Что такое допуск, и насколько он важен?
Эта величина показывает возможное отклонение у данной серии от указанного номинала. В правильно рассчитанной схеме должен учитываться этот показатель, либо после сборки производится соответствующая наладка. Как вы понимаете, наши друзья из «Поднебесной» не утруждают себя этим, что положительно отражается на стоимости их товара.
Результат такой политики был показан на рисунке 4, деталь работает какое-то время, пока не наступает предел запаса ее прочности.
- Принимаем решение, сравнив показания мультметра с номиналом, если расхождение выходит за пределы погрешности, деталь однозначно нуждается в замене.
Особенности матриц и пуансонов
Чтобы выпускаемые изделия имели надлежащее высокое качество, геометрические размеры модулей оснастки должны быть чрезвычайно точными, соответствовать друг другу, их поверхность абсолютно гладкой, линия среза – ровная, точная, а пресс должен быть точно отцентрован. Для обеспечения этих показателей инструмент подвергается двойному шлифованию (черновому, чистовому), полировке, заточке. Модули фасонного типа производят путем технологического оттиска, а сложно контурные изготавливают на фрезерных, строгальных станочных агрегатах. Затем оснастка проходит закалку под высокими (около 780°) температурами.
В случаях, если конфигурация пуансона сложнее матрицы, в первую очередь изготавливают его, а затем по его оттиску создают основу. Особый контроль ведется за соблюдением величины зазора между узлами. Просвет соблюдают посредством независимой обработки, либо взаимной подгонки.
При достойном качестве комплекта он прослужит долго, даст точную линию среза, а изготовленные на нем детали не потребуют дополнительной обработки.
Пуансон и матрица в штампе выгодны своей многофункциональностью, универсальностью, практичностью. Во время работы такая оснастка легко и без дополнительных усилий монтируется/демонтируется, наносимые на нее покрытия равномерно осаждаются по всей поверхности, доступна функция планетарного вращения.
Сервисное обслуживание оснастки не затруднительно: требуется систематически очищать поверхность от металлических, бетонных и прочих остатков (с помощью скребков, щеток), промывать напором водной струи с последующей просушкой.
Изношенные комплекты не восстанавливаются, а своевременно заменяются на новые, поскольку их поверхность истирается, их размеры теряют нужную величину, точность. Инструмент, изготовленный из материала, подобранного под конкретную задачу, функционирует без потери качества до нескольких лет (4-6 максимально). Поэтому приобретение оснастки с большим запасом прочности и сроком службы рациональнее, чем частая замена менее прочных комплектов.
Материалы матрицы и пуансона
Как уже было сказано выше, основной задачей пуансона является продавливание заготовки сквозь матрицу. Операция осуществляется под большим давлением, причем там, где используется горячее прессование, детали испытывают мощное тепловое воздействие. Поэтому для изготовления матрицы и пуансона, учитывая сферу их деятельности, применяются самые разные материалы.
При холодном прессовании, детали изготавливают из специальной высокопрочной стали, отличающейся повышенной прокаливаемостью. Твердость закалки по Роквеллу составляет более 60 единиц. Применяется и особая инструментальная сталь — 6ХВ2С. Эти материалы отличает:
- износоустойчивость;
- высокая прочность;
- антикорозийность.
При высоких температурах нельзя использовать легированные стали. Они под влиянием высокой температуры становятся хрупкими. Каждый пуансон имеет максимальную твердость по всей высоте своей поверхности.
В горячем производстве верхнюю часть штампа изготавливают из специальных износоустойчивых сталей
, которые не деформируются при высокой температуре. Таким образом обеспечивается наивысшая стойкость штампа.
В некоторых случаях используются и современные полимеры. Чаще всего применяется полиуретан. Он отличается высокой эластичностью и повышенной прочностью. Его твердость достигает 98 единиц по Шору.
Включение переменных резисторов в электрическую цепь.
В электрических схемах переменные резисторы могут применяться в качестве реостата
(регулируемого резистора) или в качестве потенциометра
(делителя напряжения). Если в электрической цепи необходимо регулировать ток, то резистор включают реостатом, если напряжение, то включают потенциометром.
При включении резистора реостатом
задействуют средний и один крайний вывод. Однако такое включение не всегда предпочтительно, так как в процессе регулирования возможна случайная потеря средним выводом контакта с резистивным элементом, что повлечет за собой нежелательный разрыв электрической цепи и, как следствие, возможный выход из строя детали или электронного устройства в целом.
Чтобы исключить случайный разрыв цепи свободный вывод резистивного элемента соединяют с подвижным контактом, чтобы при нарушении контакта электрическая цепь всегда оставалась замкнута.
На практике включение реостатом применяют тогда, когда хотят переменный резистор использовать в качестве добавочного или токоограничивающего сопротивления.
При включении резистора потенциометром
задействуются все три вывода, что позволяет его использовать делителем напряжения. Возьмем, к примеру, переменный резистор R1 с таким номинальным сопротивлением, которое будет гасить практически все напряжение источника питания, приходящее на лампу HL1. Когда ручка резистора выкручена в крайнее верхнее по схеме положение, то сопротивление резистора между верхним и средним выводами минимально и все напряжение источника питания поступает на лампу, и она светится полным накалом.
По мере перемещения ручки резистора вниз сопротивление между верхним и средним выводом будет увеличиваться, а напряжение на лампе постепенно уменьшаться, отчего она станет светить не в полный накал. А когда сопротивление резистора достигнет максимального значения, напряжение на лампе упадет практически до нуля, и она погаснет. Именно по такому принципу происходит регулирование громкости в звуковоспроизводящей аппаратуре.
Эту же схему делителя напряжения можно изобразить немного по-другому, где переменный резистор заменяется двумя постоянными R1 и R2.
Ну вот, в принципе и все, что хотел сказать о резисторах переменного сопротивления
. В заключительной части рассмотрим особый тип резисторов, сопротивление которых изменяется под воздействием внешних электрических и неэлектрических факторов — .
Удачи!
Литература:
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. В. Фролов — «Язык радиосхем», 1988 г.
М. А. Згут — «Условные обозначения и радиосхемы», 1964 г.
Приемы растягивания диапазона регулировки, обеспечения точной настройки (10+)
Растягиваем диапазон регулировки. Грубая настройка, точная подстройка
Иногда при проектировании радиоэлектронных схем возникает необходимость обеспечить возможность регулировки с малым допуском ошибки. Такая регулировка еще называется регулировкой с растянутым диапазоном. Рассмотрим способы растягивания диапазона.
Для подстройки параметров схемы чаще всего применяются переменные / подстроечные конденсаторы и резисторы. Иногда можно увидеть также катушки индуктивности, с изменяющейся индуктивностью за счет перемещения сердечника. Остановимся на конденсаторных и резисторных схемах. В отношении схемы с переменными дросселями я дам дополнительное пояснение.
Как устроена матрица
Принцип работы прост: кристалл, который помещен в специальную ячейку, пребывает в жидкой среде. Ячейка меняет цвет при подаче электрического импульса. В современных цветных мониторах применяют аддитивную цветовую модель RGB.
Кристаллы, которые находятся внутри, в зависимости от подаваемого напряжения могут окрашиваться в синий, красный или зеленый цвет. Огромное разнообразие цветов (а современные мониторы отображают несколько миллионов) получаются от смешивания базовых трех в разных пропорциях.
Если постучать пальцем по монитору, можно понять, где находится этот компонент.
Это плоский пакет из стеклянных или полимерных пластин, между которыми размещается определенное количество ячеек с жидкими кристаллами. Также необходимы два поляризационных фильтра.
Поверхность электродов, через которые передается ток, предварительно обработана так, чтобы кристаллы выстраивались в направлении электрического поля. Строение каждого кристалла, в зависимости от угла поворота, позволяет ему отображать разные цвета.
Каждый кристалл является отдельным пикселем, то есть точкой изображения. Чем больше таких кристаллов размещается на матрице, тем больше будет разрешение монитора.
При постоянном приложении фиксированного напряжения, кристаллическая структура деградирует из-за миграции ионов.
Именно поэтому «выгорают» мониторы, которыми пользуются длительное время: например, на офисном дисплее часто можно увидеть «отпечаток» Вордовского документа.
Если же вы – заядлый геймер, не стоит переживать: матрица на вашем мониторе выгорит равномерно, поэтому никаких «слепков» вы не заметите, просто цвета потеряют прежнюю яркость и насыщенность.
Как работают матрицы и пуансоны
При прессовании прочный трамбовочный пуансон сильно давит на специальную шайбу для пресса, которая, в свою очередь, передает давление на заготовку. В итоге нужная заготовка выдавливается сквозь матрицу. Пуансон способен работать при огромных тепловых и силовых нагрузках, поэтому его производят из износоустойчивого металла. Приспособление отличается большой прочностью и не повреждается при перепадах температуры.
Другими словами, штамп считается приспособлением, который при помощи давления может изготовить заготовку необходимой формы и размера. При штамповке различных деталей он является наиболее важным инструментом. Когда вместе с ним применяется полиуретан, то из него делают качественную матрицу, которая будет ответным узлом штампа.
При сборке любого вида штампа конструкция этого приспособления всегда полностью совпадает с режущей кромкой матрицы. Другими словами, подобное изделие является замыкающим узлом, который способен создать верхнюю часть заготовки. Набором пуансонов называется небольшой пресс, который может качественно маркировать или делать штамповку разных узлов. С помощью этого приспособления есть возможность изготавливать заготовки любых габаритов или наносить качественную маркировку, которая может быть зеркальной или обычной.
Наборы пуансонов используются на металлообрабатывающих предприятиях, на которых практикуется прессование железных заготовок или изготавливаются листовые детали. В строительной сфере при помощи этого приспособления можно сделать блоки из газобетона, которые имеют различные пустоты.
Разновидности ЖК-матриц
Существует всего 3 разновидности матриц. Принцип их работы очень схож, но качество картинки и ценовой диапазон телевизоров существенно разнится.
TN
Название происходит от английских слов. Если переводить дословно, то получается, что TN-Film — это закрученный кристалл, выполненный из неметалла. В данной технологии все элементы в ячейках в форме спирали.
Преимущества матрицы:
- если сравнивать с другими системами, то TN обладает минимальным откликом монитора;
- ценник на ТВ с такой технологией невысокий;
- максимально экономится электроэнергия.
Минусы:
- ракурс осмотра незначительный по всем плоскостям;
- цветовая интенсивность довольно низкая;
- чёрный цвет заменяют блики серого оттенка.
IPS или SFT
Над созданием работали специалисты компании Hitachi
После на этот тип матрицы обратили внимание и другие ведущие производители телевизоров. Это самый популярный тип матрицы.
Само название можно перевести, как переключение в разных плоскостях.
Преимущества:
- углы обзора максимальные;
- цветопередача значительно лучше, чем у других типов ЖК-матриц;
- настоящая углублённость цвета, если судить по стандарту RGB.
Недостатки:
- долгое время отклика монитора;
- сильно заметна пикселизация на небольших ТВ (диагональю меньше 17 дюймов);
- цена на девайс с такой системой высока.
VA
В переводе означает корректировка по вертикали. В данном случае спиральное закручивание элементов отсутствует. Свет не выходит за рамки жидких кристаллов.
- здесь самый высокий уровень контрастности;
- чёрный тон полный, серый оттенок отсутствует;
- реалистичная цветовая гамма.
Минус технологии один. Если изменить угол обзора хоть на сантиметр противоречит заданному производителем, то цвета начинают «плясать».
Не так давно у матрицы VA появился приемник — MVA . Создатели этой системы подработали над недостатком. Угол обзора увеличился.
В каждой рассмотренной матрице сейчас применяются специальные плёнки и усиление напряжения. Они помогают улучшить качество изображения.
OLED дисплеи
Отдельным сегментом выступают OLED дисплеи, представляющие собой одно из самых перспективных направлений.
Устройство OLED. Фото www.flatpanels.dk
OLED — это органические светодиоды, которые самостоятельно испускают свет при прохождении через них электрического тока. На английском эта аббревиатура расшифровывается как Organic Light Emitting Diod.
Если переводить на русский язык, получатся светоизлучающие органические дисплеи. Органические — не значит «живые». Здесь под органикой подразумеваются углеродсодержащие полимеры, которые фосфоресцируют, если через них пропустить ток. Причем светятся они тем ярче, чем больше тока на них подать. Если ток не подавать вовсе, свечения не будет.
Технология OLED превзошла LCD и LED по многим показателям. До недавнего времени матрицы на основе органических светодиодов встречались только в смартфонах и телевизорах. В 2020 году выпуск ноутбуков с OLED-дисплеями начала компания ASUS.
- Преимущества: маленький вес, габариты; низкое энергопотребление; любые геометрические формы; углы обзора вплоть до 180 градусов; мгновенный отклик; контрастность превышает все известные альтернативные технологии; температурный диапазон шире, чем у других экранов.
- Недостатки: маленький срок службы; высокая цена.
Виды термических резисторов с положительным ТКС
Рассмотрим виды термических резисторов, для PTC и NTC они одинаковые.
Разновидности по особенностям действия
По типу действия (сработки) есть такие типы ТР:
- с контактным принципом: термопары, датчики, элементы-термометры заполненные и биметаллические;
- бесконтактные. Это терморезисторы с инфракрасным принципом. Распространенные в оборонной отрасли, могут реагировать на тепловые ИК излучения, оптические лучи, выделяемые газами и жидкостями.
Номинал, разновидности по температурным параметрам
Детали чаще рассматриваются в международной системе измерений СИ, в Кельвинах. Переводить К в градусы Цельсия нужно особым образом — сравнивая две шкалы.
Один градус К равен 1° C, но точки на шкалах разнятся: нулю по Цельсию отвечает 273.150 на линейке, градуированной Кельвинами. Также тут есть такая отметка как абсолютный ноль, но это не «0° C» — он равен отметке «−273.150 °C».
Терморезисторы различаются по степени реагирования на определенную температуру так:
- низкотемпературные. Реагируют на t° ниже −102 °C (в Кельвинах 170° К);
- средне. 170…510° К;
- высоко: от 570° К;
- отдельный тип: 900…1300° К.
Первоначальные характеристики терморезисторов — термисторов, позисторов — могут изменяться при функционировании с частыми колебаниями t°.
Как измерить сопротивление резистора
Любой резистор обладает сопротивлением. Кто не в курсе, что такое сопротивление и как оно измеряется, в срочном порядке читаем эту статью. Сопротивление измеряется в Омах. Но как же нам узнать сопротивление резистора? Есть прямой и косвенный методы.
Прямой метод он самый простой. Нам нужно взять мультиметр и просто замерять сопротивление резистора. Давайте рассмотрим, как все это выглядит. Я беру мультиметр, выставляю крутилку на измерение сопротивления и цепляюсь к выводам резистора.
Измерение сопротивления
Резистор я брал на 1 кОм. Он мне показал 976 Ом, что в принципе тоже нормально, так как у таких резисторов всегда существует некая погрешность.
Косвенный метод измерения заключается в том, что мы будем рассчитывать сопротивление резистора через закон Ома.
формула сопротивления через закон Ома
Поэтому, чтобы узнать сопротивление резистора, нам надо напряжение на концах резистора поделить на силу тока, которая течет через резистор. Все довольно просто!
Допустим, я хочу узнать сопротивление нити накала лампочки, когда она источает свет. Думаю, некоторые из вас в курсе, что сопротивление холодной вольфрамовой нити и раскаленной – это абсолютно разные сопротивления. Я ведь не смогу измерить мультиметром в режиме измерения сопротивления раскаленную вольфрамовую нить лампы накаливания, так ведь? Поэтому, нам как нельзя кстати подойдет эта формула.
Давайте же узнаем это на опыте. У меня есть лабораторный блок питания, который показывает сразу напряжение и силу тока, которая течет через нагрузку. Беру лампу, выставляю на блоке питания напряжение, которое написано на самой лампе и подключаю ее к клеммам блока питания.
Лампа накаливания потребление тока
Итак, получается, что на выводах лампы сейчас напряжение 12 Вольт, а ток, который течет в цепи, а следовательно и через лампу 0,71 Ампер.
Получаем, что сопротивление раскаленной нити лампы в данном случае составляет.
Параллельное соединение резисторов — онлайн калькулятор
Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:
Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.
Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:
Зависимость сопротивления и температуры
Сопротивление идеальных полупроводников (количество дырок и носителей заряда одинаково) в зависимости от температуры может быть представлено следующей формулой
R(T) = A exp(b/T)
где A, b – постоянные, зависящие от свойств материала и геометрических размеров.
Однако, сложная композиция и неидеальное распределение зарядов в термисторном полупроводнике не позволяет напрямую использовать теоретическую зависимость и требует эмпирического подхода. Для NTC термисторов используется аппроксимационная зависимость Стейнхарта и Харта
1/T = a+b(lnR)+c(lnR)3
где T – температура в К;
R – сопротивление в Ом;
a,b,c – константы термистора, определенные при градуировке в трех температурных точках, отстоящих друг от друга не менее, чем на 10 С.
Стеклянный термистор.
Типичный 10 кОм-ый термистор имеет коэффициенты в диапазоне 0-100 С близкие к следующим значениям:
- a = 1,03 10-3
- b = 2,93 10-4
- c = 1,57 10-7
Дисковые термисторы могут быть взаимозаменяемыми, т.е. все датчики определенного типа будут иметь одну и ту же характеристику в пределах установленного производителем допуска. Лучший возможный допуск, как правило, ±0,05 С в диапазоне от 0 до 70 С. Бусинковые термисторы не взаимозаменяемы и требуют индивидуальной градуировки.
Градуировка термисторов может осуществляться в жидкостных термостатах. Необходимо герметизировать термисторы, погрузив их в стеклянные пробирки. Обычно для градуировки и вычисления констант проводится сличение термистора с образцовым платиновым термометром.
В диапазоне от 0 до 100 С сличение проводится в точках с интервалом 20 С. Погрешность интерполяции обычно не превышает 1 –5 мК при использовании модифицированного уравнения Стейнхарта и Харта:
1/T = a+b(lnR)+c(lnR)2 + d(lnR)3
Могут также использоваться реперные точки: тройная точка воды (0,01 С), точка плавления галлия (29,7646 С), точки фазовых переходов эвтектик и органических материалов.
Для градуировки нескольких термисторов они могут быть соединены последовательно, так чтобы через них проходил одинаковый ток
При градуировке и использовании термисторов важно учитывать эффект нагрева измерительным током. Для 10 кОм – ого термистора рекомендуется выбирать токи от 10 мкА (погрешность 0,1 мК), до 100 мкА (погрешность 10 мК)
Для начала определимся с таким типом радиодеталей, как термисторы (или, как их еще называют – терморезисторы). Они представляют собой полупроводниковый элемент, у которого меняется сопротивление в зависимости от температуры. Эта зависимость может быть:
- Прямой(чем больше температура, тем выше сопротивление) – это тип PTC (от англ. Positive Temperature Coefficient, то есть позитивный/положительный температурный коэффициент). Альтернативное название “позисторы”.
- Обратной(сопротивление увеличивается при уменьшении температуры и наоборот) – это тип NTC (от англ. Negative Temperature Coefficient, то есть негативный/отрицательный температурный коэффициент).
Терморезисторы часто разделят по диапазонам рабочих температур:
- Низкотемпературные (ниже 170 К);
- Среднетемпературные (170-510 К);
- Высокотемпературные (свыше 510 К).
Обозначение термистора указано на рисунке ниже.
Устройство термистора.
Разновидности и требования
Стандартные пуансоны различаются по типами: A, T, W и L. Также в зависимости от изготовляемых изделий возможно применение пресс-штемпелей типа B, C, D и т.д., где обозначение латинской буквой указывает на тип крепления. Конструктивно пуансоны могут быть пробивными, просечными, прошивными и вырубными.
К инструментам вибропрессовальных и штамповочных станков предъявляются следующие требования:
- Отсутствие дефектов поверхности. Недопустимо использовать оснастку с зазорами, заусенцами, трещинами и другими повреждениями.
- Своевременная замена оснастки оборудования. Пуансоны имеют ограниченный срок службы, не превышающий 4-6 лет, после которого обязательно выполняется их замена.
- Применение только рекомендованных сталей при изготовлении деталей. Пуансоны в процессе штамповки или прессования испытывают значительные нагрузки, поэтому в зависимости от типа операций (холодные или горячие процессы), материала заготовок, оказываемого давления и назначения самого пресс-штепселя выбирают рекомендуемые марки стали.
Компания ООО PLASMET осуществляет производство и продажу пуансонов различного типа. Есть в продаже стандартная оснастка для крепления на прессах большинства известных производителей Gasparini, Ermaksan, Trumpf, Amada, LVD и пр. Помимо поставок готовых инструментов принимаем заказы на разработку и изготовление пуансонов под техническому заданию клиентов. Все изделия производятся в строгом соответствии с действующими требованиями, обязательно проводится закалка, антикоррозийная обработка.
Чтобы уточнить интересующие вопросы по представленной продукции и оформить заказ на поставку или изготовление требуемых листогибочных инструментов, звоните по указанному на сайте телефону или оставьте запрос онлайн через форму.
Графическое обозначение радиоэлементов в схеме
Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:
Резисторы и их виды
а) общее обозначение
б) мощностью рассеяния 0,125 Вт
в) мощностью рассеяния 0,25 Вт
г) мощностью рассеяния 0,5 Вт
д) мощностью рассеяния 1 Вт
е) мощностью рассеяния 2 Вт
ж) мощностью рассеяния 5 Вт
з) мощностью рассеяния 10 Вт
и) мощностью рассеяния 50 Вт
Резисторы переменные
Терморезисторы
Тензорезисторы
Варисторы
Шунт
Конденсаторы
a) общее обозначение конденсатора
б) вариконд
в) полярный конденсатор
г) подстроечный конденсатор
д) переменный конденсатор
a) головной телефон
б) громкоговоритель (динамик)
в) общее обозначение микрофона
г) электретный микрофон
Диоды
а) диодный мост
б) общее обозначение диода
в) стабилитрон
г) двусторонний стабилитрон
д) двунаправленный диод
е) диод Шоттки
ж) туннельный диод
з) обращенный диод
и) варикап
к) светодиод
л) фотодиод
м) излучающий диод в оптроне
н) принимающий излучение диод в оптроне
а) амперметр
б) вольтметр
в) вольтамперметр
г) омметр
д) частотомер
е) ваттметр
ж) фарадометр
з) осциллограф
Катушки индуктивности
а) катушка индуктивности без сердечника
б) катушка индуктивности с сердечником
в) подстроечная катушка индуктивности
Трансформаторы
а) общее обозначение трансформатора
б) трансформатор с выводом из обмотки
в) трансформатор тока
г) трансформатор с двумя вторичными обмотками (может быть и больше)
д) трехфазный трансформатор
Устройства коммутации
а) замыкающий
б) размыкающий
в) размыкающий с возвратом (кнопка)
г) замыкающий с возвратом (кнопка)
д) переключающий
е) геркон
Предохранители
а) общее обозначение
б) выделена сторона, которая остается под напряжением при перегорании предохранителя
в) инерционный
г) быстродействующий
д) термическая катушка
е) выключатель-разъединитель с плавким предохранителем
Фоторезистор
Фотодиод
Фотоэлемент (солнечная панель)
Фототиристор
Фототранзистор
Диодная оптопара
Резисторная оптопара
Транзисторная оптопара
Тиристорная оптопара
Симисторная оптопара
Особенности замены матрицы
Заменить матрицу можно в домашних условиях. Перед этим стоит ознакомиться с инструкцией. Процедура очень щепетильная и требует внимательности.
Пошаговая инструкция по замене матрицы
Заменить матрицу довольно сложно. Во избежание негативных последствий, придерживайтесь алгоритма действий:
- Отсоедините девайс от кабеля и шлейфа. Перенесите устройство на место, где будут производиться работы по замене.
- Отделите лицевую часть матрицы от задней. Отвёрткой окрутите саморезы, которые скрепляют части.
- Положите матрицу внешней составляющей к низу. Класть следует не мягкую поверхность (толстый картон, ковёр).
- Раскрепите защёлки. Ни в коем случае не проводите манипуляцию ножом. Лучше всего взять кусок пластины.
- Отключите от матричной системы электропровод и сигнальный шлейф.
- Место соединения шлейфа и матрицы перед сборкой склеивается липкой лентой. Аккуратно уберите ленту. Будьте внимательны, резкое движение приведёт к повреждению составляющих устройства. Снимите испорченную матрицу.
- Подготовьте новую матрицу к монтажу. Протрите края салфеткой, смоченной в спиртовом растворе. Установите крепления, выполненные из металла.
- Поставьте новую систему. Подключите сигнальный шлейф и кабель электрического питания. Проверьте, работает ли ТВ.
- Соберите корпус устройства. После поставьте предохранительный дисплей из акрила.
Наглядно ознакомиться с инструкцией можно из видео:
Не забудьте согласовать поставленную матрицу с модулем управления телевизора. Иногда, после замены, иллюстрация на экран не выводится.
Изменения вносятся через основное меню девайса. Подробное описание процесса всегда есть в документации на технику.
Сколько стоит новая матрица?
Матрицу в телевизоре можно заменить. Делать это целесообразно только в случае, когда ТВ находится на гарантии и замена будет производиться бесплатно. Новая матрица обойдётся примерно в половину от стоимости самой плазменной панели.
Самостоятельная замена матрицы редко приводит к положительному результату. Получится не рациональное использование денежных средств. Данную процедуру лучше доверить специалисту. В ином случае экономнее купить новый телевизор.
Матрица в телевизоре — это основной компонент устройства. Именно от него зависит, какое качество изображения в итоге получает пользователь. Перед приобретением девайса рекомендуется ознакомиться, какая технология была применена при сборке. Сделать это можно самостоятельно или опираясь на опыт консультанта магазина.
Насколько статья была вам полезна?