Применение фапч: умножение частоты

Разрешенные диапазоны для радиовещания в России (на 2021 г.)

Для человека, собирающегося приобретать рацию, не станет открытием, что современная радиоаппаратура работает на определенных частотных диапазонах. В процессе эволюции средств связи человек осваивал всё новые радиочастоты, забираясь «выше» или «ниже» по диапазону, а заодно «уплотняясь» в уже используемых. На заре радиолюбительской связи, когда не было большого количества электронных приборов, перед пользователем не стояло проблемы перегруженности эфира и засилья электромагнитных наводок и помех. Со временем сфера радиосвязи потребовала чёткого регулирования — во избежание злоупотребления эфиром, радиохулиганства и просто исходя из вопросов удобства всех участников процесса вещания. Представьте, что может произойти, если эфир служебных машин скорой помощи будет «забит» любительской трансляцией чьих-то домашних музыкальных записей, или диспетчеры аэропорта пропустят сообщение пилота из-за помех на канале от мощной аппаратуры сидящего в зале ожидания пассажира. Следует отметить, что на сегодняшний день используемые в России частоты можно разделить на гражданские, радиолюбительские и служебные. В рамках этой статьи рассмотрим первые две. Получить доступ на служебные частоты можно с любой рации, поддерживающей данные диапазоны, но работа на этих частотах без разрешения будет считаться незаконной с точки зрения законодательства, и просто опасной и вредоносной — с точки зрения обычного человеческого здравомыслия.

Для гражданской связи сегодня официально доступны три диапазона частот:

  • CB (27МГц);
  • LPD433 (частоты 433.075 — 434.775 Мгц с шагом 25КГц);
  • PMR446 (446,000—446,200 МГц с шагом 12,5 кГц).

При условии соблюдения требований по максимально допустимой мощности передатчика на этих диапазонах можно общаться свободно, без необходимости совершения каких-либо регистрационных действий. По требованиям законодательства в диапазоне CB максимальная мощность передатчика не может составлять более 10Вт, в диапазоне LPD433 не более 0.01Вт, а в диапазоне PMR446 не более 0.5Вт.

Для радиолюбительской связи отведены области в двух популярных диапазонах 144 — 146 МГц (область в диапазоне VHF) и 430-440 МГц (в диапазоне UHF). Выходить в эфир на этих диапазонах можно лишь при условии получения позывного и лишь с зарегистрированной в Роскомнадзоре аппаратуры (подробнее про регистрацию раций здесь). При этом вещать на диапазоне 430-433 МГц можно, получив 3 и более высокую категорию радиолюбителя. Также имеются ограничения на мощность передатчика, которые зависят от категории пользователя. Для 4 категории допустимая максимальная мощность передатчика — 5 Вт, для 3 категории и выше — не более 10 Вт. В области 430-433МГц для всех категорий радиолюбителей существует ограничение в 5 Вт.

Есть лишь одно исключение, когда вы можете воспользоваться любой частотой и мощностью, с аппаратуры, оказавшейся в вашем распоряжении — подача сигнала бедствия. Надеемся, вам никогда не придётся воспользоваться этим исключением, но всё-таки будет полезно знать, что лучше всего использовать для подачи такого сигнала международные частоты бедствия — 27.065 МГц (в диапазоне CB), 446.09375 МГц (PMR), 145.500 МГц (VHF).

Типы модуляции

Совмещенными антеннами и доработкой входных фильтров дело не ограничивается — каждый диапазон использует собственный тип модуляции сигнала. Электрическая схема, выделяющая звук из колебаний волн, для конкретного случая разная.

Типы модуляции

Модуляцией называется изменение параметра несущей по закону, описывающему передаваемое сообщение. На приемной стороне происходит обратное действие — детектирование.  Преимущественно используют типы модуляции при радиовещании:

  • амплитудная;
  • частотная.

В первом случае изменению подвергается амплитуда несущей, во-втором — частота. Особенности распространения волн в эфире и функционирования электронных компонентов из соображения результативности заставляют применять известные виды модуляции.

Описанными вариантами все многообразие технических решений не ограничивается, разделяют термины однополосная и полярная модуляция. Потребность в усложнённых методах появляется при необходимости передать стереозвук по каналу обычной ширины, для экономии энергии передатчика, снижения уровня вредных для здоровья человека факторов.

Радиоприемник цифровой с УКВ диапазоном для работы с КВ обязан предусматривать переключение типа детектора с частотного (FM) на амплитудный (AM).

Технически в этом нет сложностей. Чтобы принимать все радиостанции, полагается:

  • Иметь ряд антенн и входных фильтров для разных частот.
  • Включить в схему детекторы для разных типов модуляции.
  • Выполнять переключение между указанными элементами надлежащим образом.

Понижающий импульсный преобразователь

Понижающий преобразователь (рис. 1) содержит последовательно включенную цепочку из коммутирующего элемента S1, индуктивного накопителя энергии L1, сопротивления нагрузки RH и включенного параллельно ему конденсатора фильтра С1. Блокировочный диод VD1 подключен между точкой соединения ключа S1 с накопителем энергии L1 и общим проводом.

Рис. 1. Принцип действия понижающего преобразователя напряжения.

При открытом ключе диод закрыт, энергия от источника питания накапливается в индуктивном накопителе энергии. После того, как ключ S1 будет закрыт (разомкнут), запасенная индуктивным накопителем L1 энергия через диод VD1 передастся в сопротивление нагрузки RH, Конденсатор С1 сглаживает пульсации напряжения.

Генератор на логических элементах

Если использование транзисторов в генераторе кажется вам несовременным или громоздким или недопустимым по религиозным соображениям – выход есть! Можно использовать вместо транзисторов микросхемы. Обычно используется логика: элементы НЕ, И-НЕ, ИЛИ-НЕ, реже – Исключающее ИЛИ. Вообще говоря, нужны только элементы НЕ, остальное – излишества, только лишь ухудшающие скоростные параметры генератора.

Смотрим:

Видим страшную схему.

Квадратики с дырочкой в правом боку – это инвертеры. Ну или – «элементы НЕ». Дырочка как раз указывает на то, что сигнал инвертируется.

Что такое элемент НЕ с точки зрения банальной эрудиции? Ну, то есть, с точки зрения аналоговой техники? Правильно, это усилитель с обратным выходом. То есть, при увеличении напряжения на входе усилителя, напряжение на выходе пропорционально уменьшается . Схему инвертера можно изобразить примерно так (упрощенно):

Это конечно, слишком просто

Но доля правды в этом есть.
Впрочем, нам пока что это не столь важно

Итак, смотрим схему генератора. Имеем:

Два инвертера ( DD1.1, DD1.2)

Резистор R1

Колебательный контур L1 C1

Заметьте, что колебательный контур в этой схеме – последовательный. То есть, конденсатор и катушка стоят друг за другом. Но это – все равно колебательный контур, он рассчитывается по тем же формулам, и ничуть ни хуже (и не лучше) своего параллельного собрата.

Начнем сначала. Зачем нам нужен резистор?

Резистор создает отрицательную обратную связь (ООС) между выходом и входом элемента DD1.1. Это надо для того, чтобы держать под контролем коэффициент усиления – это раз, а также – чтоб создать на входе элемента начальное смещение – это два. Как это работает, подробно мы рассмотрим где-нибудь в обучалке по аналоговой технике. Пока что уясним, что благодаря этому резистору, на выходе и входе элемента, в отсутствие входного сигнала, устаканивается напряжение, равное половине напряжения питания. Точнее – среднему арифметическому напряжений логических «нуля» и «единицы». Не будем пока на этом заморачиваться, у нас еще много дел…

Итак, на одном элементе мы получили инвертирующий усилитель. То есть, усилитель, который «переворачивает» сигнал вверх ногами: если на входе много – на выходе мало, и наоборот. Второй элемент служит для того, чтобы сделать этот усилитель неинвертирующим. То есть, он переворачивает сигнал еще раз. И в таком виде, усиленный сигнал подается на выход, на колебательный контур.

А ну-ка, смотрим внимательно на колебательный контур? Как он включен? Правильно! Он включен между выходом и входом усилителя. То есть, он создает положительную обратную связь (ПОС). Как мы уже знаем из рассмотрения предыдущих генераторов, ПОС нужна для генератора, как валерьянка для кота. Без ПОС ни один генератор не сможет что? Правильно – возбудиться. И начать генерацию…

Все наверно знают такую вещь: если к входу усилителя подключить микрофон, к выходу – динамик, то при поднесении микрофона к динамику, начинается противный «свист». Это – ни что иное как генерация. Мы же подаем сигнал с выхода усилителя на вход. Возникает ПОС. Как следствие, усилитель начинает генерить.

Ну, короче, посредством LC -цепочки в нашем генераторе создается ПОС, приводящая к возбуждению генератора на резонансной частоте колебательного контура.

Ну что, сложно?Если (сложно)
{
чешем (репу) ;
читаем еще раз;
}

Теперь поговорим о разновидностях подобных генераторов.

Во-первых, вместо колебательного контура, можно включить кварц. Получится стабилизированный генератор, работающий на частоте кварца:

Если в цепь ОС элемента DD1.1 включить вместо резистора колебательный контур – можно завести генератор на гармониках кварца. Для получения какой-либо гармоники, нужно, чтобы резонансная частота контура была близка к частоте этой гармоники:

Если генератор делается из элементов И-НЕ или ИЛИ-НЕ, то входы этих элементов нужно запараллелить, и включать как обычный инвертор. Если используем Исключающее ИЛИ, то один из входов каждого элемента сажается на + питания.

Пара слов о микросхемах.
Предпочтительнее использовать логику ТТЛШ или быстродействующий КМОП.

Серии ТТЛШ: К555, К531, КР1533
Например, микросхема К1533ЛН1 – 6 инверторов.
Серии КМОП: КР1554, КР1564 (74 AC , 74 HC ), например – КР1554ЛН1
На крайний случай – старая добрая серия К155 (ТТЛ). Но ее частотные параметры оставляют желать лучшего, так что – я бы не стал использовать эту логику.

Рассмотренные здесь генераторы – далеко не все, что могут повстречаться вам в этой нелегкой жизни. Но зная основные принципы работы этих генераторов, будет уже намного проще понять работу других, укротить их и заставить работать на себя

Схемы простых умножителей частоты

Фактически умножитель частоты не является каким-то необычным, специальным каскадом, а представляет собой обычный усилительный каскад высокой частоты. На рис. 1 и Рис. 2 приведены две схемы простых умножителей частоты.

Схема на рис. 1 представляет собой обычный каскад УВЧ. Резисторами R1, R2 и R3 устанавливается режим работы транзистора VТ1. Контур L1C3 должен быть настроен на частоту нужной гармоники электромагнитных колебаний, поступающих на этот каскад через С1 от каскада предыдущего.

Выделенный в контуре L1C3 сигнал нужной частоты подается к следующему каскаду через конденсатор С5. Резистор R4 и конденсатор С2 предотвращают попадание ВЧ энергии в цепи питания (являются блокировочными элементами).

Рис. 1. Схема умножителя частоты.

Рис. 2. Схема умножителя частоты, второй вариант.

Схема на рис. 2 уже имеет значительные отличия от предыдущей схемы. Главное отличие в том, что транзистор VТ1 в этой схеме работает в ключевом режиме, т.е. ток через транзистор протекает только во время прохождения через базу транзистора импульса положительного полупериода колебаний, которые поступают через С1.

Контур L1C3 является параллельной нагрузкой, настроенной на частоту нужной гармоники. Выделенный в этом контуре сигнал нужной частота подается к следующему каскаду через С4.

Доработка советских радиоприемников для приема радиовещательных станций FM-диапазона (88…108 МГц)

Как известно, диапазон частот, установленный в СССР для радиовещания в УКВ диапазоне, составляет 65,8…73,0 МГц. В настоящее время в этом диапазоне практически отсутствует радиовещание, так как международный стандарт предусматривает радиовещание в диапазоне частот 88…108 МГц. В связи с этим предлагается простая доработка советских радиоприемников (ВЭФ-260, «Ореанда-201», «Вега-315» и др.), имеющих в своем составе унифицированный блок УКВ-2-1-с, который после доработки позволит принимать радиовещательные станции вFM-диапазоне (88…108 МГц). В качестве предмета доработки выбрана магнитола ВЭФ-260, которая имеет отличные электроакустические параметры.

В те времена она пользовалась заслуженным вниманием. На рис.1

На рис.1

показана принципиальная электрическая схема блока УКВ-2-1-с, а нарис.2 – монтажная схема (вид сверху) этого блока с расположением элементов, которые должны быть заменены или удалены при доработке. На принципиальной схеме эти элементы легко найти, так как после номинала этих деталей до переделки в скобках указаны номиналы этих элементов после доработки блока УКВ. Если в скобках стоит «х», то это означает, что эти детали следует удалить из схемы.

Предлагаются два способа доработки блока УКВ.

Первый способ (более простой):

  1. Блок не снимают с шасси магнитолы (приемника).
  2. Снимают крышку-экран, кусачками удаляют отмеченные на рис.1 скобками элементы схемы таким образом, чтобы от них остались выводы, к которым припаивают новые детали с номинальными значениями, указанными в скобках.
  3. Количество витков катушки L4 уменьшают на один виток. Для этого кусачками откусывают нижний вывод катушки и сматывают один виток, излишнюю длину провода укорачивают и L4 припаивают к части вывода, оставшегося на плате.
  4. После доработки катушки витки надо залить парафином.
  5. У катушки L3 также сматывают один виток, но сверху, по той же технологии, что и с катушкой L4.

Второй способ доработки:

Блок УКВ снимают с шасси магнитолы, при этом обращают внимание на фиксацию в определенном положении ручки настройки по отношению к переменному конденсатору (понадобится при обратной сборке).
Снимают крышку-экран.
Отворачивают четыре болта и снимают печатную плату.
Выпаивают помеченные на рис.1 элементы и впаивают новые элементы номиналами, казанными в скобках.
Операции с катушками L3, L4 указаны выше.
Собирают блок в обратном порядке.

Для настройки доработанного блока УКВ без измерительных приборов определите по вспомогательному радиоприемник, имеющему FM диапазон (88…108 МГц), радиовещательную станцию, работающую в вашем регионе на самой высокой частоте, например 107,7 МГц. Ручкой настройки доработанного радиоприемника поставьте указатель шкалы в положение 4,1 м, затем вращайте латунный сердечник катушки L4 до появления сигнала выбранной станции, определенной по вспомогательном радиоприемнику. Добейтесь максимума приема сигнала, подстраивая конденсатор С6 и, при необходимости, вращая сердечник катушки L3. Далее ручкой настройки приемника выберите станцию по шкале вблизи 4,4 м и добейтесь максимального уровня приема сигнала, вращая сердечник катушек L1, L2. Этих операций вполне достаточно, чтобы ручкой настройки доработанного радиоприемника обеспечить прием всех FM станций в вашем регионе.

В заключении хочу отметить хорошую чувствительность и качество приема FM станций доработанного радиоприемника. Кстати, исключение из схемы цепей автоподстройки частоты позволило исключить внесение затухания и дополнительных емкостей в контур гетеродина, а опыт эксплуатации радиоприемников показал, что автоподстройка практически ничего не дает в плане качества приема радиовещательных станций.

Вдумчивая перестройка блока УКВ на FM

Он у меня давным-давно был перестроен, но читатель Дмитрий подбросил пару идей, и я решил проверить, могу ли сделать ещё лучше.

Могу. Поэтому почти полностью переписал статью об «УКВ-2-08С». Если очень вкратце, то:

1. Увидел на SDR-приёмнике, что гетеродин перестраивается от 97,85 МГц до 122,47 МГц (это даёт принимаемый диапазон 87,15 — 111,77 МГц — чуть шире, чем надо). У кого нет SDR-приёмника — могут выставить радио в телефоне на приём частоты 98,2 МГц, и вращать гетеродинную катушку L3 до появления тишины на этой частоте. «ВЭФ» при этом будет принимать 87,5 МГц.

2. Покрутив гетеродин, лишний раз убедился, что «зеркалка» от 107,7 МГц — по-прежнему 86,3 МГц. Поэтому спрятал её куда-то за цифру «10» на шкале.

3. Первые два «ВЭФа» я перестраивал вообще на слух, дальше придумал подключать светодиод к 14-й ноге микросхемы К174ХА6 из блока ДЧМ, и судить о правильности настройки по его яркости.

Ещё один шаг от органолептического метода к полноценным измерениям. Теперь вместо яркости светодиода — напряжение в конкретных числах.

Вращением сердечника L2 добиваемся наибольшего напряжения в положении «около 87 МГц», а ротором подстроечного конденсатора C8 — в положении «около 108 МГц». Повторяем это несколько раз.

4. Сердечником L1 настраиваем входной контур на середину диапазона.

Иными словами — добиваемся наибольшего напряжения в положении «около 100 МГц».

5. Если напряжение по-прежнему невысоко, и приём не радует — есть катушка L4 , которая отвечает за уровень сигнала с блока УКВ на блок ДЧМ. Можно его повысить, однако при слишком мощном сигнале могут пролезать ранее незаметные шумы и «зеркалки».

В итоге вышло так, что:

До перестройки: U = 1,51 В @ 87,5 МГц U = 2,02 В @ 100,5 МГц U = 2,07 В @ 107,7 МГц

После перестройки: U = 2,20 В @ 87,5 МГц U = 2,06 В @ 100,5 МГц U = 2,23 В @ 107,7 МГц

В результате — «ВЭФ» стал намного увереннее принимать станции из нижней части FM-диапазона

Всё это — без хитрых приборов (так как SDR-приёмник вообще не обязателен), важно только знать принцип работы супергетеродина

Наконец-то разобрался, что делают эти лепестки возле разъёма на динамик, и к которым есть доступ через заднюю крышку приёмника. При замыкании чем-то металлическим — выключают БШН. Наверное, было нужно при наладке на заводе.

Бесценные знания за пять долларов

Ранний «ВЭФ 317» вычислить несложно: у него маленькая кнопка с подписями справа, а ручка переноски гладкая, без рифления.

Более ухватистая ручка и широкая кнопка появились позже. На фото: «ВЭФ 317» из сентября 1987-го.

Немного другое оформление регуляторов, невнятного цвета полосочки на шкале, чёрный (sic!) указатель настройки.

Задняя крышка самого старого образца — алюминиевая табличка, почти нет вентиляции, огромный логотип завода.

Крышка чуть моложе — похожая табличка, крупная решётка над блоком питания, переборки в средней части. На фото: «ВЭФ 317» из мая 1987-го.

Поздняя крышка — мелкая решётка в половину спины и штамповка на месте таблички. Ещё более поздние модификации получили центральный винт. На фото: «ВЭФ 317» из сентября 1987-го, «ВЭФ 216» из августа 1991-го.

Как вам шильдик из чистого пластика?

Август 85-го — настолько ранние «плоские» я видел только на картинке. Этот меня заинтриговал ещё и винтом в батарейном отсеке: что-то он держит?

Колодка для антенны, аудиоразъёмы и гнездо под сетевой шнур оформлены в цвет задней крышки — красиво. Потом везде пойдёт чёрный пластик — и если «ВЭФу» с чёрной серединкой это нормально, то на цветном приёмнике смотрится так себе. Тот случай, когда дизайн проиграл технологичности. На фото: «ВЭФ 214» из марта 1988-го, «ВЭФ 317» из сентября 1987-го.

Отец рассказывал о временах, когда бензин лился рекой, а крестовины карданного вала «ЗИЛ-131» росли на деревьях. У «ВЭФа» что-то похожее: фрагменты блока УКВ здесь только ради КПЕ. Правда, плата-пустышка сделана из гетинакса — всё-то экономия.

Зато КПЕ — четырёхсекционный от «ВЭФ 214».

Он прикручен на гетинаксовую пустышку… И всё. Корпус блока УКВ держится за материнскую плату, пластиковую переборку и потолок батарейного отсека. Со временем от последней точки отказались в пользу двух на переборке.

Более поздние «317-е» лишились рудиментов — их двухсекционный КПЕ висит прямо на переборке.

В блоке питания БП-212 явно кто-то был.

И этот «кто-то» менял трансформатор.

Менял, похоже, киловаттным паяльником. Впрочем, интересно не это.

Вместо лепесткового переключателя стоит микровыключатель. Он перебрасывает питание с батарей на БП, когда подключён сетевой шнур.

После гаражного хранения «лепестки» не всегда контачат, а от ударов плата трескается вокруг большого выреза. Не самое удачное изменение, однако. На фото: «ВЭФ 317» из сентября 1987-го.

Ещё «ВЭФ» интересен коротким верньером — ролик в начале шкалы, нить не мешает снять разъём с темброблока.

Когда три артефакта сходятся в одной точке — быть сенсации. Отверстие под индикатор точной настройки, чёрная стрелка, ролик на кронштейне.

Шайба под каждым винтиком — больше такого не было.

УНЧ ремонтировали в мастерской без кусачек.

У транзисторов подписаны выводы со стороны фольги — мелочь, которая тоже пошла под нож.

Плата чуточку другая — детали стоят ровнее, отверстия в один ряд. Это же видно на фото из УНЧ.

Для примера: скачущая разводка того же места у «ВЭФ 216» (сентябрь 1991-го) и вообще плата «ВЭФ 214» (июль 1990-го). Именно такие «шахматы» нам привычны, хотя стройные ряды мне нравятся больше.

Транзистор гетеродина упрятали в ПВХ-трубку и залили парафином — всё ради стабильности частоты. Такое в «плоских» встречаю впервые.

Драма в конструкторском бюро: — Ну просил же: напомни дорисовать площадки под «флажок»! — Не заморачивайся, так припаяют. В следующей плате дорисуешь. Следующая плата: «флажок» убрали. Зато в документах прижилось.

Динамик 1ГД-48-120, который чуть погодя станет 2ГДШ-2. Послушать, правда, не удалось — по-простому приёмник не включился, а сложного не хотелось. Впрочем, я ничуть не расстроен — покупал этот «ВЭФ» совсем для другого.

Генераторы с удвоением частоты

Название разделов
Источники питания В данном разделе собраны конструкции иточников питания. Рассмотены способы преобразования и получения электрической энергии
Реклама на ВРТП Реклама на вртп.

Мы предлагаем вам два вида интернет рекламы:— контекстная реклама— баннерная реклама

Это наиболее продуктивные средства рекламы, позволяющие ускорить раскрутку сайта и улучшить узнаваемость бренда.

Посещаемость нашего ресурса более 7000 в день, а количество просмотров более 30 000 в день.

Предпочтение отдается технической тематике рекламы или теме HI-TECH.

Для резмещения рекламы на нашем сайте вам необходимо отправить письмо с заявкой и описанием типа рекламы на адрес

— Баннер слева сайта: ширина 180 пикселей, высота от 100 до 250 пикселей. При большей высоте баннера цена оговаривается

отдельно.Сквозное размещение рекламного баннера на главной странице — в левой колонке сайта. Размещение статическое. Стоимость

— Баннер внизу сайта: ширина от 150 до 250 пикселей, высота 150 пикселей.При большей ширине баннера цена оговаривается отдельносквозное размещение рекламного баннера в нижней части центральной колонки. Размещение статическое. Стоимость — 3000р в

Баннерная реклама должна быть в формате GIF или FLASH.

— Тематическая статья в разделе «Реклама» объемом до 2500 символов.Стоимость размещения 500р. Оплата разовая.

— текстовые ссылки внизу сайта- блок из 5 ссылок. 1000р в месяц.

Источник

Главные принципы расширения принимаемого диапазона

Всеволновый цифровой радиоприемник работает с большинством вещающих станций. Указанное качество обеспечивается рядом специальных мер.

К уже сказанному добавим, что от частоты принимаемой волны зависит конструкция антенны. Для КВ (3-30 МГц) оптимально подойдет использование ферритовых стержневых разновидностей, для УКВ уместнее телескопическая конструкция.

Портативные радиостанции

Преселектор приемника настраивается на несущую изменением значения емкости, реже индуктивности, входного фильтра. Естественно, перекрыть весь спектр единственному резонансному контуру не под силу, для решения затруднения пригодится ручка переключения диапазонов. Она перебрасывает входной сигнал антенны между контурами с разнообразными областями действия.

Чтобы лучше понять описанное, составим представление о полосовом фильтре. Отмечается две главные характеристики:

  1. Резонансную частоту.
  2. Полосу пропускания.

Действие фильтра подобно воротам, через которые может пройти исключительно нужная часть сигнала, и ворота способны двигаться в разные стороны, пропуская к выходу станции по очереди. Ручкой плавной настройки и регулируется перемещение.

Долгое время ведется борьба за уменьшение размеров и стоимости аппаратуры, но как расширить диапазон радиоприемника без жертв – неясно и поныне. Общепринятой считается технология переброса полученного сигнала между фильтрами.

Ширина полосы пропускания такого фильтра равняется ширине спектра полезного сигнала, излучаемого радиостанцией, а резонансная частота — центр ворот — настраивается на несущую. При точном соблюдении указанных условий качество приема наилучшее.

Продолжая аналогию, скажем, что станции AM и FM расположены слишком «далеко» друг от друга, поэтому устройство, регулирующее положение ворот, туда «не дотягивается». Резонансные контуры электрической схемы действуют схожим образом. Переключение диапазонов позволяет другому контуру «дотянуться» до станции, которую не достает текущий.

Одновременно происходит смена типа приемной антенны. Подобным образом достигается расширенный функционал.

Z-Match для мощности 400 ватт

Для
больших мощностей переменные конденсаторы  должны быть с зазором около
0,5 мм, это обеспечит

напряжение пробоя 2 кВ и позволит работать с
мощностью 400 ватт. Были применены трехсекционные

конденсаторы  с
Смин=15пФ/Смакс=200 пФ на секцию. На диапазоне 160 метров приходится
подключать

дополнительные постоянные емкости с рабочим напряжением не
менее 750 В, лучше на 2 кВ, при этом

достигается согласование с
нагрузкой от 10 до 100 Ом. На остальных диапазонах сопротивления
нагрузки

может быть от 10 до 2000 Ом.

Схема приведена на рис.1. Данные катушек аналогичны приведенным в статье Z-Match.

На
рис.1 не показана переключаемая катушка 1,2 мкГн, она включается, как
показано на рисунке 2. Конструктивные

данные также аналогичны
приведенным выше.

На рис.3 показан тюнер в сборе.

Работа
с этим вариантом тюнера не отличается от первоначального варианта, но
на 14 МГц иногда приходилось использовать положение «3,5 МГц», с двумя
секциями КПЕ параллельно.____________________________________________________________________________________________

Небольшой пример

Следующая схема является LTspice версией петли фазовой автоподстройки частоты. Если вы читали предыдущие статьи, то уже хорошо знакомы с ней. Хотя сейчас в ней появился новый компонент: в петлю обратной связи я добавил D-триггер, включенный как счетчик деления на два.

Схема системы ФАПЧ с умножением частоты

Ниже приведен график, который показывает входной и выходной сигналы (после того, как система ФАПЧ достигла синхронизации).

Осциллограммы входного и выходного сигналов системы ФАПЧ

Выходной и входной сигналы имеют постоянное фазовое соотношение (как и ожидалось при выполнении условия синхронизации), но выходная частота значительно выше входной частоты. Ожидается, что выходная частота будет в два раза выше, и мы можем легко это подтвердить, посмотрев на результаты FFT (БПФ, быстрого преобразования Фурье):

Результаты FFT преобразования входного и выходного сигналов

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: