выход» составлены из двух (для каждого гнезда) гнёздных контактов, вынутых из кабельных разъёмов. К таким относится, например, разъём (штекер гнёздный) 2РМ24КПЭ19Г1В1 и многие другие подобные. Контакты гнёзд XS1 и XS2 впаиваются непосредственно в печатную плату.
↑ Мой вариант схемы измерителя ESR
Я внес минимальные изменения. Корпус — от неисправного «электронного дросселя» для галогеновых ламп. Питание — батарея «Крона» 9 Вольт и стабилизатор 78L05 . Убрал переключатель — измерять LowESR в диапазоне до 200 Ом надо очень редко (если приспичит, использую параллельное подключение). Изменил некоторые детали. Микросхема 74HC132N, транзисторы 2N7000 (to92) и IRLML2502 (sot23). Из-за увеличения напряжения с 3 до 5 Вольт отпала необходимость подбора транзисторов. При испытаниях устройство нормально работало при напряжении батареи свежей 9,6 В до полностью разряженной 6 В.
Кроме того, для удобства, использовал smd-резисторы. Все smd-элементы прекрасно паяются паяльником ЭПСН-25. Вместо последовательного соединения R6R7 я использовал параллельное соединение — так удобнее, на плате я предусмотрел подключение переменного резистора параллельно R6 для подстройки нуля, но оказалось, что «нуль» стабилен во всем диапазоне указанных мною напряжений.
Удивление вызвало то, что в конструкции «разработанной в журнале» перепутана полярность подключения VT1 — перепутаны сток и исток (поправьте, если я неправ). Знаю, что транзисторы будут работать и при таком включении, но для редакторов такие ошибки недопустимы.
Как проверить стартер люминесцентной лампы
Процесс проверки люминесцентных осветительных приборов предполагает не только проверку целостности спирали внутри лампочки, но и работу систем разгона и запуска.
- конденсаторы, которые не должны вздуваться, деформироваться или взрываться под воздействием чрезмерного напряжения в электрической сети;
- колба источника света, которую нельзя затемнять.
Целостность конденсатора проверяют мультиметром в режиме омметра с максимально возможным диапазоном измерения сопротивления.
Если показания тестера меньше 2,0 МОм, можно предположить, что в конденсаторе имеется недопустимый ток утечки. Как показывает практика, оптимальным вариантом при проведении самостоятельных ремонтных работ будет полная замена всех изношенных элементов (стартера и дроссельной заслонки) на новые устройства аналогичного типа.
Строение люминесцентной лампы
Такие источники дневного света в своей конструкции обязательно содержат стеклянную колбу различной формы. В ней находятся спиральные электроды и инертный газ (пары ртути).Сверху колба покрыта специальным слоем из люминофоров.
Будет интересно Как настроить чувствительность микрофона своими руками
Принцип работы лампы таков:
- при поступлении электрического тока на электроды (спирали) они нагреваются;
- в результате нагревания спиралей происходит зажигание газа;
- под действием него начинает светиться люминофор.
Из-за того, что электроды имеют ограниченные размеры, имеющегося в сети напряжения недостаточно для розжига электродов. Вот для этого и используют дроссель. А чтобы предотвратить чрезмерный перегрев спирали в лампы устанавливают стартер. Он после зажигания газа запускает процессы, приводящие к отключению накала электродов.
Проведение замеров индуктивности
После сборки приставку к мультиметру необходимо протестировать. Есть несколько способов, как проверить устройство:
- Определение индуктивности измерительной приставки. Для этого необходимо замкнуть два провода, предназначенных для подключения к индуктивной катушке. Например, при длине каждого провода и перемычки 3 см образуется один виток индукционной катушки. Этот виток обладает индуктивностью 0,1 – 0,2 мкГн. При определении индуктивности свыше 5 мкГн данная погрешность не учитывается в расчетах. В диапазоне 0,5 – 5 мкГн при измерении необходимо брать в расчет индуктивность устройства. Показания менее 0,5 мкГн являются примерными.
- Измерение неизвестной величины индуктивности. Зная частоту катушки, при помощи упрощенной формулы расчета индуктивности можно определить это значение.
- В случае, когда порог срабатывания кремниевых p-n переходов выше амплитуды измеряемой электрической цепи (от 70 до 80 мВ), можно измерить индуктивность катушек непосредственно в самой схеме (предварительно обесточив ее). Поскольку собственная емкость приставки имеет большое значение (25330 пФ), погрешность подобных измерений будет составлять не более 5% при условии, что емкость измеряемой цепи не превышает 1200 пФ.
При подключении приставки непосредственно к катушкам расположенным на плате применяется проводка длиной 30 сантиметров с зажимами для фиксации или щупами. Провода скручиваются с расчетом один виток на сантиметр длины. В таком случае образуется индуктивность приставки в диапазоне 0,5 – 0,6 мкГн, которую также необходимо учитывать при измерениях индуктивности.
Катушка индуктивности
это изолированный провод, многократно обернутый вокруг сердечника.
Обычно рама бывает цилиндрической или тороидальной.
Индуктивность считается основной характеристикой катушки. Это качество выражает способность элемента преобразовывать переменный ток в магнитное поле.
Важно! Даже одиночный провод обладает магнитными свойствами, если ток, протекающий по нему, изменяется. Воздействие лагеря направлено таким образом, чтобы противодействовать его изменению
Если он увеличивается, поле его замедляет, а если ослабевает, то усиливает.
Индукторы
Определение направления силовых линий подчиняется «правилу большого пальца»: если большой палец руки, сжатой в кулак, указывает в направлении изменения текущей силы, сомкнутые пальцы указывают направление поля силовых линий.
Следовательно, в случае, если проволока наматывается многократно на цилиндрическую основу, силовые линии разных витков складываются и проходят через ось.
Чтобы увеличить индуктивность, в центре цилиндра помещается ферромагнитный сердечник.
Приложение 1
Дорогие друзья! В этом приложении ребусы, как обычно имеют близкую к статье тематику. Ранее разгадывать ребусы было не очень удобно. Но теперь под каждым из 3 ребусов имеется развёрнутый ответ. В развёрнутом ответе объясняется почему именно так разгадывается данный ребус. Для того, чтобы увидеть ответ, достаточно нажать триггерную кнопку «скрыть/показать текст». Потренируйтесь!
Показать / Скрыть текст
Ребус 1. Варикап [ ква
рц(23), период, перемычка (89),п ереходник(1)]
Показать / Скрыть текст
Ребус 2. Вариометр [ варикап, Ом, барет
тер(453) ].
Показать / Скрыть текст
Ребус 3. Дроссель [ д, оптро
н(45), Гаусс, тел ефон(23), филь тр(4) ].
Кроме того, если Вы заинтересуетесь разгадыванием ребусов, то сможете скачать Правила для разгадывания ребусов радиотехнической тематики прямо здесь. Файл называется «rebus_rules for solving puzzles» и находится он на Яндекс.Диске.
Правила разгадывания ребусов
↑ Корпус
Корпус можно изготовить из любого подходящего материала. Я применил для корпуса кусок пластикового монтажного короба 40×40 из отходов. Подогнал под размеры платы длину и высоту короба, получились габариты 67×40×20.
Сгибы в нужных местах делаем так. Нагреваем феном место сгиба до такой температуры, чтобы пластик размягчился, но ещё не плавился. Затем быстро прикладываем к заранее подготовленной поверхности прямоугольной формы, сгибаем под прямым углом и так держим до тех пор, пока пластик не остынет. Для быстрого остывания лучше прикладывать к металлической поверхности.
Чтобы не получить ожогов, используйте рукавицы или перчатки. Сначала рекомендую потренироваться на небольшом отдельном куске короба.
Затем в нужных местах делаем отверстия. Пластик очень легко обрабатывается, так что на изготовление корпуса уходит мало времени. Крышку я зафиксировал маленькими шурупами. На принтере распечатал наклейку, сверху заламинировал скотчем и приклеил к крышке двусторонней «самоклейкой».
Как проверить дроссель люминесцентного светильника?
Дроссель представляет собой катушку индуктивности, намотанную на ферромагнитном сердечнике с большой величиной магнитной проницаемости. Он является составной частью электромагнитной пускораспределительной аппаратуры (ЭмПРА). На этапе включения ЛДС он вместе со стартером обеспечивает разогрев катодов и затем создает высоковольтный импульс (до 1000 В) для создания тлеющего разряда в колбе за счет, свойственной ему электродвижущей силы (ЭДС) самоиндукции.
Будет интересно Как сделать зарядное устройство для аккумулятора автомобиля своими руками
После выключения из работы стартера дроссель использует свое индуктивное сопротивление для поддержки тока разряда через ЛДС на уровне, необходимым для постоянной и стабильной ионизации газово-ртутной смеси, используемой в колбе. Величина индуктивности такова, что сопротивление дросселя для переменного тока защищает спирали электродов от перегрева и перегорания.
Проверить исправность дросселя люминесцентной лампы можно путём измерения сопротивления с помощью омметра. Он входит в состав комбинированного прибора электрика.
Если проверить дроссель лампы дневного света мультиметром, можно обнаружить либо его исправное состояние, при котором измеренное активное сопротивление соответствует его паспортным данным, либо столкнуться с несоответствиями. Проанализировав их, можно сделать вывод о характере обнаруженного дефекта. Замыкания сопровождаются неприятным запахом и изменением цвета защитной изоляции. При любом внешнем проявлении или обнаруженном отклонении величины измеренного сопротивления от номинального его значения дроссель необходимо заменить.
Проверка дросселя люминесцентного светильника.