БЛОК ПИТАНИЯ ЛАМПОВОГО УСИЛИТЕЛЯ
Ничто так не выдаёт консерватизм, чем изготовление ламповых усилителей звука. А может это просто признак особого изысканного вкуса настоящих аудиофилов? В любом случае собрать такой УНЧ представляется прикольным и теоретически выгодным занятием. Как знать, сколько подобный шедевр будет стоить спустя 20 лет. Тут один только внешний вид лампового усилителя уже делает достойной установку его на самом видном месте кабинета. А звук.. Ну это каждый решит после прослушки для себя сам. В общем приступая к сборке самого усилителя, вначале продумайте сам блок питания. Это вам не 12В взятые из БП ATX. Здесь должны присутствовать минимум два напряжения разной величины и мощности. Напряжение накала берётся в пределах 5,5 — 6,5В и чаще всего подаётся на схемы переменным, сразу с обмоток трансформатора, а питание анодов достигает 300 и даже 500В. При уже постоянной форме тока.
Несмотря на то, что в последнее время наметилась стойкая тенденция к импульсным источникам питания всего и вся, рекомендую всё-же забыть на время про электронные трансформаторы и задействовать старый добрый ТС180 (ТС160) от любого чёрно-белого лампового телевизора. Тому есть две причины. Во-первых обычный трансформатор прощает невнимательность монтажа и не взорвётся, как электронный, при случайных боках и замыканиях, а во-вторых цена ЭТ может быть весьма и ввесьма, в отличии от обычных ТС, коих у многих хватает в закромах. Представляется правильным собрать один универсальный блок питания с анодным и накальным напряжением, и питать от него или один конкретный ламповый усилитель (спрятав сам БП подальше), или собирая другие ламповые схемы переключать его при необходимости на них. На каждый ламповый УНЧ блоков питания не напасёшся:)
Смотрим схему простого блока питания лампового усилителя:
По питанию 220В ставим модный пластмассовый тумблер 250В 5А с зелёной подсветкой. Не забываем про предохранители — один на пару ампер по сети, второй трёхамперник по накалу, и третий по высоковольтному напряжению анода. В отличии от электронных трансформаторов, где предохранители сгорают последними, здесь они выполнят свою миссию, так как даже и без них блок питания выдержит кратковременные замыкания выходов. За что я и уважаю трансы в железе. Диоды для двухполупериодных мостов или собираем из советских КД202 с нужной буквой, или берём готовый диодный мост на подходящее напряжение и ток. Если у вас усилитель на пару ламп типа 6П14П с небольшой мощностью выхода, диодный мост выпрямителя пойдёт и советский коричневый КЦ405 или КЦ402. Накал выпрямлять следует только для входных ламп первого одного — двух каскадов. Дальше влияние постоянного накала сводится к нулю и это будет только расход тепла на диодах.
Можно питать накал от моста с конденсатором 4700 — 10000мкФ, а можно и КРЕН5 поставить. и не стремитесь на входные лампы подавать строго 6,3В — лучше питать их немного заниженным напряжением вплоть до 5В. Так что обычная пятивольтовая КРЕНка и всё будет ОК. Обязательно советую поставить пару светодиодов — индикаторов напряжения анода и накала. Во-первых красиво, а во-вторых информативно, сразу видны возможные проблемы с питанием.
Корпус лучше делать делезный, точнее из листового алюминия — он обрабатывается очень удобно. Или просто взять готовый подходящих размеров, где просверлить гнёзда под кнопку сети, светодиоды и разъёмы. Сеть тоже вводите в корпус не просто через дырку, а подключив штеккером к специальному сетевому гнезду. Лично я делаю только так на всех конструкциях — это удобно.
Конденсаторы фильтров анода берём чем больше — тем лучше. Минимум два по 300 микрофарад. Напряжение на них должно быть на 100В выше, чем напряжение на выходе БП. Если у вас схема рассчитана на 250В, то берём конденсатор на 350. Конечно я это правило выполняю далеко не всегда, а бывает вообще ставлю один к одному, но вы так не делайте и в этом с меня пример не берите. Резистор на 47 Ом 5 ватт уточняем по конкретной схеме лампового усилителя. Для простого однотактного его хватит, а для мощного двухтактника надо вообще ставить дроссель. Выдиратся он из любого лампового телевизора и называется ДР-0,38. Трансформатор питания перед установкой в БП обязательно послушайте на предмт гудения и жужжания. А то купите, рассчитете и соберёте под него корпус, а он гудит громче вечернего Пинк Флойда. Будет большой облом. И напоследок порекомендую все диоды шунтировать конденсаторами на 0,01-0,1 мкФ с соответствующими напряжениеми.
Все вопросы — на форум по БП
Наиболее важные параметры.
Коэффициент передачи тока –
от 8 до 40, в зависимости от буквы
У MJE13003A – от 8 до 12.
У MJE13003B – от 12 до 18.
У MJE13003C – от 18 до 27.
У MJE13003D – от 27 до 40.
Максимально допустимое напряжение коллектор-эмиттер –
400 В.
Максимальный ток коллектора – постоянный 1,5 А, пульсирующий – 3 А.
Напряжение насыщения коллектор-эмиттер при токе коллектора 1 А, базы 0,25 А
– 1в.
Напряжение насыщения база-эмиттерпри токе коллектора 1 А, базы 0,25 А –
– не выше 1,2в.
Рассеиваемая мощность коллектора:
В корпусе TO-126 – 1.4 ватт,
TO-220 – 50 ватт(с радиатором),
TO-252 и TO-251 – 25 ватт(с радиатором),
TO-92 и TO-92L – 1,1 ватт.
Граничная частота передачи тока – 4 МГц.
Наиболее важные параметры.
Коэффициент передачи тока от 15 и выше.
Максимально допустимое напряжение коллектор-эмиттер – 60 в, импульсное – 160 в – у КТ805А, КТ805АМ. 135 в – у КТ805Б, КТ805БМ, КТ805ВМ.
Напряжение насыщения коллектор-эмиттер при коллекторном токе 5 А и базовом 0,5А: У транзисторов КТ805А, КТ805АМ – не более 2,5 в. У транзисторов КТ805Б, КТ805БМ – 5 в.
Напряжение насыщения база-эмиттер при коллекторном токе 5 А и базовом 0,5А: У транзисторов КТ805А, КТ805АМ – не более 2,5 в. У транзисторов КТ805Б, КТ805БМ – 5 в.
Максимальный ток коллектора. – 5 А.
Обратный импульсный ток коллектора при сопротивлении база-эмиттер 10Ом и температуре окружающей среды от +25 до +100 по Цельсию, у транзисторов КТ805А, КТ805АМ – – не более 60 мА, при напряжении колектор-эмиттер 160в. У транзисторов КТ805Б, КТ805БМ – – не более 70 мА, при напряжении колектор-эмиттер 135в.
Обратный ток эмиттера при напряжении база-эмиттер 5в не более – 100 мА.
Рассеиваемая мощность коллектора(с теплоотводом). – 30 Вт.
Граничная частота передачи тока – 20 МГц.
Транзисторы КТ805 и качер Бровина.
Качер Бровина – черезвычайно популярное устройство, представляющее из себя фактически, настольный трансформатор Тесла – источник высокого напряжения. Схема самого генератора предельно проста – он очень напоминает обычный блокинг-генератор на одном транзисторе, хотя как утверждают многие, им вовсе не является.
В качере(как в общем-то и в блокинг-генераторе) теоретически, можно использовать любые транзисторы и радиолампы. Однако, практически очень неплохо себя зарекомендовали именно транзисторы КТ805, в частости – КТ805АМ.
В самостоятельной сборке качера самый серьезный момент – намотка вторичной обмотки(L2). Как правило она содержит в себе от 800 до 1200 витков. Намотка производится виток, к витку проводом диаметром 0,1 – 0,25 мм на диэлектрическое основание, например – пластиковую трубку. Соответствено, габариты полученного трансформатора (длина) напрямую зависят от толщины используемого провода. Диаметр каркаса при этом некритичен – может быть от 15мм, но при его увеличении эффективность качера должна возрастать (как и ток потребления).
После намотки витки покрываются лаком(ЦАПОН). К неподключенному концу катушки можно подсоединить иглу – это даст возможность наблюдать «стример» – коронообразное свечение, которое возникнет на ее кончике, во время работы устройства. Можно обойтись и без иглы – стример точно так же будет появляться на конце намоточного провода, без затей отогнутого к верху.
Вторичная обмотка представляет из себя бескаркасный четырехвитковой соленоид намотаный проводом диаметром(не сечением!) от 1,5 до 3 мм. Длина этой катушки может составлять от 7-8 до 25-30 см, а диаметр зависит от расстояния между ее витками и поверхностью катушки L2. Оно должно составлять 1 – 2 см. Направление витков обеих катушек должно совпадать обязательно.
Резисторы R1 и R2 можно взять любого типа с мощностью рассеивания не менее 0,5 Вт. Конденсатор C1 так же любого типа от 0,1 до 0,5 мФ на напряжение от 160 в. При работе от нестабилизированного источника питания необходимо подсоединить параллельно C1 еще один, сглаживающий конденсатор 1000 – 2000 мФ на 50 в. Транзистор обязательно устанавливается на радиатор – чем больше, тем лучше.
Источник питания для качера должен быть рассчитан на работу при токе до 3 А (с запасом), с напряжением от 12 вольт, а желательно – выше. Будет гораздо удобнее, если он будет регулируемым по напряжению. Например, в собранном мной образце качера, при диаметре вторичной катушки 3 см (длина – 22см), а первичной – 6см (длина – 10 см) стример возникал при напряжении питания 11 в, а наиболее красочно проявлялся при 30 в. Причем, обычные эффекты, вроде зажигания светодиодных и газоразрядных ламп на расстоянии, возникали уже с начиная с уровня напряжения – 8 в.
В качестве источника питания был использован обычный ЛАТР + диодный мост + сглаживающий электролитический конденсатор 2000 мФ на 50 в. Больше 30 вольт я не давал, ток при этом не превышал значения в 1 А, что более чем приемлимо для таких транзисторов как КТ805, при наличии приличного радиатора.
При попытке заменить(из чистого интереса) КТ805 на более брутальный КТ8102, обнаружилось что режимы работы устройства значительно поменялись. Заметно упал рабочий ток. Он составил всего – от 100 до 250 мА. Но стример стал загораться только при достижения предела напряжения 24 в, при напряжении 60 в выглядя гораздо менее эффектно, нежели с КТ805 при 30.
Распиновка
Цоколевка 13003 у большинства производителей выполняется в пластиковым корпусом ТО-126. У компании STMicroelectronics (STM) этот корпус называется SOT-32. Фирменный MJE13003 у компании Motorola имел пластиковый корпус — ТО-225A. Это тот же, немного улучшенный ТО-126, согласно системы стандартизации полупроводниковых приборов Jedec. Три гибких вывода из корпуса ТО-126, если смотреть на маркировку, имеют следующее назначение: самый левый контакт – база; посередине – коллектор; крайний справа – эмиттер.
В статье рассмотрено назначение выводов, встречающееся у большинства производителей, однако бывает и другая – нетипичная распиновка 13003 в ТО-126. У той же STM, если смотреть на прибор как описано выше, эмиттер будет слева, база справа, а коллектор посередине. Аналогичная цоколевка у KSE13003 (Fairchild Semiconductor). Очень редко, но встречаются приборы в корпусе ТО-220. Для наглядности просмотрите рисунок с цоколевкой от разных компаний.
Характеристики и аналоги 13001 S8D
Транзистор 13001S8D имеет следующие предельные значение ( Tj = 25 ℃, если не указано иное):
Параметр | Условное обозначение | Значение | Единица измерения |
Напряжение коллектор-база | VCBO | 600 | V |
Напряжение коллектор-эмиттер | VCEO | 400 | V |
Напряжение Эмиттер-База | VEBO | 7 | V |
Ток коллектора | Ic | 0.5 | A |
Полная рассеиваемая мощность | Pc | 0.65 | W |
Температура хранения | Tstg | -65 |
150
Также приведем электрические параметры:
℃ | |||
Температура соединения | Tj | 150 | ℃ |
Параметр | Условное обозначение | Условия испытаний | Min | Max | Единица измерения |
Напряжение пробоя коллектор-база | BVCBO | Ic=0.5mA,Ie=0 | 600 | V | |
Напряжение пробоя коллектор-эмиттер | BVCEO | Ic=10mA,Ib=0 | 400 | V | |
Напряжение пробоя базы эмиттера | BVEBO | Ie=1mA,Ic=0 | 7 | V | |
Ток отсечки коллекторной базы | ICBO | Vcb=600V,Ie=0 | 100 | μA | |
Ток отключения коллектор-эмиттер | ICEO | Vce=400V,Ib=0 | 20 | μA | |
Ток отсечки эмиттер-базы | IEBO | Veb=7V,Ic=0 | 100 | μA | |
Усиление постоянного тока | hFE | Vce=20V,Ic=20mA | 10 | 40 | |
Напряжение насыщения коллектор-эмиттер | VCE(sat) | Ic=200mA,Ib=100mA | 0.6 | V | |
Напряжение насыщения базы-излучателя | VBE(sat) | Ic=200mA,Ib=100mA | 1.2 | V | |
Время хранения | Ts | Ic=0.1mA, (UI9600) | 2 | μS | |
Время падения | fT | VCE =20V,Ic=20mA f=1MHZ | 0.8 | μS |
Аналоги 13001 S8D являются схожие по всем техническим значения биполярные NPN Транзисторы.
Номер в каталоге : 13001S8D
функция : TO-92 Plastic-Encapsulate Transistors
Производитель : JTD Semi
цоколевка :
- 5
- 4
- 3
- 2
- 1
(0 голосов, среднее: 0 из 5)
Скачать справочные данные на транзисторы для люминесцентных ламп
• mje13001 / Даташит на транзистор mje13001, pdf, 88.67 kB, скачан: 6908 раз./
• MJE13002 (УКТ9145Б),MJE13003 (УКТ9145Б)_40W / Даташит на транзисторы, pdf, 187.82 kB, скачан: 9419 раз./
• MJE13004 MJE13005_75W / Даташит на транзисторы NPN, pdf, 184.15 kB, скачан: 4059 раз./
• mje13005_on_75W / Даташит на транзисторы к энергосберегающим лампам., pdf, 135.38 kB, скачан: 4018 раз./
• mje13006 mje13007_80W / Даташит на транзисторы к энергосберегающим лампам., pdf, 192.8 kB, скачан: 3613 раз./
• MJE13007-On_80W / Даташит на NPN транзисторы к энергосберегающим лампам., pdf, 127.07 kB, скачан: 10257 раз./
• mje13008 mje13009_100W / Даташит на NPN транзисторы к энергосберегающим лампам. Собраны несколько даташитов разных производителей в один файл., pdf, 1.07 MB, скачан: 4754 раз./
Наиболее важные параметры.
Коэффициент передачи тока у 13001 может быть от 10 до 70, в зависимости от буквы. У MJE13001A — от 10 до 15. У MJE13001B — от 15 до 20. У MJE13001C — от 20 до 25. У MJE13001D — от 25 до 30. У MJE13001E — от 30 до 35. У MJE13001F — от 35 до 40. У MJE13001G — от 40 до 45. У MJE13001H — от 45 до 50. У MJE13001I — от 50 до 55. У MJE13001J — от 55 до 60. У MJE13001K — от 60 до 65. У MJE13001L — от 65 до 70.
Граничная частота передачи тока — 8МГц.
Максимальное напряжение коллектор — эмиттер — 400 в.
Максимальный ток коллектора(постоянный) — 200 мА.
Напряжение насыщения коллектор-эмиттер при токе коллектора 50мА, базы 10мА — 0,5в.
Напряжение насыщения база-эмиттер при токе коллектора 50мА, базы 10мА — не выше 1,2в.
Рассеиваемая мощность коллектора — в корпусе TO-92 — 0.75 Вт, в корпусе TO-126 — 1.2 Вт без радиатора.
Функциональная схема и принцип работы импульсного блока питания телевизора ЗУСЦТ
Рис. 1. Функциональная схема импульсного блока питания телевизора ЗУСЦТ:
1 — сетевой выпрямитель; 2 — формирователь импульсов запуска; 3 — транзистор импульсного генератора, 4 — каскад управления; 5 — устройство стабилизации; 6 — устройство защиты; 7 — импульсный трансформатор блока питания телевизоров 3усцт; 8 — выпрямитель; 9 — нагрузка
Пусть в начальный момент времени в устройстве 2 будет сформирован импульс, который откроет транзистор импульсного генератора 3. При этом через обмотку импульсного трансформатора с выводами 19, 1 начнет протекать линейно нарастающий пилообразный ток. Одновременно в магнитном поле сердечника трансформатора будет накапливаться энергия, значение которой определяется временем открытого состояния транзистора импульсного генератора. Вторичная обмотка (выводы 6, 12) импульсного трансформатора намотана и подключена таким образом, что в период накопления магнитной энергии к аноду диода VD приложен отрицательный потенциал и он закрыт. Спустя некоторое время каскад управления 4 закрывает транзистор импульсного генератора. Так как ток в обмотке трансформатора 7 из-за накопленной магнитной энергии не может мгновенно измениться, возникает ЭДС самоиндукции обратного знака. Диод VD открывается, и ток вторичной обмотки (выводы 6, 12) резко возрастает. Таким образом, если в начальный период времени магнитное поле было связано с током, который протекал через обмотку 1, 19, то теперь оно создается током обмотки 6, 12. Когда вся энергия, накопленная за время замкнутого состояния ключа 3, перейдет в нагрузку, то во вторичной обмотке достигнет нулевого значения.
Из приведенного примера можно сделать вывод, что, регулируя длительность открытого состояния транзистора в импульсном генераторе, можно управлять количеством энергии, которое поступает в нагрузку. Такая регулировка осуществляется с помощью каскада управления 4 по сигналу обратной связи — напряжению на выводах обмотки 7, 13 импульсного трансформатора. Сигнал обратной связи на выводах этой обмотки пропорционален напряжению на нагрузке 9.
Если напряжение на нагрузке по каким-либо причинам уменьшится, то уменьшится и напряжение, которое поступает в устройство стабилизации 5. В свою очередь, устройство стабилизации через каскад управления начнет закрывать транзистор импульсного генератора позже. Это увеличит время, в течение которого через обмотку 1, 19 будет течь ток, и соответственно возрастет количество энергии, передаваемой в нагрузку.
Момент очередного открывания транзистора 3 определяется устройством стабилизации, где анализируется сигнал, поступающий с обмотки 13, 7, что позволяет автоматически поддерживать среднее значение выходного постоянного напряжения.
Применение импульсного трансформатора дает возможность получить различные по амплитуде напряжения в обмотках и устраняет гальваническую связь между цепями вторичных выпрямленных напряжений и питающей электрической сетью. Каскад управления 4 определяет размах импульсов, создаваемых генератором, и при необходимости отключает его. Отключение генератора осуществляется при уменьшении напряжения сети ниже 150 В и понижении потребляемой мощности до 20 Вт, когда каскад стабилизации перестает функционировать. При неработающем каскаде стабилизации, импульсный генератор оказывается неуправляемым, что может привести к возникновению в нем больших импульсов тока и к выходу из строя транзистора импульсного генератора.
Схема простого блока питания на двухканальном ШИМ-контролере
Рассмотрим схему простого блока питания на 12В с использованием двуканального ШИМ-контроллера ML4819. Одна часть блока питания осуществляет формирование постоянного стабилизированного напряжения +380В. Другая часть представляет собой преобразователь, формирующий постоянное стабилизированное напряжение +12В. ККМ состоит, как и в выше рассмотренном случае, из ключа Q1, нагруженного на него дросселя L1 трансформатора Т1 обратной связи. Диоды D5, D6 заряжают конденсаторы С2,° C3,° C4. Преобразователь состоит из двух ключей Q2 и Q3, нагруженных на трансформатор Т3. Импульсное напряжение выпрямляется диодной сборкой D13 и фильтруется дросселем L2 и конденсаторами С16,° C18. С помощью патрона U2 формируется напряжение регулирования выходного напряжения.
Блок питания GlacialPower GP-AL650AA
Рассмотрим конструкцию блока питания, в которой есть активный ККМ:
- Плата управления токовой защитой;
- Дроссель, выполняющий роль как фильтра напряжений +12В и +5В, так и функцию групповой стабилизации;
- Дроссель фильтра напряжения +3,3В;
- Радиатор, на котором размещены выпрямительные диоды выходных напряжений;
- Трансформатор главного преобразователя;
- Трансформатор, управляющий ключами главного преобразователя;
- Трансформатор вспомогательного преобразователя (формирующий дежурное напряжение);
- Плата контроллера коррекции коэффициента мощности;
- Радиатор, охлаждающий диодный мост и ключи главного преобразователя;
- Фильтры сетевого напряжения от помех;
- Дроссель корректора коэффициента мощности;
- Конденсатор фильтра сетевого напряжения.
История появления
Первые полевые транзисторы были разработаны в 1973 году, а уже спустя 6 лет появились управляемые биполярные модели, в которых использовался изолированный затвор. По мере совершенствования технологии существенно улучшились показатели экономичности и качества работы таких элементов, а с развитием силовой электроники и автоматических систем управления они получили широкое распространение, встречаясь сегодня практически в каждом электроприборе.
Сегодня используются электронные компоненты второго поколения, которые способны коммутировать электроток в диапазоне до нескольких сотен Ампер. Рабочее напряжение у IGBT — транзисторов колеблется от сотен до тысячи Вольт. Совершенствующие технологии изготовления электротехники позволяют выполнять качественные транзисторы, обеспечивающие стабильную работу электроприборов и блоков питания.
Чем отличается от трансформаторного блока питания
Блок-схемы трансформаторного и импульсного блоков питания
Как работает трансформаторный блок питания
В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.
Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.
Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации
Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.
Устройство импульсного блока питания и его принцип работы
В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».
Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность
Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц
Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.
Блок-схема ИИП с формами напряжения в ключевых точках
Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).
На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.
Достоинства и недостатки импульсных блоков питания
Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.
Размер тоже имеет значение
Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.
Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.
Транзистор
Начинающему электрику приходится задаться вопросом подключения мотора к микроконтроллеру. Самым простым и мощным посредником для этого станет транзистор. Подойдут и полевые, и биполярные транзисторы. Самая элементарная схема управления двигателем постоянного тока показана на рисунке.
По существу, это наипростейший драйвер двигателя постоянного тока, предназначенный выполнить свою функцию. Диод, подключенный параллельно обмоткам мотора, защитит от возгорания элементов микросхемы в момент остановки электродвигателя, когда ЭДС самоиндукции создаст на обмотках резкий скачок напряжения. Транзистор КТ315 позволит:
- регулировать ток I< 1 А и напряжение U< 40 В;
- включать/отключать двигатель в одном направлении.
Для двухстороннего управления необходимо более сложное устройство.
Транзисторы MJE13001 и 13001
Транзисторы кремниевые структуры n-p-n, высоковольтные усилительные. Производство транзисторов 13001 локализовано в странах Юго-восточной Азии и в Индии. Применяются в маломощных импульсных блоках питания, зарядных устройствах для различных мобильных телефонов, планшетов и т. п.
Внимание!
При близких(почти идентичных) общих параметрах уразных производителей транзисторы 13001 могутотличаться по расположению выводов .
Выпускаются в пластмассовых корпусах TO-92, с гибкими выводами и TO-126 с жесткими. Тип прибора указывается на корпусе. На рисунке ниже — цоколевка MJE13001 и 13001 разных производителей, с разными корпусами.
H13005D Datasheet (PDF)
Транзистор h945
1.1. h13005dl.pdf Size:120K _jdsemi
R H13005DL 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 www.jdsemi.cn Bipolar Junction Transistor ShenZhen Jingdao Electronic Co.,Ltd. ◆Si NPN ◆RoHS COMPLIANT 1. 1. 1.APPLICATION 1. Mainly used for 110V power Fluorescent Lamp、 Electronic Ballast,etc 2. 2. 2
1.2. h13005d 2.pdf Size:118K _jdsemi
R H13005D 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 www.jdsemi.cn Bipolar Junction Transistor ShenZhen Jingdao Electronic Co.,Ltd. ◆Si NPN ◆RoHS COMPLIANT 1. 1. 1.APPLICATION 1. Fluorescent Lamp、Electronic Ballast、 and Switch-mode power supplies 2. 2. 2.
1.3. h13005d.pdf Size:118K _jdsemi
R H13005D 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 深圳市晶导电子有限公司 www.jdsemi.cn Bipolar Junction Transistor ShenZhen Jingdao Electronic Co.,Ltd. ◆Si NPN ◆RoHS COMPLIANT 1. 1. 1.APPLICATION 1. Fluorescent Lamp、Electronic Ballast、 and Switch-mode power supplies 2. 2. 2.