Схема «зарядки» для телефона.
R1 — 1 Ом, 1Ватт. R2 — 20 кОм. R3 — 680 кОм. R4 — 100 кОм. R5 — 43 Ом. R6 — 5,1 Ом. R7 — 33 Ом. R8 — 1 кОм. R9 — 1,5 кОм. C1 — 22 мФ,25в(оксидный). C2 — 1 нФ, 400в. C3 — 3,3 нФ, 1000в. C4 — 2,2 мФ,400в(оксидный). C5 — 100 мФ,25в(оксидный). VD1 — стабилитрон 5,6в. VD2,VD3 — диод 1N407. VD4 — диод 1N4937. VD5 — индикаторный светодиод. Транзистор — MJE13001(13001), MJE13003(13003), самый надежный вариант — MJE13005(13005).
Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».
13001 – кремниевый, эпитаксильно-планарный биполярный транзистор n-p-n проводимости. Используется в маломощных импульсных блоках питания бытовых приборов, зарядках, энергосберегающих, светодиодных лампах и других высоковольтных устройствах. Так же его можно встретить в схемах низкочастотных усилителей в качестве усилителя звукового сигнала.
Основные технические характеристики
13003 – это высоковольтный силовой транзистор, прежде всего спроектированный для работы с большими токами и пропускаемым напряжением между коллектором и базой. Высокая скорость переключений и низким временем задержки включения/выключения позволяет использовать его преимущественно в импульсных схемах с индуктивной нагрузкой.
Предельные режимы эксплуатации
13003 рассчитан на работу с большими напряжениями и токами. Так, заявленные производителями максимально допустимые характеристики постоянного рабочего напряжения достигают (VCEO) 400 вольт, а порогового (VCEV) 700 вольт. Номинальное значение постоянного коллекторного тока коллектора (IC) 1.5 A, а импульсного пиковое (ICM), как у большинства силовых транзисторов, в два раза больше 3 A. Максимальная мощность рассеивания, при этом, не должна превышать 40 Ватт.
Предельные значения для пикового тока измерены при длительности импульса в 5 мс и величине обратной скважности не более 10%
Электрические характеристики
Следует учесть, что для расчета возможности применения 13003 в своих схемах, величины предельных режимов эксплуатации обычно уменьшают на 25-30%. Это связано с тем, что они рассчитаны на работу прибора при температуре Тс=25°С. Рабочая же температура устройства будет значительно выше. Зная это, производители в электрических характеристиках на 13003, указывают параметры его использования не только при температуре Тс=25°С.
Как мы видим, в таблице электрических параметров 13003, величины напряжений насыщения и времени переключения приведены и для температуры 100 градусов. Если внимательно присмотреться, то можно увидеть, что эти значения указаны при максимальном токе коллектора IC не превышающем 1 A. А это в 1.5 раза (на 33%) меньше, приведенного значения в предельно допустимых параметрах.
Маркировка
Цифры “13001” на корпусе дают общее представление об этом полупроводниковом устройстве. Многие производители маркируют так свои изделия из-за отсутствия места на корпусе ТО-92, не указывая при этом префикс в начале. В статье приведены технические характеристики устройств малоизвестных в России производителей DGNJDZ, Semtech Electronics, YFWDIODE. Указанные производители в своих даташитах не указывают дополнительных символов маркировки. Без дополнительных обозначений маркирует свой транзистор TS13001 тайваньская компания TSMC. Первые две литеры “TS” являются аббревиатурой первых двух слов в полном названии компании Taiwan Semiconductor Manufacturing Company. В тоже время, на рыке достаточно широко представлены транзисторы mje13001, которые тоже промаркированы цифрами 13001. SHENZHEN JTD ELECTRONICS и многие другие производители применяют s13001 s8d при маркировке своих девайсов. Встречаются и другие префиксы, не рассмотренные в статье. Многие продавцы не заморачиваясь с маркировкой в наименовании товара, указывают все возможные его типы вместе с датой производства.
Разновидности порядка действия биполярных транзисторов
Нормальный активный режим
Характеристика:
- Открытая эмиттерно-базовая область (смещение по прямому направлению);
- Закрытая коллекторно-базовая область (смещение по обратному направлению);
- Положительный уровень напряжения в эмиттерно-базовой области;
- Отрицательный уровень напряжения в коллекторно-базовой области.
Пункты 3 и 4 приведены для p-n-p транзисторов. Для моделей с n-p-n структурой характеристика будет обратной данной.
Инверсный активный режим
Характеристика:
- Обратное смещение на эмиттерном переходе;
- Прямое смещение на коллекторным переходе.
Остальные пункты как для нормального активного режима.
Режим насыщения
Характеристика:
- Соединение Э-перехода и К-перехода с внешними источниками;
- Прямое смещение эмиттерного и коллекторного перехода;
- Ослабление диффузного электрического поля из-за электрического поля внешних источников;
- Снижение уровня потенциального барьера, что приведёт к ослаблению контроля диффузии основных НЗ, а также смещению большого количества дырок из эмиттерных и коллекторных областей в область базы.
Вследствие последнего пункта происходит формирование эмиттерных и коллекторных токов насыщения (Iэ.нас. и Iк.нас.)
В этом же режиме фигурирует понятие «напряжение насыщения» на переходе К-Э. Благодаря ему можно определить степень падения напряжения для открытого транзистора. Подобным образом напряжение насыщения для перехода Б-Э определяет степень падения напряжения для приведённого участка.
Режим отсечки
Характеристика:
- Смещение по обратному направлению в К-области;
- Смещение Э-перехода по любому направлению, при условии, что оно не превысит пороговый показатель, который отграничивает начало процесса испускания электронов эмиттером в базовый слой.
Уровень приведённого показателя в случае с кремниевым биполярным транзистором достигает 0,6-0,7 Вольт, значит режим отсечки возможен при нулевой силе тока на базе, либо при уровне напряжения менее 0,7 Вольт на Э-Б переходе.
Барьерный режим
Характеристика:
- Соединение базового сегмента и коллектора на коротко, либо с применением малогабаритного резистора;
- Производится подключение резистора к коллекторной или эмиттерной цепи, чтобы он мог задавать ток посредством транзисторного элемента.
Действие в представленном режиме преобразует полупроводниковый триод в аналог диода с последовательным подключением к токозадающему резистору. Каскад, построенный в соответствии с данной схемой,имеет небольшое количество составляющих и почти не зависит от характеристик используемого устройства.
3.2. Физические процессы в биполярном транзисторе типа p-n-p
Рассмотрим движение носителей заряда через структуру транзистора, которые
протекают в выводах эмиттера, базы и коллектора, при условии, что на
ЭП подано прямое напряжение, а на КП — обратное (т.е. транзистор работает
в активном режиме).
Значение токов, протекающих через структуру транзистора, определяется
не только напряжениями, которые подаются на эмиттерный и коллекторный
переходы, но и взаимодействием этих переходов между собой. Взаимодействие
переходов, в свою очередь, зависит от расстояния между ними, т.е. от
ширины области базы — W.
На рисунке 3.3 показаны движение носителей заряда в структуре p-n-p
транзистора и токи, протекающие во внешних выводах.
Если ширина базы W меньше диффузионной длины пробега неосновных носителей
заряда в базе (рис.3.3
), то значение тока, протекающего через КП, определяется следующими
причинами:
1) т.к. в этом случае ширина базы гораздо меньше ширины области коллектора,
то и количество неосновных носителей заряда, возникающих при данной
температуре в области базы ( ),
будет гораздо меньше количества неосновных носителей заряда, возникающих
в области коллектора ( ),
и можно считать, что
, где Jko
ток неосновных носителей заряда koп
2) дырки, которые диффузионно переходят из эмиттера в базу над снизившимся
потенциальным барьером эмиттерного перехода, в базе продолжают двигаться
диффузионно в основном в сторону коллекторного перехода. А т.к. ширина
базы меньше их диффузионной длины пробега, то они достигнут коллекторного
перехода в количестве тем больше, чем меньше ширина базы. Однако, вследствие
дисперсии, т.е. беспорядочного теплового движения носителей, какая-то
часть дырок не доходит до КП из-за процесса рекомбинации на поверхности,
у базового вывода или в толще базы, в следствии этого в цепи базы появляется
базовый ток .
Величина, характеризующая долю тока эмиттера, достигающую коллекторного
перехода. называется коэффициентом передачи постоянного тока эмиттера
и обозначается .
Тогда ток коллектора:
Таким образом, ток через КП для случая
(для p-n-p транзистора) является суммой двух составляющих — тока дырок,
инжектированных из эмиттера в базу, и нулевого коллекторного тока .
В толщине базы протекает
и рекомбинационный ток, но в силу того, что процесс рекомбинации в базе
резко уменьшается, рекомбинационная составляющая тока базы тоже мала
.
Соответственно во внешних выводах эмиттера, базы и коллектора будут
протекать токи:
вывод эмиттера ,
вывод коллектора ,
вывод базы
где — является
рекомбинационной составляющей тока базы, величина которой зависит от
величины прямого напряжения, приложенного к ЭП. — ток неосновных
носителей заряда, величина которого от приложенного напряжения почти
не зависит.
Если p-n-p транзистор, работающий как усилитель электрических колебаний,
включен в схему так, как это показано на рис.3.4, то включение последовательно
с источником
переменного напряжения
приведет к появлению переменных составляющих тока эмиттера ,
тока коллектора и
тока базы ,
которые будут накладываться на постоянные составляющие. Так же как и
постоянные токи, протекающие через p-n-p транзистор, переменные токи
являются функциями напряжения. Если на вход подается синусоидальное
напряжение, то оно вызовет синусоидальные изменения плотности дырок
в эмиттерном и коллекторном переходах, т.е. синусоидальные изменения
переменных токов эмиттера, коллектора и базы.
Переменный ток, протекающий через ЭП, равен сумме электронного и дырочного
токов, причем для p-n-p транзистора только дырочная составляющая проходит
последовательно ЭП, обладающий малым сопротивлением и КП, обладающий
большим сопротивлением, т.е. создает условия для усиления электрических
колебаний.
Поэтому на практике для характеристики усилительных свойств транзистора
пользуются коэффициентом передачи тока эмиттера или, как его иначе называют,
коэффициентом усиления по току a, который
является отношением общего коллекторного переменного тока к общему эмиттерному
переменному току в режиме короткого замыкания коллектора на базу по
переменному току.
Основная классификация транзисторов, параметры
Основная классификация транзисторов ведется по исходному материалу, на основе которого они сделаны, максимальной допустимой мощности, рассеиваемой на коллекторе и частотным свойствам.
Эти параметры определяют их основные области применения. По мощности транзисторы делят на:
- транзисторы малой мощности,
- транзисторы средней мощности,
- транзисторы большой мощности.
По частоте транзисторы делят на:
- низкочастотные,
- среднечастотные,
- высокочастотные,
- сверхвысокочастотные.
По исходному полупроводниковому материалу транзисторы разделяют на:
- германиевые,
- кремниевые.
Основными параметрами биполярных транзисторов являются:
- статический коэффициент усиления по току а в схеме с общей базой;
- статический коэффициент усиления по току |3 в схеме с общим эмиттером. Параметры аир связаны зависимостями вида в = а/(1 — а) или а = в/(1 + в);
- обратный ток коллектора Іко;
- граничная fгр и предельная fh21 частоты коэффициента передачи тока.
Основными параметрами полевых транзисторов являются:
- напряжение отсечки U0 — приложенное к затвору напряжение, при котором перекрывается сечение канала;
- максимальный ток стока Іс. макс;
- напряжения: между затвором и стоком Uзс, между стоком и истоком Uси и между затвором и истоком Uзи;
- входная Свх, проходная Спр и выходная Свых емкости.
История
Реплика первого биполярного транзистора, изобретенного Bell Laboratories в 1947 году.
Различные типы транзисторов NPN / PNP
Открытие биполярного транзистора позволило эффективно заменить электронные лампы в 1950-х годах и, таким образом, улучшить миниатюризацию и надежность электронных схем.
Точечный транзистор
Этот транзистор является копией первого биполярного транзистора, изобретенного двумя исследователями из Bell Laboratories и успешно протестировавшего16 декабря 1947 г.. Джон Бардин и Уолтер Браттейн под руководством Уильяма Шокли создали рабочую группу по полупроводникам еще в 1945 году. Первый прототип, разработанный Шокли, работал некорректно, и именно с помощью физиков Бардина и Браттейна ему удалось обнаружить и исправление различных проблем, связанных с электрическими полями в полупроводниках. Затем Бардин и Браттейн установили небольшое устройство, состоящее из германия и двух золотых контактов, которое позволило усилить входной сигнал в 100 раз.23 декабря, они представили его остальной части лаборатории. Джон Пирс, инженер-электрик, дал название «транзистор» этому новому компоненту, который был официально представлен на пресс-конференции в Нью-Йорке.30 июня 1948 г..
Транзистор с PN переходами
Вскоре после открытия Бардина и Браттейна Шокли предпринял попытку другого подхода, основанного на PN-переходах , — открытие Рассела Ола датируется 1940 годом . Работа Шокли проложила путь к реализации биполярных транзисторов, состоящих из сэндвича NPN или PNP. Однако их изготовление представляло реальные проблемы, поскольку полупроводники были недостаточно однородными. Лабораторный химик компании Bell Гордон Тил разработал способ очистки германия в 1950 году . Морган Спаркс , Тил и другие исследователи смогли изготовить PN-переходы, а затем и NPN-сэндвич.
Улучшение производственных процессов
Следующие два года были посвящены исследованию новых процессов производства и обработки германия. С кремнием было труднее работать, чем с германием, из-за его более высокой температуры плавления, но он предлагал лучшую стабильность перед лицом тепловых изменений. Однако только в году удалось создать первый кремниевый транзистор. В году появились первые устройства с транзисторами. Bell Laboratories ввела свои ноу-хау в течение десятилетия, в частности , с развитием оксида маскирования по Карлу Фрошу . Эта технология открывала новые перспективы для массового производства кремниевых транзисторов. Фотолитографии на кремниевых пластинах, процесс , разработанный Жюль Андрус и Walter Bond в 1955 году , сильно способствовало приходу новой механической обработки более точные и эффективные методы. Даже сегодня фотолитография является решающим шагом в производстве транзисторов.
Принцип действия
Физический принцип транзистора NPN
Мы возьмем случай типа NPN, для которого напряжения V BE и V CE , а также ток, входящий в базу, I B , положительны.
В этом типе транзистора эмиттер, подключенный к первой зоне N, поляризован при более низком напряжении, чем у базы, подключенной к зоне P. Таким образом, диод эмиттер / база поляризован напрямую, и ток ( электрон инжекция ) течет от эмиттера к базе.
При нормальной работе переход база-коллектор имеет обратное смещение, что означает, что потенциал коллектора намного выше, чем у базы. Электроны, которые по большей части разлетелись до зоны поля этого перехода, собираются контактом коллектора.
Простая модель транзистора в линейном режиме
В идеале весь ток, идущий от эмиттера, попадает в коллектор. Этот ток является экспоненциальной функцией напряжения база-эмиттер. Очень небольшое изменение напряжения вызывает большое изменение тока (крутизна биполярного транзистора намного больше, чем у полевых транзисторов ).
Ток базы циркулирующей отверстия к передатчику добавляют к рекомбинации тока электронов нейтрализуются в отверстие в основании является базовым током I Б , примерно пропорциональна тока коллектора I C . Эта пропорциональность создает иллюзию того, что ток базы управляет током коллектора. Для данной модели транзистора механизмы рекомбинации технологически сложно освоить, и коэффициент усиления I C ⁄ I B может быть сертифицирован только выше определенного значения (например, 100 или 1000). Электронные сборки должны учитывать эту неопределенность (см. Ниже).
Когда напряжение база-коллектор достаточно положительное, почти все электроны собираются, и ток коллектора не зависит от этого напряжения; это линейная зона. В противном случае электроны остаются в базе, рекомбинируют, и коэффициент усиления падает; это зона насыщения.
Возможны два других менее частых режима, а именно открытый режим, где поляризация двух переходов, видимых как диоды, препятствует прохождению тока, и активно-инвертированный режим, при котором коллектор и эмиттер меняются местами в «n». плохое состояние. Поскольку конструкция транзистора не оптимизирована для последнего режима, он используется редко.
Принципы дизайна
На первый взгляд биполярный транзистор кажется симметричным устройством, но на практике размеры и легирование трех частей сильно различаются и не позволяют поменять местами эмиттер и коллектор. Принцип работы биполярного транзистора фактически основан на его геометрии, на различии легирования между его различными областями или даже на наличии гетероперехода .
- Ток через отверстия от базы к эмиттеру должен быть незначительным по сравнению с током электронов от эмиттера. Это может быть достигнуто за счет очень сильного легирования эмиттера по сравнению с легированием основы. Гетеропереход также может полностью блокировать дырочный ток и допускать высокое легирование основания.
- Рекомбинация электронов (меньшинство) в базе, богатой дырками, должна оставаться низкой (менее 1% для усиления 100). Для этого необходимо, чтобы основание было очень тонким.
- Площадь коллектора часто больше, чем площадь эмиттера, чтобы гарантировать, что путь сбора остается коротким (перпендикулярным переходам).
Модель для элементарных расчетов.
Доступно несколько моделей для определения рабочего режима транзистора с биполярным переходом, например, модель Эберса-Молла, показанная ниже.
Иногда достаточно упрощенной модели. Таким образом, для NPN-транзистора, если V BC , напряжение между базой и коллектором, меньше 0,4 В, а V BE меньше 0,5 В , транзистор заблокирован и токи равны нулю. С другой стороны, если V BC <0,4 В и V CE > 0,3 В , где V CE — напряжение между коллектором и эмиттером, мы находимся в активном или линейном режиме, с I c = β I b и V BE = 0,7 В для перехода база-эмиттер, который ведет себя как диод. С другой стороны, если при V BE = 0,7 В и V BC = 0,5 В мы не можем иметь V CE > 0,3 В , возьмем V CE = 0,2 В, потому что мы находимся в режиме насыщения и соотношение I c = β I b no дольше держит. Очевидно, что вместо этих упрощений можно использовать модель Эберса-Молла.
Модель Эберса-Молла
Модель транзистора Эберса-Молла в линейном режиме работы
Модель Эберса-Молла является результатом суперпозиции прямой и обратной мод .
Он заключается в моделировании транзистора источником тока, помещенным между коллектором и эмиттером.
Этот источник тока состоит из двух компонентов, управляемых соответственно переходом BE и переходом BC.
Поведение двух переходов моделируется диодами.
Заключение
Устройства SiC являются отличными кандидатами для улучшения силовой электроники, работающей в области среднего и высокого напряжения. От полупроводниковых трансформаторов до электроприводов класса мегаватт, вспомогательных систем питания и твердотельных автоматических выключателей мы показали, как SiC МОП-транзисторы в целом и Supercascode на основе SiC JFET в частности предлагают весьма убедительные преимущества в высокой производительности и упрощении системы. Рост использования в этих приложениях будет стимулировать и развитие силовой электроники на основе SiC в будущем, далеко за пределами бума в области электроавтомобилестроения в 2020-х годах.
Следующая, последняя статья этого цикла предоставит информацию о применении SiC-транзисторов в блоках питания телекоммуникационной аппаратуры и центров обработки данных. Дополнительные сведения по SiC JFET в рассматриваемом контексте представлены в презентации и публикации , а более подробную информацию по этим и другим вопросам применения SiC-транзисторов можно найти на веб-сайте компании UnitedSiC . К сожалению, опубликованный оригинал этой части статьи содержит ряд неточностей, соответственно, он был переработан его автором и вновь опубликован как .