Стабилизированный двухполярный блок питания для унч

↑ Высококачественный регулятор тембра

В высококачественной аппаратуре нашел применение пассивный регулятор нижних и верхних частот, показанный на рис. 4 .

Рис. 4. Высококачественный пассивный регулятор тембра

Здесь элементы R1 – R3, C1, C2 образуют пассивный частотно – зависимый корректор нижних частот; R5 – R7, C3, C4 – корректор верхних частот. Включенный между регуляторами резистор R4 является развязкой, уменьшающей влияние регуляторов друг на друга. Конденсатор C0 служит для развязки по постоянному току.

Для расчета регулятора тембра, приведенного на рис. 4, мною подготовлен файл в табличном процессоре Microsoft Excel. На рис. 5 показан скриншот рабочего листа таблицы (без прилагаемого здесь же графического материала). В ячейки, закрашенные светло – синим цветом заносятся исходные данные, в ячейках таблицы, залитых оранжевым цветом, размещены результаты расчета. В начале расчета выберем величины сопротивлений переменных резисторов R2 и R7 в килоомах, далее заносим диапазон регулировок нижних и верхних частот в децибелах. Как только запишем в оставшиеся три ячейки светло – синего цвета частоты fнр, fвр и fн, сразу увидим результаты расчета всех остальных элементов регулятора. Останется только привести их к ближайшим значениям из выбранного стандартного ряда Е24 или Е48.

Рис. 5. Расчет регулятора тембра с помощью электронной таблицы Microsoft ExcelКонтрольный пример №1 . Рассчитаем с помощью электронной таблицы пассивный регулятор тембра с пределами регулирования АЧХ ±20 дБ, рис. 11.2.3 . Исходные данные: R2=R7=100 кОм, fнр=50 Гц, fвр=10000 Гц. Получаем: R1=R5=10 кОм, R3=R6=1 кОм, R4=10 кОм, C1=0,032 мкФ, C2=0,318 мкФ, C3=0,0159 мкФ, C4=0,159 мкФ, C0=0,16 мкФ. Округляем до ближайшего номинала: R1=R5=10 кОм, R3=R6=1 кОм, R4=10 кОм, C1=0,033 мкФ, C2=0,33 мкФ, C3=0,015 мкФ, C4=0,15 мкФ, C0=0,15 мкФ.

Схема однотактного УНЧ на транзисторе

Самый простой усилитель, построенный по схеме с общим эмиттером, работает в классе «А». В схеме используется полупроводниковый элемент со структурой n-p-n. В коллекторной цепи установлено сопротивление R3, ограничивающее протекающий ток. Коллекторная цепь соединяется с положительным проводом питания, а эмиттерная – с отрицательным. В случае использования полупроводниковых транзисторов со структурой p-n-p схема будет точно такой же, вот только потребуется поменять полярность.

С помощью разделительного конденсатора С1 удается отделить переменный входной сигнал от источника постоянного тока. При этом конденсатор не является преградой для протекания переменного тока по пути база-эмиттер. Внутреннее сопротивление перехода эмиттер-база вместе с резисторами R1 и R2 представляют собой простейший делитель напряжения питания. Обычно резистор R2 имеет сопротивление 1-1,5 кОм – наиболее типичные значения для таких схем. При этом напряжение питания делится ровно пополам. И если запитать схему напряжением 20 Вольт, то можно увидеть, что значение коэффициента усиления по току h21 составит 150. Нужно отметить, что усилители КВ на транзисторах выполняются по аналогичным схемам, только работают немного иначе.

биполярные транзисторы.

На резисторе R1 теперь можно вычислить значение падения – это разница между напряжениями базы и питания. При этом напряжение базы можно узнать по формуле – сумма характеристик эмиттера и перехода «Э-Б». При питании от источника 20 Вольт: 20 – 9,7 = 10,3. Отсюда можно вычислить и значение сопротивления R1=10,3В/60 мкА=172 кОм. В схеме присутствует емкость С2, необходимая для реализации цепи, по которой сможет проходить переменная составляющая эмиттерного тока.

Если не устанавливать конденсатор С2, переменная составляющая будет очень сильно ограничиваться. Из-за этого такой усилитель звука на транзисторах будет обладать очень низким коэффициентом усиления по току h21

Нужно обратить внимание на то, что в вышеизложенных расчетах принимались равными токи базы и коллектора. Причем за ток базы брался тот, который втекает в цепь от эмиттера

Возникает он только при условии подачи на вывод базы транзистора напряжения смещения.

Дискретный или интегральный.

Изначально была идея сделать усилитель работающий в классе “А” на дискретных элементах, полагая что это лучший способ получить минимальные значения искажений и шумов. Однако, такая конструкция из-за большого количества элементов может оказаться сложной для повторения, да и по размерам она будет существенно больше, чем конструкции с применением операционных усилителей, а значит, будет более чувствительная к внешним шумам и помехам.

Типовые и популярные до сих пор операционные усилители NE5534 и LM833 тоже не подошли, так как на сегодняшний день их параметры не достаточно высокие.

Более современные, не дорогие и доступные ОУ серии Burr-Brown (Texas Instruments) OPA134 позволяют получить уровень искажений 0,00008% на частоте 1 кГц! Это более чем на порядок (в 25 раз) лучше параметров операционных усилителей упомянутых выше. Кстати, выходные каскады этих ОУ не работают в режиме класса А, несмотря на их отличную линейность. Документация от производителя не раскрывает секрет, как удалось достичь этих впечатляющих результатов.

Эти микросхемы и решено было использовать в конструкции.

Технические характеристики предварительного усилителя:

  • Диапазон частот (абсолютно плоский) 10 Hz — 20 kHz,
  • Максимальный входной сигнал………………………… 2.9V RMS (9.5V RMS на выходе)
  • Входное сопротивление………………………………………………………………~90 кОм
  • Выходное сопротивление……………………………………………………………..100 Ом
  • Гармонические искажения…………………………………. <0.0005%
  • Сигнал/шум……………………………………………… -102 dB
  • Разделение каналов………………..-96 dB на частоте 1 kHz, -73 dB на частоте 10 kHz
  • Проникновение между входами. .-110 dB на частоте 1 kHz, -93 dB на частоте 10 kHz

Внимание! Заявленные характеристики можно получить только при соблюдении всех рекомендаций авторов по выбору элементов, монтажу и конструктивных особенностей усилителя. Можете сравнить характеристики этого предварительного усилителя с вариантом Дугласа Селфа

Можете сравнить характеристики этого предварительного усилителя с вариантом Дугласа Селфа.

Усилитель на одном транзисторе — начинающим радиолюбителям

Усилитель на одном транзисторе — здесь представлена конструкция простого УНЧ на одном транзисторе. Именно с подобных схем многие радиолюбители начинали свой путь. Однажды собрав несложный усилитель мы всегда стремимся изготовить более мощное и качественное устройство. И так все идет по нарастающей, всегда присутствует желание изготовить безупречный усилитель мощности.

Показанная ниже простейшая схема усилителя выполнена на одном биполярном транзисторе и шести электронных компонентах, включая динамик. Эта конструкция прибора усиливающего звук низкой частоты, создана как раз для начинающих радиолюбителей. Основная ее цель, это дать понять простой принцип работы усилителя, поэтому она собрана с использованием минимального количества радиоэлектронных элементов.

Этот усилитель естественно обладает небольшой мощностью, для начала она большая и не нужна. Однако, если установить более мощный транзистор и поднять немного напряжение питания, то на выходе можно получить примерно 0,5 Вт. А это уже считается довольно приличной мощностью для усилителя имеющего такую конструкцию. На схеме, для наглядности применен биполярный транзистор c проводимостью n-p-n, вы же можете использовать любые и с любой проводимостью.

Чтобы получить 0,5 Вт на выходе, то лучше всего применить мощные биполярные транзисторы типа КТ819 либо их зарубежные аналоги, например 2N6288, 2N5490. Также можно использовать кремневые транзисторы типа КТ805 их зарубежный аналог — BD148, BD149. Конденсатор в цепи выходного тракта можно установить 0,1mF, хотя его номинальное значение не играет большой роли. Тем не менее он формирует чувствительность прибора относительно частоты звукового сигнала.

Если поставить конденсатор имеющий большую емкость, то тогда на выходе будут преимущественно низкие частоты, а высокие будут срезаться. И наоборот, если емкость будет маленькая, то будут резаться низкие частоты, а высокие пропускаться. Поэтому, этот выходной конденсатор подбирается и устанавливается исходя из ваших предпочтений относительно звукового диапазона. Напряжение питания для схемы нужно выбирать в пределах от 3v — до 12v.

Хотелось бы еще пояснить — данный усилитель мощности представлен вам только в демонстрационных целях, показать принцип работы такого устройства. Звучание этого аппарата конечно будет на низком уровне и не идет ни в какое сравнение с высококачественными устройствами. При усилении громкости воспроизведения, в динамике будут возникать искажения в виде хрипов.

Предыдущая запись Измеритель индуктивности своими руками
Следующая запись Частотный преобразователь своими руками

Транзисторный усилитель 50W своими руками

Приветствую, Самоделкины! Усилители мощности низкой частоты или просто усилитель звука, собираются радиолюбителями довольно часто. Специализированные микросхемы усилителей мощности низкой частоты сейчас довольно популярны и после сборки некоторых УНЧ на базе микросхем, радиолюбитель стремится к чему-то более сложному. Транзисторные усилители, несмотря на огромное разнообразие микросхем, не потеряли свою актуальность. Если нужен хороший качественный усилитель, то стоит собрать его на транзисторах. Сегодня мы поговорим о неплохом транзисторном усилителе, работающим в классе b. Не спешите с выводами, класс b тоже бывает неплохим.

Истинные ценители сверх высококачественного звука наверняка скажут, что это не самый лучший класс УНЧ, однотактный и ламповый — вот каким должен быть качественный усилитель. Я конечно же отчасти с вами согласен, но цены ламповых усилителей, сами видите:

А собрать их дома тоже процесс не из легких.

Представленная схема была опубликованная в журнале «Радио» в 1991 году.

Это легендарный усилитель Дорофеева, так что он имеет довольно преклонный возраст. Гениальность схемы заключается в простоте. Несмотря на минимальное количество используемых компонентов с соответствующим источником питания данный усилитель способен отдавать в нагрузку 4 Ома, мощность до 50 ватт, что согласитесь, очень даже неплохо. В разное время радиолюбители дорабатывали и изменяли схему. Для удобства, автор перевел схему на импортные компоненты, далее будем рассматривать именно ее.

В данном усилителе применены довольно интересные схематические решения, например, резистор R12, которой ограничивает коллекторный ток транзистора выходного каскада и является своеобразным ограничителем выходной мощности, одновременно защищает выходные транзисторы от коротких замыканий. Так что усилитель короткого, можно сказать, не боится.

С целью увеличения выходной мощности, можно увеличить питающее напряжение, но в этом случае нужно менять и транзисторы оконечного каскада на более мощные и пересчитать несколько резисторов.

Резисторы r9 и r10 подбираются в зависимости от питающего напряжения.

Они ограничивают ток через стабилитрон и в этой части схемы собран параметрический стабилизатор напряжения, которое обеспечивает стабильное питание для операционного усилителя.

Кстати, об операционнике, это довольно неплохой операционный усилитель, применяется в аудиотехнике очень часто. Можно спокойно менять на TL081.

В случае замены на иные операционные усилители, стоит обратить внимание на распиновку, так как расположение выводов может быть иным. Операционный усилитель советую установить на панельку беспаячного монтажа, для быстрой замены в случае чего

Кстати, у этого автора есть и вторая версия данного усилителя, на сей раз полностью на транзисторах, она сейчас перед вами:

Несколько слов о печатной плате, мастер старался ее сделать максимально компактной, вроде бы получилось неплохо.

Ссылку на скачивание найдете в описании под видеороликом автора (внизу страницы). На плате имеются перемычки, их желательно запаять в первую очередь.

Транзисторы предвыходного и выходного каскада, устанавливаются на общий теплоотвод. Естественно не забываем их изолировать от радиатора.

Как видно из схемы, в выходном и предвыходном каскаде, использованы комплементарные пары транзисторов. Очень и очень желательно подобрать транзисторы по коэффициенту усиления. Некоторые мультиметры имеют функцию проверки этого параметра, но можно использовать транзистор-тестер.

Пару слов об источнике питания.

В случае трансформаторного блока питания желательно использовать фильтрующие конденсаторы с емкостью не менее 4700 мкФ, тут чем больше тем лучше.

Усилитель работает в классе b и КПД на довольно высоком уровне, но в любом случае, источник питания нужен с некоторым запасом. Поэтому необходимо взять трансформатор с габаритной мощностью от 70 Вт. Как звучит усилитель вы можете узнать, посмотрев видеоролик автора. Должен заметить, что во время тестов будет слышен некий фон, это связано с тем, что в блоке питания у автора проекта использованы конденсаторы очень малой емкости, всего 1000 мкФ в плече.

На этом все. В описании под видео помимо архива проекта со схемой и платой, найдете ссылки на комплектующие для сборки такого же усилителя, а также на готовые платы усилителей низкой частоты на любой вкус.

Благодарю за внимание. До новых встреч!. Видео:

Видео:

Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Трекаскадный УНЧ с непосредственной связью

На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.

Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.

В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (30…50) к 1. Резистор R1 должен быть 0,1…2 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].

Обратная связь ОУ

Как я уже упоминал операционные усилители почти всегда используют с обратной связью (ОС). Но что представляет собой обратная связь и для чего она нужна? Попробуем с этим разобраться.

С обратной связью мы сталкиваемся постоянно: когда хотим налить в кружку чая или даже сходить в туалет по малой нужде Когда человек управляет автомобилем или велосипедом то здесь также работает обратная связь. Ведь для того, чтобы ехать легко и непринужденно  мы вынуждены постоянно контролировать управление в зависимости от различных факторов: ситуации на дороге, технического состояния средства передвижения и так далее.

Если на дороге стало скользко ? Ага мы среагировали, сделали коррекцию и дальше двигаемся более осторожно. В операционном усилителе все происходит подобным образом

В операционном усилителе все происходит подобным образом.

Без обратной связи при подаче на вход определенного сигнала на выходе мы всегда получим одно и тоже значение напряжения. Оно будет близко напряжению питания (так как коэффициент усиления очень большой). Мы не контролируем выходной сигнал. Но если часть сигнала с выхода мы отправим обратно на вход то что это даст?

Мы сможем контролировать выходное напряжение. Это управление будет на столько эффективным, что можно просто забыть про коэффициент усиления, операционник  станет послушным и предсказуемым потому что его поведение будет зависеть лишь от обратной связи. Далее я расскажу как можно эффективно управлять выходным сигналом  и как его контролировать, но для этого нам нужно знать некоторые детали.

Положительная обратная связь,  отрицательная обратная связь

Да, в  операционных усилителях применяют обратную связь и очень широко. Но обратная связь   может быть как положительной так и отрицательной. Надо бы разобраться в чем суть.

Положительная обратная связь в операционниках применяется не так широко как отрицательная. Более того положительная обратная связь чаще бывает нежелательным побочным явлением некоторых схем и положительной связи стараются избегать.  Она является нежелательной потому, что эта связь может усиливать искажения в схеме и в итоге привести к нестабильности.

С другой стороны положительная обратная связь не уменьшает коэффициент усиления операционного усилителя что бывает полезно. А нестабильность также находит свое применение в компараторах, которые  используют в АЦП (Аналого-цифровых преобразователях).

А вот отрицательная обратная связь просто создана для операционных усилителей. Несмотря на то, что она способствует некоторому ослаблению коэффициента усиления, она приносит в схему стабильность и управляемость.  В результате схема становится независимой от коэффициента усиления, ее свойства полностью управляются отрицательной обратной связью.

При использовании отрицательной обратной связи операционный усилитель приобретает одно очень полезное свойство. Операционник контролирует состояния своих входов и стремится к тому, потенциалы на его входах были равны. ОУ подстраивает свое выходное напряжение так, чтобы результирующий входной потенциал (разность Вх.1 и Вх.2) был нулевым.

Подавляющая часть схем на операционниках строится с применением отрицательной обратной связи! Так что для того чтобы разобраться как работает отрицательная связь нам нужно рассмотреть схемы включения ОУ.

Варианты схемы предусилителя

Как я уже упоминал выше, вы можете добавить к этому усилителю неограниченное количество аудио входов, сделав небольшой микшер аудио сигналов. На схеме показано как добавить три входа. Вы можете добавить сколько угодно входных ячеек. Это превращает входной каскад в инвертирующий смеситель с регулировкой коэффициента усиления. При этом можно независимо регулировать уровень сигнала с каждого источника соответствующим переменным резистором.

Как вы уже поняли, я описал монофоническою версию предусилителя. Для использования в стерео усилителе нужно сделать два таких преампа и использовать сдвоенные потенциометры в регуляторах тембра и громкости.

Экономичный УНЧ на трех транзисторах

Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.

При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.

Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.

Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.

Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2… 15 В потребляемый усилителем ток описывается выражением:

1(мкА) = 52 + 13*(Uпит)*(Uпит),

где Uпит — напряжение питания в Вольтах (В).

Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.

Улучшениые варианты однотранзисторного усилителя

Усложненные и улучшенные по сравнению со схемой на рис. 1 схемы усилителей приведены на рис. 2 и 3. В схеме на рис. 2 каскад усиления дополнительно содержит цепочку частотнозависимой отрицательной обратной связи (резистор R2 и конденсатор С2), улучшающей качество сигнала.

Рис. 2. Схема однотранзисторного УНЧ с цепочкой частотнозависимой отрицательной обратной связи.

Рис. 3. Однотранзисторный усилитель с делителем для подачи напряжения смещения на базу транзистора.

Рис. 4. Однотранзисторный усилитель с автоматической установкой смещения для базы транзистора.

В схеме на рис. 3 смещение на базу транзистора задано более «жестко» с помощью делителя, что улучшает качество работы усилителя при изменении условий его эксплуатации. «Автоматическая» установка смещения на базе усилительного транзистора применена в схеме на рис. 4.

Простой усилитель на одном транзисторе

Простейший УНЧ, выполненный по схеме с общим эмиттером, показан на рис. 1. В качестве нагрузки использован телефонный капсюль. Допустимое напряжение питания для этого усилителя 3…12 В.

Величину резистора смещения R1 (десятки кОм) желательно определить экспериментально, поскольку его оптимальная величина зависит от напряжения питания усилителя, сопротивления телефонного капсюля, коэффициента передачи конкретного экземпляра транзистора.

Рис. 1. Схема простого УНЧ на одном транзисторе + конденсатор и резистор.

Для выбора начального значения резистора R1 следует учесть, что его величина примерно в сто и более раз должна превышать сопротивление, включенное в цепь нагрузки. Для подбора резистора смещения рекомендуется последовательно включить постоянный резистор сопротивлением 20…30 кОм и переменный сопротивлением 100… 1000 кОм, после чего, подав на вход усилителя звуковой сигнал небольшой амплитуды, например, от магнитофона или плеера, вращением ручки переменного резистора добиться наилучшего качества сигнала при наибольшей его громкости.

Величина емкости переходного конденсатора С1 (рис. 1) может находиться в пределах от 1 до 100 мкФ: чем больше величина этой емкости, тем более низкие частоты может усиливать УНЧ. Для освоения техники усиления низких частот рекомендуется поэкспериментировать с подбором номиналов элементов и режимов работы усилителей (рис. 1 — 4).

↑ Собираем всё в корпус

Вставляем нижнюю плату УМ. С боков крепятся радиаторы на жёлтеньких дюралевых стояках. Сзади — вентилятор на 220В размером 80×80 мм на 1800 об/мин с подшипником качения, чтобы не сильно шумел. Вентилятор включается через нормально разомкнутый тепловой предохранитель на 60 градусов. Т.е. работает не постоянно. Предохранитель расположен на дальней от вентилятора стороне трансформатора УМ. С целью уменьшения вибрации, вентилятор закреплён не стандартно. Отверстие в корпусе, под вентилятор, квадратное. На 3 – 4 мм шире с каждой стороны, чем внешние габариты вентилятора. Вентилятор вставлен внутрь отверстия, зазоры залиты силиконовым герметиком (как пластиковые окна вокруг пеной заливают). После застывания герметика, держится крепко. Снаружи вентилятор закрывается декоративной решёткой.

К нижней плате прикручены шестигранные дюралевые стойки, на которые размещается верхняя плата SRPP.

Далее снова стойки, к которым привинчивается верхняя крышка.


Избавиться от отверстий, которые были в разделочных досках, не получилось. Не прошло по размерам. Оставил их, как вентиляционные. Впоследствии закрыл их металлическими сеточками. Сеточки добыл из вот такого стакана для карандашей:


Стакан подвернулся в магазине, где «все продаётся по одной цене». В общем, сеточки обошлись достаточно дёшево.

В итоге получился вот такой оригинальный девайс:

Ламповый дебют

Двухтактный усилитель Magnat RV 1 унаследовал все лучшее от ламповой классики 60-70 гг. Топология строилась на малошумных двойных триодах 12AX7EH и лампах 12AU7 в предварительной секции, а также на пентодах EL34 в выходном каскаде. Даже имелся MM/MC-корректор на 4-х 12AX7EH. Идею о разработке полноценного лампового усилителя подсказал конструкторам экспорт-менеджер Audiovox Марио Лоде (Mario Lode), влюбленный в группу AC/DC. Вслед за RV 1 последовал удачный 50-ваттный усилитель RV 2 с тщательно отобранными в пары двойными триодами-драйверами 12AX7 (ECC82), 12AU7 (ECC82) и выходными тетродами 6550. Примечательно, что все лампы для усилителей были произведены в Саратове.


Первый гибридный лампово-транзисторный усилитель от Magnat — RV 1, выпускался в период с 2007 до 2012 года

Еще одним смелым решением «магнатовцев» стала мысль о внедрении предварительного контура с двойными триодами ECC88 (6922) в выходные цепи SACD-проигрывателя, что привело к созданию модели MCD 850 с ЦАПом Burr-Brown PCM1796 и трансформатором с R-образным сердечником в блоке питания. Двойные триоды 6922 здесь не выступают в роли усилителей, а отвечают за преобразование сопротивления, позволяя получить низкий импеданс на выходе. То же самое относится и к CD-проигрывателю MCD 1050, использующему аналогичные лампы. Модель оснащена апсемплером, ЦАПом Burr-Brown и может работать как внешний ЦАП с входами S/PDIF и USB (24 бит/192 кГц).

↑ Выводы

Звук хороший. Для тех, кто сомневается в своих силах построить полный ламповый усилитель, данная конструкция может стать достойным стартом в ламповый звук. В качестве эксперимента можно попробовать усилитель без катодных конденсаторов С1 и С2. Звучит по-другому. Сравнивать звучания не возьмусь, кому как больше понравится. Правда усиление при этом упадёт.

Максимальный неискажённый сигнал для УМЗЧ получился:

— на нагрузке 4 Ома = 14V, т.е. 49 Вт, — на нагрузке 8 Ом = 17V, т.е. 36 Вт. Входной сигнал при этом порядка 1V. При более мощном трансформаторе в УМ выходная мощность будет выше. По крайней мере, в первоисточнике при напряжении питания ±36В заявлена мощность 140 Вт.

Гармоники на нагрузке 4Ом выглядят следующим образом (мощность 10 Вт):


На 8 Ом результаты чуть лучше, но не принципиально.

АЧХ


Измерения проводились на нагрузке в виде 20Вт резистора на 4 Ома.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: