Транзисторы: история изобретения, виды, применение, преимущества

По материалу и конструкции корпуса

Металлический и пластмассовый корпус

Прочие типы

  • Одноэлектронные транзисторы содержат квантовую точку (т. н. «остров») между двумя туннельными переходами. Ток туннелирования управляется напряжением на затворе, связанном с ним ёмкостной связью.
  • Биотранзистор.

Выделение по некоторым характеристикам

Транзисторы BISS (Breakthrough in Small Signal, дословно — «прорыв в малом сигнале») — биполярные транзисторы с улучшенными малосигнальными параметрами. Существенное улучшение параметров транзисторов BISS достигнуто за счёт изменения конструкции зоны эмиттера. Первые разработки этого класса устройств также носили наименование «микротоковые приборы».

RET транзисторы

Транзисторы со встроенными резисторами RET (Resistor-equipped transistors) — биполярные транзисторы со встроенными в один корпус с кристаллом резисторами. RET — это транзистор общего назначения со встроенным одним или двумя резисторами. Такая конструкция транзистора позволяет сократить количество внешних навесных компонентов и минимизирует необходимую площадь монтажа. RET транзисторы применяются для непосредственного подключения к выходам микросхем без использования токоограничивающих резисторов.

Применение гетеропереходов позволяет создавать высокоскоростные и высокочастотные полевые транзисторы, такие как, например, HEMT.

Схемы включения транзистора

Для включения в схему транзистор должен иметь четыре вывода — два входных и два выходных. Но транзисторы почти всех разновидностей имеют только три вывода. Для включения трёхвыводного прибора необходимо один из выводов назначить общим, и, поскольку таких комбинаций может быть только три, то существуют три основные схемы включения транзистора.

Схемы включения биполярного транзистора

  • с общим эмиттером (ОЭ) — осуществляет усиление как по току, так и по напряжению — наиболее часто применяемая схема;
  • с общим коллектором (ОК) — осуществляет усиление только по току — применяется для согласования высокоимпедансных источников сигнала с низкоомными сопротивлениями нагрузок;
  • с общей базой (ОБ) — усиление только по напряжению, в силу своих недостатков в однотранзисторных каскадах усиления применяется редко (в основном в усилителях СВЧ), обычно в составных схемах (например, каскодных).

Схемы включения полевого транзистора

Полевые транзисторы как с p-n переходом (канальные), так и МОП (МДП) имеют следующие схемы включения:

  • с общим истоком (ОИ) — аналог ОЭ биполярного транзистора;
  • с общим стоком (ОС) — аналог ОК биполярного транзистора;
  • с общим затвором (ОЗ) — аналог ОБ биполярного транзистора.

Схемы с открытым коллектором (стоком)

«Открытым коллектором (стоком)» называют включение транзистора по схеме с общим эмиттером (истоком) в составе электронного модуля или микросхемы, когда коллекторный (стоковый) вывод не соединяется с другими элементами модуля (микросхемы), а непосредственно выводится наружу, на разъём модуля или вывод микросхемы.

Выбор нагрузки транзистора и тока коллектора (стока) при этом оставляется за разработчиком конечной схемы, в составе которой применяются модуль или микросхема. В частности, нагрузка такого транзистора может быть подключена к источнику питания с более высоким или низким напряжением, чем напряжение питания модуля/микросхемы.

Такой подход значительно расширяет рамки применимости модуля или микросхемы за счёт небольшого усложнения конечной схемы. Транзисторы с открытым коллектором (стоком) применяются в логических элементах ТТЛ, микросхемах с мощными ключевыми выходными каскадами, преобразователях уровней, шинных формирователях (драйверах) и т. п.

Реже применяется обратное включение — с открытым эмиттером (истоком). Оно также позволяет выбирать нагрузку транзистора изменением внешних компонентов, подавать на эмиттер/сток напряжение полярности, противоположной напряжению питания основной схемы (например, отрицательное напряжение для схем с биполярными транзисторами n-p-n или N-канальными полевыми) и т. п.

Принцип действия

Физический принцип транзистора NPN

Мы возьмем случай типа NPN, для которого напряжения V BE и V CE , а также ток, входящий в базу, I B , положительны.

В этом типе транзистора эмиттер, подключенный к первой зоне N, поляризован при более низком напряжении, чем у базы, подключенной к зоне P. Таким образом, диод эмиттер / база поляризован напрямую, и ток ( электрон инжекция ) течет от эмиттера к базе.

При нормальной работе переход база-коллектор имеет обратное смещение, что означает, что потенциал коллектора намного выше, чем у базы. Электроны, которые по большей части разлетелись до зоны поля этого перехода, собираются контактом коллектора.

Простая модель транзистора в линейном режиме

В идеале весь ток, идущий от эмиттера, попадает в коллектор. Этот ток является экспоненциальной функцией напряжения база-эмиттер. Очень небольшое изменение напряжения вызывает большое изменение тока (крутизна биполярного транзистора намного больше, чем у полевых транзисторов ).

Ток базы циркулирующей отверстия к передатчику добавляют к рекомбинации тока электронов нейтрализуются в отверстие в основании является базовым током I Б , примерно пропорциональна тока коллектора I C . Эта пропорциональность создает иллюзию того, что ток базы управляет током коллектора. Для данной модели транзистора механизмы рекомбинации технологически сложно освоить, и коэффициент усиления I CI B может быть сертифицирован только выше определенного значения (например, 100 или 1000). Электронные сборки должны учитывать эту неопределенность (см. Ниже).

Когда напряжение база-коллектор достаточно положительное, почти все электроны собираются, и ток коллектора не зависит от этого напряжения; это линейная зона. В противном случае электроны остаются в базе, рекомбинируют, и коэффициент усиления падает; это зона насыщения.

Возможны два других менее частых режима, а именно открытый режим, где поляризация двух переходов, видимых как диоды, препятствует прохождению тока, и активно-инвертированный режим, при котором коллектор и эмиттер меняются местами в «n». плохое состояние. Поскольку конструкция транзистора не оптимизирована для последнего режима, он используется редко.

Принципы дизайна

На первый взгляд биполярный транзистор кажется симметричным устройством, но на практике размеры и легирование трех частей сильно различаются и не позволяют поменять местами эмиттер и коллектор. Принцип работы биполярного транзистора фактически основан на его геометрии, на различии легирования между его различными областями или даже на наличии гетероперехода .

  • Ток через отверстия от базы к эмиттеру должен быть незначительным по сравнению с током электронов от эмиттера. Это может быть достигнуто за счет очень сильного легирования эмиттера по сравнению с легированием основы. Гетеропереход также может полностью блокировать дырочный ток и допускать высокое легирование основания.
  • Рекомбинация электронов (меньшинство) в базе, богатой дырками, должна оставаться низкой (менее 1% для усиления 100). Для этого необходимо, чтобы основание было очень тонким.
  • Площадь коллектора часто больше, чем площадь эмиттера, чтобы гарантировать, что путь сбора остается коротким (перпендикулярным переходам).

Модель для элементарных расчетов.

Доступно несколько моделей для определения рабочего режима транзистора с биполярным переходом, например, модель Эберса-Молла, показанная ниже.

Иногда достаточно упрощенной модели. Таким образом, для NPN-транзистора, если V BC , напряжение между базой и коллектором, меньше 0,4  В, а V BE меньше 0,5  В , транзистор заблокирован и токи равны нулю. С другой стороны, если V BC <0,4  В и V CE > 0,3  В , где V CE — напряжение между коллектором и эмиттером, мы находимся в активном или линейном режиме, с I c = β I b и V BE = 0,7  В для перехода база-эмиттер, который ведет себя как диод. С другой стороны, если при V BE = 0,7  В и V BC = 0,5  В мы не можем иметь V CE > 0,3  В , возьмем V CE = 0,2  В, потому что мы находимся в режиме насыщения и соотношение I c = β I b no дольше держит. Очевидно, что вместо этих упрощений можно использовать модель Эберса-Молла.

Модель Эберса-Молла

Модель транзистора Эберса-Молла в линейном режиме работы

Модель Эберса-Молла является результатом суперпозиции прямой и обратной мод .

Он заключается в моделировании транзистора источником тока, помещенным между коллектором и эмиттером.

Этот источник тока состоит из двух компонентов, управляемых соответственно переходом BE и переходом BC.

Поведение двух переходов моделируется диодами.

Основные технические характеристики

У транзисторов серии C945 представлены такие технические характеристики (при температуре окружающей среды +25 °C,):

физические:

  • принцип действия – биполярный;
  • корпус ТО-92, SOT-23;
  • материал корпуса – пластмасса;
  • материал транзистора — аморфный кремний (amorphous silicon) Si;

электрические:

  • проводимость – обратная (n-p-n);
  • максимально допустимый коллекторный ток (Maximum Collector Current) IK макс (Ic max) 0,15 А или 150 мА (mA);
  • максимальное допустимое напряжение между коллектором и эмиттером (Collector-Emitter Voltage) U КЭ макс. (VCEmax) не более 50 В (V);
  • максимально допустимое обратном напряжении на коллекторном переходе, между коллектором и базой (Collector-Base Voltage) UКБ макс. (VCBmax) не более 60 В (V);
  • максимальное допустимое напряжение между эмиттером и базой (Emitter-Base Voltage) UЭБ макс (VЕВ max) не более 5 В (V);
  • напряжение насыщения коллектор-эмиттер (Collector-emitter saturation voltage) UКЭ.нас. (VCEsat) не более 0.3 В (V);
  • граничная частота передачи тока (Current Gain Bandwidth Product) fгр (ft) от 100 до 450 МГц (MHz), при U КЭ = 6 В (V), IK = 10 мА (mA);
  • максимальный обратный ток коллектора (Collector Cutoff Current) IКБО (ICBO) не более 0.01 мкА (µA), при U КБ макс. (VCBО ) = 60 В (V) и отключенном эммитере (ток эммитора IЭ (IE)=0);
  • максимальный обратный ток эммитера (Emmiter Cutoff Current) IЭБО (IEBO) не более 0.01 мкА (µA), при U EБ макс. (VEBО ) = 5 В (V) и отключенном коллекторе (ток коллектора IК (IС)=0);
  • максимальная мощность, рассеиваемая на коллекторе (Maximum Collector Dissipation) PK макс. (PC) 0,400 Вт (Watt) или 400 мВт (mW);
  • максимальная температура хранения и эксплуатации (Max Storage & Operating temperature Should be) Tхран. (Tstr) от — 55 до + 150 °C.
  • Коэффициент усиления по току (Minimum & maximum DC Current Gain) при UКЭ макс = 6 В (V) и IK макс  = 1 мА (mA) находится в пределах от 70 до 700 Hfe.

Классификация по Hfe

Наименование Коэффициент Hfe
С945-Y 120-240
С945-O 70-140
С945-R 90-180
С945-Q 135-270
С945-P 200-400
C945-K 300-600
C945-G 200-400
C945-GR 200-400
C945-BL 350-700
C945-L (SOT-23) 120-200
C945-H (SOT-23) 200-400

Точное значение Hfeсмотрите в даташите производителя, предварительно посмотрев буквы находящиеся в конце маркировки транзистора. Например у c945O Electronic Manufacturer Hfe характеристика находится в пределах от 70-140, а у С945R Stanson Technology от 90-180.

Модификации транзистора

Тип Pc Ucb Uce Ueb Tj Cc Ic hfe ft Корпус
C945 0.2 W 60 V 50 V 5 V 150 °C 3 pf 0.15 A 130 150 MHz SOT23
2SC945 0.25 W 50 V 40 V 5 V 125 °C 0.1 A 75 125 MHz TO-92
STC945 0.5 W 50 V 40 V 5 V 150 °C 2 pf 0.15 A 70 80 MHz TO-92
2PC945 0.5 W 60 V 50 V 5 V 150 °C 4 pf 0.1 A 50 150 MHz SOT54, TO-92, SC43
2SC945-GR 0.4 W 60 V 50 V 5 V 150 °C 0.15 A 200 150 MHz TO-92
2SC945-Y 0.4 W 60 V 50 V 5 V 150 °C 0.15 A 120 150 MHz TO-92
2SC945L 0.25 W 50 V 40 V 5 V 125 °C 0.1 A 75 125 MHz TO-92
2SC945LT1 0.23 W 60 V 50 V 5 V 150 °C 2.2 pf 0.15 A 200 150 MHz SOT23
2SC945M 0.25 W 60 V 50 V 5 V 150 °C 250 pf 0.15 A 90 3 MHz SOT23
2SC945O 0.25 W 60 V 50 V 5 V 150 °C 2.5 pf 0.15 A 70 300 MHz TO-92
2SC945P 0.25 W 60 V 50 V 5 V 150 °C 2.5 pf 0.15 A 200 300 MHz TO-92
2SC945R 0.25 W 60 V 50 V 5 V 150 °C 2.5 pf 0.15 A 40 300 MHz TO-92
2SC945T 0.25 W 50 V 40 V 5 V 125 °C 0.1 A 75 125 MHz TO-92
2SC945Y 0.25 W 60 V 50 V 5 V 150 °C 2.5 pf 0.15 A 120 300 MHz TO-92
BTC945A3 0.625 W 60 V 50 V 5 V 150 °C 9 pf 0.2 A 135 150 MHz TO-92
C945LT1 0.2 W 60 V 50 V 5 V 150 °C 0.15 A 40 150 MHz SOT23
C945T 0.4 W 60 V 50 V 5 V 125 °C 3 pf 0.15 A 70 200 MHz TO-92
CSC945 0.25 W 60 V 45 V 5 V 125 °C 4 pf 0.1 A 50 150 MHz TO-92
CSC945K 0.25 W 60 V 45 V 5 V 125 °C 4 pf 0.1 A 50 150 MHz TO-92
CSC945P 0.25 W 60 V 45 V 5 V 125 °C 4 pf 0.1 A 50 150 MHz TO-92
CSC945Q 0.25 W 60 V 45 V 5 V 125 °C 4 pf 0.1 A 50 150 MHz TO-92
CSC945R 0.25 W 60 V 45 V 5 V 125 °C 4 pf 0.1 A 50 150 MHz TO-92
FPC945 0.25 W 50 V 40 V 175 °C 5 pf 0.1 A 200 250 MHz TO-92
FTC945B 0.4 W 60 V 50 V 5 V 125 °C 3 pf 0.15 A 70 200 MHz TO-92
HSC945 0.25 W 60 V 50 V 5 V 150 °C 4 pf 0.1 A 135 150 MHz TO-92
KSC945 0.25 W 60 V 50 V 5 V 150 °C 3.5 pf 0.15 A 40 300 MHz TO-92
KSC945G 0.25 W 60 V 50 V 5 V 150 °C 3.5 pf 0.15 A 200 300 MHz TO-92
KSC945L 0.25 W 60 V 50 V 5 V 150 °C 3.5 pf 0.15 A 350 300 MHz TO-92
KSC945O 0.25 W 60 V 50 V 5 V 150 °C 3.5 pf 0.15 A 70 300 MHz TO-92
KSC945R 0.25 W 60 V 50 V 5 V 150 °C 3.5 pf 0.15 A 40 300 MHz TO-92
KSC945Y 0.25 W 60 V 50 V 5 V 150 °C 3.5 pf 0.15 A 120 300 MHz TO-92
KTC945 0.625 W 60 V 50 V 5 V 150 °C 2 pf 0.15 A 90 300 MHz TO-92
KTC945B 0.625 W 60 V 50 V 5 V 150 °C 2 pf 0.15 A 70 300 MHz TO-92

Отечественные и импортные аналоги

Первая позиция в таблице, – транзистор С945, для которого предлагаются аналоги.

Аналог VCEO IC PC hFE fT
C945 50 0,15 0,4 70 200
Отечественное производство
КТ3102 45 0,1 0,25 250 300
Импорт
KSC945 50 0,15 0,25 40 300
2N2222 30 0,8 0,5 100 250
2N3904 40 0,2 0,31 40 300
2SC3198 50 0,15 0,4 20 130
2SC1815 50 0,15 0,4 70 80
2SC2002 60 0,3 0,3 90 70
2SC3114 50 0,15 0,4 55 100
2SC3331 50 0,2 0,5 100 200
2SC2960 50 0,15 0,25 100 100

Среди перечня аналогов транзистор КТ3102 отличается широкой доступностью и незначительной стоимостью, поэтому радиолюбители часто используют его для замены С945

Обращаем ваше внимание, что его мощность рассеяния значительно ниже оригинала, – ориентировочно на 30%. Перед использованием КТ3102 проверьте мощностные режимы, в которых ему предстоит работать

Примечание: данные в таблице взяты из даташип компаний-производителей.

Полевые побеждают, почему?

Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные электронные часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет от одного миниатюрного источника питания — батарейки или аккумулятора, потому что практически не потребляют энергии.

В настоящее время полевые транзисторы находят все более широкое применение в различных радиоустройствах, где уже с успехом заменяют биполярные. Их применение в радиопередающих устройствах позволяет увеличить частоту несущего сигнала, обеспечивая такие устройства высокой помехоустойчивостью.

Обладая низким сопротивлением в открытом состоянии, находят применение в оконечных каскадах усилителей мощности звуковых частот высокой мощности (Hi-Fi), где опять же с успехом заменяют биполярные транзисторы и даже электронные лампы.

В устройствах большой мощности, например в устройствах плавного пуска двигателей, биполярные транзисторы с изолированным затвором (IGBT) — приборы, сочетающие в себе как биполярные, так и полевые транзисторы, уже успешно вытесняют тиристоры.

Последовательное включение транзисторов

Во время работы силового транзистора на его переходе коллектор – эмиттер падает напряжение, представляющее собой разность входного и выходного напряжений. В отдельных случаях эта разность может превышать максимально допустимое напряжений коллектор – эмиттер транзистора, имеющегося в распоряжении. В этом случае необходимо использовать последовательное соединение нескольких транзисторов.

Схема последовательного включения транзисторов

Эквивалентный транзистор будет иметь следующие параметры:

UCEmax(общ) = UCEmax(VT1) + UCEmax(VT2)

Для симметрирования напряжений, которые будут падать на переходе коллектор – эмиттер транзисторов вводят симметрирующие резисторы R1 и R2 сопротивление, которых можно определить по формуле

R1 = R2 < UCEmax/2IB,

где IB – ток базы составного регулирующего транзистора.

Зарождение нового мира

В то время как Бардин бросил Bell Labs, чтобы стать академиком (он продолжил изучение германиевых транзисторов и сверхпроводников в Иллинойском университете), Браттэйн поработал еще некоторое время, а после ушел в педагогику. Шокли основал свою собственную компанию по производству транзисторов и создал уникальное место — Силиконовую долину. Это процветающий район в Калифорнии вокруг Пало-Альто, где находятся крупные корпорации электроники. Двое из его сотрудников, Роберт Нойс и Гордон Мур, основали компанию Intel — крупнейшего в мире производителя микросхем.

Бардин, Браттэйн и Шокли ненадолго воссоединились в 1956 году: за свое открытие они получили высшую в мире научную награду — Нобелевскую премию по физике.

Устройство и принцип действия

Транзистор — электронный полупроводник, состоящий из 3 электродов, одним из которых является управляющий. Транзистор биполярного типа отличается от полярного наличием 2 типов носителей заряда (отрицательного и положительного).

Отрицательные заряды представляют собой электроны, которые высвобождаются из внешней оболочки кристаллической решетки. Положительный тип заряда, или дырки, образуются на месте высвобожденного электрона.

Устройство биполярного транзистора (БТ) достаточно простое, несмотря на его универсальность. Он состоит из 3 слоев проводникового типа: эмиттера (Э), базы (Б) и коллектора (К).

Эмиттер (от латинского «выпускать») — тип полупроводникового перехода, основной функцией которого является инжекция зарядов в базу. Коллектор (от латинского «собиратель») служит для получения зарядов эмиттера. База является управляющим электродом.

Слои эмиттерный и коллекторный почти одинаковые, однако отличаются степенью добавления примесей для улучшения характеристик ПП. Добавление примесей называется легированием. Для коллекторного слоя (КС) легирование выражено слабо для повышения коллекторного напряжения (Uк). Эмиттерный полупроводниковый слой легируется сильно для того, чтобы повысить обратное допустимое U пробоя и улучшить инжекцию носителей в базовый слой (увеличивается коэффициент передачи по току — Kт). Слой базы легируется слабо для обеспечения большего сопротивления (R).

Переход между базой и эмиттером меньший по площади, чем К-Б. Благодаря разнице в площадях и происходит улучшение Кт. При работе ПП переход К-Б включается со смещением обратного типа для выделения основной доли количества теплоты Q, которое рассеивается и обеспечивает лучшее охлаждение кристалла.

Быстродействие БТ зависит от толщины базового слоя (БС). Эта зависимость является величиной, изменяющейся по обратно пропорциональному соотношению. При меньшей толщине — большее быстродействие. Эта зависимость связана с временем пролета носителей заряда. Однако при этом снижается Uк.

Между эмиттером и К протекает сильный ток, называемый током К (Iк). Между Э и Б протекает ток маленькой величины — ток Б (Iб), который используется для управления. При изменении Iб произойдет изменение Iк.

У транзистора два p-n перехода: Э-Б и К-Б. При активном режиме Э-Б подключается со смещением прямого типа, а подключение К-Б происходит с обратным смещением. Так как переход Э-Б находится в открытом состоянии, то отрицательные заряды (электроны) перетекают в Б. После этого происходит их частичная рекомбинация с дырками. Однако большая часть электронов достигает К-Б из-за малой легитивности и толщины Б.

В БС электроны являются неосновными носителями заряда, и электромагнитное поле помогает им преодолеть переход К-Б. При увеличении Iб произойдет расширение открытия Э-Б и между Э и К пробежит больше электронов. При этом произойдет существенное усиление сигнала низкой амплитуды, т. к. Iк больше, чем Iб.

Смотрите это видео на YouTube

Для того чтобы проще понять физический смысл работы транзистора биполярного типа, нужно ассоциировать его с наглядным примером. Нужно предположить, что насос для закачки воды является источником питания, водопроводный кран — транзистором, вода — Iк, степень поворота ручки крана — Iб. Для увеличения напора нужно немного повернуть кран — совершить управляющее действие. Исходя из примера можно сделать вывод о простом принципе работы ПП.

Однако при существенном увеличении U на переходе К-Б может произойти ударная ионизация, следствием которой является лавинное размножение заряда. При комбинации с тоннельным эффектом этот процесс дает электрический, а с увеличением времени и тепловой пробой, что выводит ПП из строя. Иногда тепловой пробой наступает без электрического в результате существенного увеличения тока через выход коллектора.

Кроме того, при изменении U на К-Б и Э-Б меняется толщина этих слоев, если Б тонкая, то происходит эффект смыкания (его еще называют проколом Б), при котором происходит соединение переходов К-Б и Э-Б. В результате этого явления ПП перестает выполнять свои функции.

Тандемное включение транзисторов (схемы Дарлингтона и Шиклаи)

Довольно часто возникает ситуация, когда необходимого коэффициента усиления одного транзистора не хватает. В этом случае транзисторы соединяют тандемно (то есть выходной ток первого транзистора является входным током для второго). Существует две схемы такого включения: схема Дарлингтона и схема Шиклаи. Отличие заключается лишь в том, что в схеме Дарлингтона используются транзисторы одинакового типа проводимости, а в схеме Шиклаи – разного типа проводимости.

Схема Дарлингтона


Схема Шиклаи

Данные пары – это просто два каскада эмиттерного повторителя. Иногда данные составные схемы транзисторов называют «супер-β» пары, так как они функционируют как один транзистор с высоким коэффициентом усиления.

Общий коэффициент передачи тока будет равен:

h21e(ОБЩ) = h21e(VT1)*h21e(VT2)

При использовании данных схем вполне возможна такая ситуация, когда нагрузка уменьшится до нуля (или некоторого минимального значения, близкого к нулю) или при повышении температуры базовый ток транзистора VT1 может стать равным нулю или даже переменить направление за счёт неуправляемого обратного тока коллектора. Во избежание запирания транзистора VT2 его режим следует стабилизировать с помощью резистора R1.

Величину сопротивления R1 можно определить по формуле:

R1 ≤ UE min/ICBO(VT1)

Основные параметры

  • Коэффициент передачи по току.
  • Входное сопротивление.
  • Выходная проводимость.
  • Обратный ток коллектор-эмиттер.
  • Время включения.
  • Предельная частота коэффициента передачи тока базы.
  • Обратный ток коллектора.
  • Максимально допустимый ток.
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

  • коэффициент усиления по току α;
  • сопротивления эмиттера, коллектора и базы переменному току rэrкrб, которые представляют собой:
    • rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
    • rк — сумму сопротивлений коллекторной области и коллекторного перехода;
    • rб — поперечное сопротивление базы.

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».

Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

h11 = Um1/Im1, при Um2 = 0

Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

h12 = Um1/Um2, при Im1 = 0.

Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

h21 = Im2/Im1, при Um2 = 0.

Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

h22 = Im2/Um2, при Im1 = 0.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

Um1 = h11Im1 + h12Um2;
Im2 = h21Im1 + h22Um2.

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.

Для схемы ОЭ: Im1 = IIm2 = IUm1 = Umб-эUm2 = Umк-э. Например, для данной схемы:

h21э = I/I = β.

Для схемы ОБ: Im1 = IIm2 = IUm1 = Umэ-бUm2 = Umк-б.

Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:

;

;

;

.

С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.

В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τфВременем включения транзистора называется τвкл = τз + τф.

История

Реплика первого биполярного транзистора, изобретенного Bell Laboratories в 1947 году.

Различные типы транзисторов NPN / PNP

Открытие биполярного транзистора позволило эффективно заменить электронные лампы в 1950-х годах и, таким образом, улучшить миниатюризацию и надежность электронных схем.

Точечный транзистор

Этот транзистор является копией первого биполярного транзистора, изобретенного двумя исследователями из Bell Laboratories и успешно протестировавшего16 декабря 1947 г.. Джон Бардин и Уолтер Браттейн под руководством Уильяма Шокли создали рабочую группу по полупроводникам еще в 1945 году. Первый прототип, разработанный Шокли, работал некорректно, и именно с помощью физиков Бардина и Браттейна ему удалось обнаружить и исправление различных проблем, связанных с электрическими полями в полупроводниках. Затем Бардин и Браттейн установили небольшое устройство, состоящее из германия и двух золотых контактов, которое позволило усилить входной сигнал в 100 раз.23 декабря, они представили его остальной части лаборатории. Джон Пирс, инженер-электрик, дал название «транзистор» этому новому компоненту, который был официально представлен на пресс-конференции в Нью-Йорке.30 июня 1948 г..

Транзистор с PN переходами

Вскоре после открытия Бардина и Браттейна Шокли предпринял попытку другого подхода, основанного на PN-переходах , — открытие Рассела Ола датируется 1940 годом . Работа Шокли проложила путь к реализации биполярных транзисторов, состоящих из сэндвича NPN или PNP. Однако их изготовление представляло реальные проблемы, поскольку полупроводники были недостаточно однородными. Лабораторный химик компании Bell Гордон Тил разработал способ очистки германия в 1950 году . Морган Спаркс , Тил и другие исследователи смогли изготовить PN-переходы, а затем и NPN-сэндвич.

Улучшение производственных процессов

Следующие два года были посвящены исследованию новых процессов производства и обработки германия. С кремнием было труднее работать, чем с германием, из-за его более высокой температуры плавления, но он предлагал лучшую стабильность перед лицом тепловых изменений. Однако только в году удалось создать первый кремниевый транзистор. В году появились первые устройства с транзисторами. Bell Laboratories ввела свои ноу-хау в течение десятилетия, в частности , с развитием оксида маскирования по Карлу Фрошу . Эта технология открывала новые перспективы для массового производства кремниевых транзисторов. Фотолитографии на кремниевых пластинах, процесс , разработанный Жюль Андрус и Walter Bond в 1955 году , сильно способствовало приходу новой механической обработки более точные и эффективные методы. Даже сегодня фотолитография является решающим шагом в производстве транзисторов.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: