Как разработать прецизионный источник тока на операционных усилителях

Защита от помех DC

Раздельное питание

Один из лучших способов защититься от помех по питанию – питать силовую и логическую части от отдельных источников питания: хороший малошумящий источник питания на микроконтроллер и модули/сенсоры, и отдельный на силовую часть. В автономных устройствах иногда ставят отдельный аккумулятор на питание логики, и отдельный мощный – на силовую часть, потому что стабильность и надёжность работы очень важна.

Искрогасящие цепи DC

При размыкании контактов в цепи питания индуктивной нагрузки происходит так называемый индуктивный выброс, который резко подбрасывает напряжение в цепи вплоть до того, что между контактами реле или выключателя может проскочить электрическая дуга (искра). В дуге нет ничего хорошего – она выжигает частички металла контактов, из за чего они изнашиваются и со временем приходят в негодность. Также такой скачок в цепи провоцирует электромагнитный выброс, который может навести в электронном устройстве сильные помехи и привести к сбоям или даже поломке! Самое опасное, что индуктивной нагрузкой может являться сам провод: вы наверняка видели, как искрит обычный выключатель света в комнате. Лампочка – не индуктивная нагрузка, но идущий к ней провод имеет индуктивность. Для защиты от выбросов ЭДС самоиндукции в цепи постоянного тока используют обыкновенный диод, установленный встречно-параллельно нагрузке и максимально близко к ней. Диод просто закоротит на себя выброс, и все дела:

Где VD – защитный диод, U1 – выключатель (транзистор, реле), а R и L схематично олицетворяют индуктивную нагрузку. Диод нужно ОБЯЗАТЕЛЬНО ставить при управлении индуктивной нагрузкой (электромотор, соленоид, клапан, электромагнит, катушка реле) при помощи транзистора, то есть вот так:

При управлении ШИМ сигналом рекомендуется ставить быстродействующие диоды (например серии 1N49xx) или диоды Шоттки (например серии 1N58xx), максимальный ток диода должен быть больше или равен максимальному току нагрузки.

Фильтры

Если силовая часть питается от одного источника с микроконтроллером, то помехи по питанию неизбежны. Простейший способ защитить МК от таких помех – конденсаторы по питанию как можно ближе к МК: электролит 6.3V 470 uF (мкФ) и керамический на 0.1-1 мкФ, они сгладят короткие просадки напряжения. Кстати, электролит с низким ESR справится с такой задачей максимально качественно.

Ещё лучше с фильтрацией помех справится LC фильтр, состоящий из индуктивности и конденсатора. Индуктивность нужно брать с номиналом в районе 100-300 мкГн и с током насыщения больше, чем ток нагрузки после фильтра. Конденсатор – электролит с ёмкостью 100-1000 uF в зависимости опять же от тока потребления нагрузки после фильтра. Подключается вот так, чем ближе к нагрузке – тем лучше:

Подробнее о расчёте фильтров можно почитать здесь.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Правило №2: у качественных ИБП в конструкции блока должен работать надежный фильтр в/ч сигналов.

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Драйвер полевого транзистора

Если всё же требуется подключать нагрузку к n-канальному транзистору
между стоком и землёй, то решение есть. Можно использовать готовую
микросхему — драйвер верхнего плеча. Верхнего — потому что транзистор
сверху.

Выпускаются и драйверы сразу верхнего и нижнего плеч (например,
IR2151) для построения двухтактной схемы, но для простого включения
нагрузки это не требуется. Это нужно, если нагрузку нельзя оставлять
«висеть в воздухе», а требуется обязательно подтягивать к земле.

Рассмотрим схему драйвера верхнего плеча на примере IR2117.

Схема не сильно сложная, а использование драйвера позволяет наиболее
эффективно использовать транзистор.

191.3759-01 ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ МТЗ-1221 (14/28)

Преобразователь напряжения (конвертер) – это устройство для изменения уровня тока, питающего электрооборудование. Среди различных направлений применения этих приборов – их использование в схемах электроснабжения транспортных средств, оснащенных устройствами с разным напряжением потребляемого тока.

Все электрооборудование тракторов BELARUS, за исключением аккумуляторов, рассчитано на потребление безопасного для жизни и здоровья человека постоянного тока в 12 вольт и соединено по схеме, использующей в качестве одного из проводов металлические детали машины.

Входящие в состав электрооборудования тракторов МТЗ конвертеры выполняют преобразование выдающего 12 вольт генератора машины в необходимые для зарядки аккумуляторных батарей 24 вольта.

Схемы питания операционных усилителей

Схем включения ОУ существует большое количество, и они не ограничиваются представленными в статье.

Данной схеме присуще высокое входное сопротивление, и напротив, низкий показатель на входе.

Напряжение попадает на инвертирующий вход, а прямой вход, в свою очередь, заземлён.

Работа от однополярного источника питания

Двухполярное питание в настоящее время задействуется в работе крайне редко, поэтому на замену пришёл другой способ – работа от однополярного источника питания. В цепь вводится дополнительная деталь – цепь дополнительного смещения.

Работа от двухполярного источника питания

Основополагающей составляющей ОУ выступает дифференциальный каскад, поддерживающийся при помощи транзисторов. Для снабжения прибора питанием необходим источник с отрицательным и положительным напряжением. Единицы измерения должны совпадать по обоим показателям.

В стандартную схему подключения операционных усилителей входит несколько составляющих: два конденсатора, двухполярный источник питания, а также защитные диоды.

Последние из перечисленных составляющих являются необязательными, но для того чтобы понять, как работает операционный усилитель, лучше учесть это в схеме.

При подключении конденсаторов следует учитывать, что оно должно быть максимально близко к выходам схемы. Составляющие отвечают за развязку шин.

Развитие технологии IGBT-транзисторов фирмой IR

Компания International Rectifier является признанным лидером в разработке и производстве высококачественных силовых полупроводниковых приборов. Диапазон продукции IR достаточно широк и объединяет в себе различные направления. Это и дискретные устройства (биполярные транзисторы с изолированным затвором (IGBT), мощные полевые транзисторы (MOSFET) и модульные сборки на основе кристаллов дискретных элементов, а также ИМС для управления энергосберегающими источниками света, силовые ИМС для электронных балластов люминесцентных ламп и ламп высокого давления, микросхемы драйверов IGBT и MOSFET, включая высоковольтные микросхемы HVIC, продукты на базе интегрированной платформы IMotion и цифровые контроллеры для управления электроприводом, продукты платформы SupIRBuck, микроэлектронные твердотельные реле. В настоящий момент фирма выпускает широкую номенклатуру IGBT, для производства которых используются технологии 4-го (4 PT IGBT), 5-го (5 Non-PT IGBT) и 6-го поколений (DS Trench IGBT). Для первых двух технологий в полевом транзисторе используется планарный затвор, а в последнем (DS Trench) — вертикальный. Собственно, структуры приборов для данных технологий разработаны уже давно и используются производителями на протяжении многих лет. Все дело в нюансах, которые дают возможность производителю реализовать те или иные преимущества технологии. И цена производства кристалла имеет не последнее значение. На рис. 2 показана эволюция технологии IGBT-транзисторов фирмы IR.

Рис. 2. Эволюция технологии IGBT-транзисторов в IR

Новые транзисторы оптимизированы для работы на частотах переключения до 20 кГц, и для снижения энергии потерь на проводимости и переключении в них использована Trench-технология. Эти IGBT с антипараллельным ультрабыстрым диодом имеют энергию переключения ETS и более низкое напряжение насыщения коллектор-эмиттер VCE(on), чем IGBT PT и NPT типа. Кроме того, ультрабыстрый диод с мягким восстановлением дополнительно повышает эффективность преобразования и снижает уровень генерируемых помех.

Наиболее важные параметры.

Коэффициент передачи тока от 15 и выше.

Максимально допустимое напряжение коллектор-эмиттер – 60 в, импульсное – 160 в – у КТ805А, КТ805АМ. 135 в – у КТ805Б, КТ805БМ, КТ805ВМ.

Напряжение насыщения коллектор-эмиттер при коллекторном токе 5 А и базовом 0,5А: У транзисторов КТ805А, КТ805АМ – не более 2,5 в. У транзисторов КТ805Б, КТ805БМ – 5 в.

Напряжение насыщения база-эмиттер при коллекторном токе 5 А и базовом 0,5А: У транзисторов КТ805А, КТ805АМ – не более 2,5 в. У транзисторов КТ805Б, КТ805БМ – 5 в.

Максимальный ток коллектора. – 5 А.

Обратный импульсный ток коллектора при сопротивлении база-эмиттер 10Ом и температуре окружающей среды от +25 до +100 по Цельсию, у транзисторов КТ805А, КТ805АМ – – не более 60 мА, при напряжении колектор-эмиттер 160в. У транзисторов КТ805Б, КТ805БМ – – не более 70 мА, при напряжении колектор-эмиттер 135в.

Обратный ток эмиттера при напряжении база-эмиттер 5в не более – 100 мА.

Рассеиваемая мощность коллектора(с теплоотводом). – 30 Вт.

Граничная частота передачи тока – 20 МГц.

Транзисторы КТ805 и качер Бровина.

Качер Бровина – черезвычайно популярное устройство, представляющее из себя фактически, настольный трансформатор Тесла – источник высокого напряжения. Схема самого генератора предельно проста – он очень напоминает обычный блокинг-генератор на одном транзисторе, хотя как утверждают многие, им вовсе не является.

В качере(как в общем-то и в блокинг-генераторе) теоретически, можно использовать любые транзисторы и радиолампы. Однако, практически очень неплохо себя зарекомендовали именно транзисторы КТ805, в частости – КТ805АМ.

В самостоятельной сборке качера самый серьезный момент – намотка вторичной обмотки(L2). Как правило она содержит в себе от 800 до 1200 витков. Намотка производится виток, к витку проводом диаметром 0,1 – 0,25 мм на диэлектрическое основание, например – пластиковую трубку. Соответствено, габариты полученного трансформатора (длина) напрямую зависят от толщины используемого провода. Диаметр каркаса при этом некритичен – может быть от 15мм, но при его увеличении эффективность качера должна возрастать (как и ток потребления).

После намотки витки покрываются лаком(ЦАПОН). К неподключенному концу катушки можно подсоединить иглу – это даст возможность наблюдать «стример» – коронообразное свечение, которое возникнет на ее кончике, во время работы устройства. Можно обойтись и без иглы – стример точно так же будет появляться на конце намоточного провода, без затей отогнутого к верху.

Вторичная обмотка представляет из себя бескаркасный четырехвитковой соленоид намотаный проводом диаметром(не сечением!) от 1,5 до 3 мм. Длина этой катушки может составлять от 7-8 до 25-30 см, а диаметр зависит от расстояния между ее витками и поверхностью катушки L2. Оно должно составлять 1 – 2 см. Направление витков обеих катушек должно совпадать обязательно.

Резисторы R1 и R2 можно взять любого типа с мощностью рассеивания не менее 0,5 Вт. Конденсатор C1 так же любого типа от 0,1 до 0,5 мФ на напряжение от 160 в. При работе от нестабилизированного источника питания необходимо подсоединить параллельно C1 еще один, сглаживающий конденсатор 1000 – 2000 мФ на 50 в. Транзистор обязательно устанавливается на радиатор – чем больше, тем лучше.

Источник питания для качера должен быть рассчитан на работу при токе до 3 А (с запасом), с напряжением от 12 вольт, а желательно – выше. Будет гораздо удобнее, если он будет регулируемым по напряжению. Например, в собранном мной образце качера, при диаметре вторичной катушки 3 см (длина – 22см), а первичной – 6см (длина – 10 см) стример возникал при напряжении питания 11 в, а наиболее красочно проявлялся при 30 в. Причем, обычные эффекты, вроде зажигания светодиодных и газоразрядных ламп на расстоянии, возникали уже с начиная с уровня напряжения – 8 в.

В качестве источника питания был использован обычный ЛАТР + диодный мост + сглаживающий электролитический конденсатор 2000 мФ на 50 в. Больше 30 вольт я не давал, ток при этом не превышал значения в 1 А, что более чем приемлимо для таких транзисторов как КТ805, при наличии приличного радиатора.

При попытке заменить(из чистого интереса) КТ805 на более брутальный КТ8102, обнаружилось что режимы работы устройства значительно поменялись. Заметно упал рабочий ток. Он составил всего – от 100 до 250 мА. Но стример стал загораться только при достижения предела напряжения 24 в, при напряжении 60 в выглядя гораздо менее эффектно, нежели с КТ805 при 30.

Функциональная схема подключения частотного преобразователя

При ее использовании получается произвести достаточно хорошую синусоидальную ШИМ с возможностью изменять напряжение. Крутим мотор-колесо коляски рукой, нажимаем кнопку «Пуск». Можно делать копии содержимого данной папки в родительской, переименовывать её и одноименные файлы с расширениями ewp, ewd, dep.
Обычный инвертор тока промежуточной цепи изменяющегося напряжения.
Способ ограничения зависит от вида модуляции. А так же функцию обработки прерывания таймера.
А так же функцию обработки прерывания таймера.
Они обеспечивают широкий диапазон регулировки частот, обладают высоким КПД и другими отличными техническими характеристиками. Справа от моста изображены операционные усилители нормирующие сигналы датчиков тока.
Преимуществом управляемых выпрямителей является их способность возвращать энергию в питающую сеть. Имеются три основных варианта задания режимов коммутации в инверторе с управлением посредством широтно-импульсной модуляции.
При этом амплитуда и частота напряжения на выходе преобразователя регулируются по скольжению и нагрузочному току, но без использования обратных связей по скорости вращения ротора.
ПОДКЛЮЧЕНИЕ ЧАСТОТНИКА к однофазному асинхронному двигателю.

Модули IGBT

Поскольку IGBT, как правило, крайне редко применяются в одиночном варианте, конструкторы стали думать о модульных вариантах их компоновки. Модуль конструктивно гораздо проще и компактнее использовать в изделиях. Но не только это.

Потребуется, правда, вмешательство достаточно квалифицированных инженеров, так как речь идет о переделке схемы частотников, так как далеко не все модели допускают такое расширение: там нет ни выходов для таких подключений, и ни слова в инструкциях, кроме, разве что, запрета  вмешательства в схему преобразователя со стороны потребителей и отказа об ответственности для таких случаев. Кроме технической стороны дела, есть еще и возможная юридическая: возможное нарушение патентов, лицензий и т.д. Это тоже надо иметь в виду.

Разновидности блоков питания

Применение нашли несколько типов инверторов, которые отличаются схемой построения:

  • бестрансформаторные;
  • трансформаторные.

Первые отличаются тем, что импульсная последовательность поступает непосредственно на выходной выпрямитель и сглаживающий фильтр устройства. Такая схема имеет минимум комплектующих. Простой инвертор включает в себя специализированную интегральную микросхему — широтно-импульсный генератор.

Из недостатков бестрансформаторных устройств главным является то, что они не имеют гальванической развязки с питающей сетью и могут представлять опасность удара электрическим током. Также они обычно имеют небольшую мощность и выдают только 1 значение выходного напряжения.

Более распространены трансформаторные устройства, в которых высокочастотная последовательность импульсов поступает на первичную обмотку трансформатора. Вторичных обмоток может быть сколько угодно много, что позволяет формировать несколько выходных напряжений. Каждая вторичная обмотка нагружена на собственный выпрямитель и сглаживающий фильтр.

Мощный импульсный блок питания любого компьютера построен по такой схеме, которая имеет высокую надежность и безопасность. Для сигнала обратной связи здесь используется напряжение 5 или 12 Вольт, поскольку эти значения требуют максимально точной стабилизации.

Использование трансформаторов для преобразования напряжения высокой частоты (десятки килогерц вместо 50 Гц) позволило многократно снизить их габариты и массу и использовать в качестве материала сердечника (магнитопровода) не электротехническое железо, а ферромагнитные материалы с высокой коэрцитивной силой.

На основе широтно-импульсной модуляции построены также преобразователи постоянного тока. Без использования инверторных схем преобразование было связано с большими трудностями.

Какие бывают виды и где применяются

Разделить импульсники можно по разным признакам. По выходному напряжению они делятся на:

  • однополярные с одним уровнем напряжения;
  • ондополярные с несколькими уровнями напряжения;
  • двухполярные.

Эти типы можно комбинировать как угодно – принципиальных ограничений нет. Можно создать блок питания, например, с несколькими однополярными напряжениями (+5 В, +24 В) и с двуполярным (±12 В), или с двумя двуполярными выходами (±12 В, ±5 В). Все зависит от области применения.

Более интересной является информация о типе стабилизации. Здесь ИИП можно разделить на категории:

  1. Нестабилизированные источники. У них выходное напряжение зависит от нагрузки. Могут быть применены для питания оконечных устройств аудиоаппаратуры (усилители и т.п.).
  2. Стабилизированные источники. У таких устройств от нагрузки могут не зависеть напряжение, ток или и то, и другое. Источники со стабилизированным напряжением используются, например, в качестве БП для компьютеров и серверов, или для заряжания кислотно-свинцовых аккумуляторов. Стабилизированный ток подойдет для зарядных устройств для других типов АКБ.
  3. Регулируемые источники. У них уровень выходного напряжения и тока можно выставлять в определенных пределах в зависимости от потребности. Такие устройства используются в качестве лабораторных источников питания.Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Описать все области использования импульсников невозможно. Они применяются там, где надо получить большой ток от легкого и компактного источника.

Также можно разделить ИИП по схемотехнике:

  • с импульсным трансформатором;
  • с накопительной индуктивностью.

В схемотехнику можно углубляться и дальше и классифицировать БП по другим критериям, но это принципиального значения не имеет.

Что такое операционный усилитель ?

Операционные усилители представляют собой микросхемы которые могут выглядеть по-разному.

Например на этой картинке изображены два операционных усилителя российского производства. Слева операционный усилитель К544УД2АР в  пластмассовом DIP корпусе а справа изображен операционник в металлическом  корпусе.

По началу, до знакомства с операционниками,     микросхемы в таких металлических корпусах я постоянно путал с транзисторами.  Думал что это такие хитромудрые  многоэмиттерные транзисторы

Условное графическое обозначение (УГО)

Условное обозначение операционного усилителя выглядит следующим образом.

Итак  операционный усилитель (ОУ) имеет два входа и один выход. Также имеются выводы для подключения питания но на условных графических обозначениях их обычно не указывают.

Для такого усилителя есть два правила которые помогут понять принцип работы:

  1. Выход операционника стремится к тому, чтобы разность напряжений на его входах была равна нулю
  2. Входы операционного усилителя ток не потребляют

Вход 1  обозначается знаком «+»  и называется неинвертирующим а вход 2 обозначается как «-» и является инвертирующим.

Входы операционника обладают высоким входным сопротивлением или иначе говорят высоким импедансом.

Это говорит о том, что  входы операционного усилителя ток почти не потребляют (буквально какие-то наноамперы). Усилитель просто оценивает величину напряжений на входах и в зависимости от этого выдает сигнал на выходе усиливая его.

Коэффициент усиления операционного усилителя имеет просто огромное значение,  может достигать миллиона, а это очень большое значение!  Значит это то, что если мы ко входу приложим небольшое напряжение, хотябы 1 мВ, то на выходе  получим сразу максимум,  напряжение почти равное напряжению источника питания ОУ. Из-за этого свойства операционники практически никогда не используют без обратной связи (ОС). Действительно какой смысл во входном сигнале если на выходе мы всегда получим максимальное напряжение, но об этом поговорим чуть позже.

Входы ОУ работают так, что если величина на неинвертирующем входе окажется больше чем на инвертирующем, то на выходе будет  максимальное положительное значение +15В. Если на инвертирующем входе величина напряжения  окажется более положительной то  на выходе будем наблюдать максимум отрицательной величины, где-то -15В.

Действительно операционный усилитель может выдавать значения напряжений как положительной так и отрицательной полярности. У новичка может возникнуть вопрос о том как же такое возможно? Но такое действительно возможно и это связано с применением источника питания с расщепленным  напряжением, так называемым двуполярным питанием. Давайте рассмотрим питание операционника чуток подробнее.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: