конденсаторные частотомеры
Электронные конденсаторные частотомеры применяются для измерения частот в диапазоне от 10Гц до 1МГц. Принцип таких частотомеров основывается на попеременном заряде конденсаторов от батареи с последующим его разрядом через магнитоэлектрический механизм. Этот процесс осуществляется с частотой, равной измеряемой частоте, поскольку переключение производится под воздействием самого исследуемого напряжения. За время одного цикла через магнитоэлектрический механизм будет протекать заряд Q =CU, следовательно, средний ток, протекающий через индикатор, будет равен I_ср=Qf_x=CUf_x. Таким образом, показания магнитоэлектрического амперметра оказывается пропорциональны измеряемой частоте. Основная приведенная погрешность таких частотомеров лежит в пределах 2-3%.
- НАЗНАЧЕНИЕ: настройка и обслуживание низкочастотной аппаратуры
- ПРИМЕРЫ: Ф5043
Конденсаторные частотомеры, реализующие метод заряда и разряда образцового конденсатора, так же относятся к группе Ч4-. Принцип работы заключается в измерении тока конденсатора, переменно переключаемого с заряда на заряд с частотой измерений (рис.41).
Конденсатор С0 с помощью ключа (положение1) заряжается от источника GB через токоограничивающий резистор R до напряжения U1 и разряжается через магнитоэлектрический прибор (положение 2) до U2 .
рис 41
Следовательно, количество электричества подводимое к конденсатору и отдаваемое прибору за один такт переключения , где D
U=U1-U2 . Если частота переключений за 1 секунду равна fx , то , т.е. ток протекающий через прибор прямо пропорционален fx .
Частотомеры этого типа используются на частотах 10-106Гц и обеспечивают погрешность 2-3%. Для увеличения точности измерений в частотомеры встраиваются калибровочные генераторы образцовой частоты. В качестве примера можно привести частотомер Ч4-7.
Мощность при паралл ельном соединение
При паралл ельном подключении все начала резисторов соединяются с одним узлом схемы, а концы – с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же.
Прежде чем вычислять силу тока, необходимо выполнить расчет полной проводимости всех резисторов, применяя следующую формулу:
- 1/R = 1/R1+1/R2+1/R3+1/R4 = 1/200+1/100+1/51+1/39 = 0,005+0,01+0,0196+0,0256 = 0,06024 1/Ом.
- Поскольку сопротивление является величиной, обратно пропорциональной проводимости, его значение составит: R = 1/0,06024 = 16,6 Ом.
- Используя значение напряжения в 100 В, по закону Ома рассчитывается сила тока: I = U/R = 100 x 0,06024 = 6,024 A.
- Зная силу тока, мощность резисторов, соединенных паралл ельно, определяется следующим образом: P = I 2 x R = 6,024 2 x 16,6 = 602,3 Вт.
- Расчет силы тока для каждого резистора выполняется по формулам: I1 = U/R1 = 100/200 = 0,5A; I2 = U/R2 = 100/100 = 1A; I3 = U/R3 = 100/51 = 1,96A; I4 = U/R4 = 100/39 = 2,56A. На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.
Существует еще одна формула, позволяющая рассчитать мощность при паралл ельном подключении резисторов: P1 = U 2 /R1 = 100 2 /200 = 50 Вт; P2 = U 2 /R2 = 100 2 /100 = 100 Вт; P3 = U 2 /R3 = 100 2 /51 = 195,9 Вт; P4 = U 2 /R4 = 100 2 /39 = 256,4 Вт. Сложив мощности отдельных резисторов, получится их общая мощность: Р = Р1+Р2+Р3+Р4 = 50+100+195,9+256,4 = 602,3 Вт.
Таким образом, мощность при последовательном и паралл ельном соединении резисторов определяется разными способами, с помощью которых можно получить максимально точные результаты.
Вычисление сопротивления и мощности при параллельном и последовательном соединении резисторов. (10+)
Расчет параллельно / последовательно соединенных резисторов, конденсаторов и дросселей
Параллельное или последовательное соединение (включение) применяется обычно в нескольких случаях. Во-первых, если нет резистора номинала. Во-вторых, если есть потребность получить резистор большей мощности. В-третьих, Если необходимо точно подобрать номинал детали, а устанавливать подстроечник нецелесообразно из соображений надежности. Большинство радиодеталей имеют допуски. Чтобы их компенсировать, например для резистора, последовательно с большим резистором устанавливают меньший в разы. Подбор этого меньшего резистора позволяет получить точно нужное значение сопротивления.
Вашему вниманию подборка материалов:
Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам
Ознакомьтесь также с:
Электронно-счетные частотомеры ( электронные частотометры , цифровые частотометры )
В основу их работы положен метод дискретного счета.
Структурная схема частотомера показана на рисунке 130. Его основные элементы: формирователь импульсного напряжения сигнала fх измеряемой частоты, генератор образцовой (эталонной) частоты, электронный ключ, счетчик импульсов с блоком цифровой индикации и управляющее устройство, организующее работу прибора. Принцип его действия основан на измерении числа импульсов, поступающих на вход счетчика в течение строго определенного времени, равного в данном приборе 1 с. Этот необходимый измерительный интервал времени формируется в блоке управления.
Сигнал fх, частоту которого надо измерить, подают на вход формирователя импульсного напряжения. Здесь он преобразуется в импульсы прямоугольной формы, частота следования которых соответствует частоте входного сигнала. Далее преобразованный сигнал поступает на один из входов электронного ключа, А на второй вход ключа подается сигнал измерительного интервала времени, удерживающий его в открытом состоянии в течение 1с.
В результате на выходе электронного ключа, а значит, и на входе счетчика появляется пачка импульсов. Логическое состояние счетчика, в котором он оказывается после закрывания ключа, отображает блок цифровой индикации в течение интервала времени, устанавливаемого устройством управления.
Принцип действия электронно-счетных частотомеров (ЭСЧ) основан на подсчете количества импульсов, сформированных входными цепями из периодического сигнала произвольной формы, за определенный интервал времени. Интервал времени измерения также задается методом подсчета импульсов, взятых с внутреннего кварцевого генератора ЭСЧ или из внешнего источника (например стандарта частоты). Таким образом ЭСЧ является прибором сравнения, точность измерения которого зависит от точности эталонной частоты.
ЭСЧ является наиболее распространенным видом частотомеров благодаря своей универсальности, широкому диапазону частот (от долей герца до десятков мегагерц) и высокой точности. Для повышения диапазона до сотен мегагерц — десятков гигагерц используются дополнительные блоки — делители частоты и переносчики частоты.
Большинство ЭСЧ кроме частоты позволяют измерять период следования импульсов, интервалы времени между импульсами, отношения двух частот, а также могут использоваться в качестве счетчиков количества импульсов.
Некоторые ЭСЧ (например Ч3-64) сочетают в себе электронно-счетный и гетеродинный методы измерения. Это не только расширяет диапазон измерения, но и позволяет определять несущую частоту импульсно-модулированных сигналов, что простым методом счета недоступно.
НАЗНАЧЕНИЕ: обслуживание, регулировка и диагностика радиоэлектронного оборудования различного назначения, контроль работы радиосистем и технологических процессов
Достоинства
- Высокая точность измерений (погрешность 10-6…10-9);
- успешное использование на низких и высоких частотах;
- субъективная ошибка оператора исключена;
- возможность вывода данных на ПК;
- возможность измерения не только частоты, но и длительности импульсов, соотношения частот, периода сигнала.
ПРИМЕРЫ: Ч3-33, Ч3-54, Ч3-57, Ч3-63, Ч3-64, Ч3-67, Ч3-84
Наименования и обозначения
- Устаревшие наименования Волномер — для резонансных и гетеродинных частотомеров
- Герцметр — для щитовых аналоговых и язычковых частотомеров
Для обозначения типов электроизмерительных (низкочастотных) частотомеров традиционно используется отраслевая система обозначений, в которой приборы маркируются в зависимости от системы (основного принципа действия)В хх — вибрационные частотомеры
Д хх — приборы электродинамической системы
Э хх — приборы электромагнитной системы
М хх — приборы магнитоэлектрической системы
Ц хх — приборы выпрямительной системы
Ф хх,Щ хх — приборы электронной системы
Н хх — самопишущие приборы
Частотомеры радиодиапазона маркируются по ГОСТ 15094Ч2- хх — резонансные частотомеры
Ч3- хх,РЧ3- хх — Электронно-счетные частотомеры
Ч4- хх — гетеродинные, конденсаторные и мостовые частотомеры
Формула ёмкостного сопротивления
При подаче на обкладки конденсатора переменного напряжения ток через этот элемент первоначально стремится к максимальному значению. По мере заряда прибора он постепенно снижается. В то же время вольтаж ведёт себя иначе, т.е. плавно возрастает от нуля до максимального значения.
Подобный эффект вызван ёмкостным сопротивлением. Оно зависит как от строения самого электронного прибора, так и от характеристик поданного на него переменного напряжения.
Формула расчёта сопротивления
Где:
- XC – реактивное сопротивление, ом;
- p – 3,14;
- f – частота переменного напряжения, приложенного к обкладкам, Гц;
- C – ёмкость, Ф.
Обратите внимание! Ёмкость элемента можно узнать по маркировке, имеющейся на его корпусе. Если она нечитаемая или стёрлась, то эта величина определяется с помощью мультиметра
Он должен быть с функцией замера ёмкости (прим. DT9208A).
Типы фильтров
В зависимости от особенностей амплитудно-частотных характеристик фильтры можно распределить по широким категориям. Если фильтр пропускает низкие частоты и блокирует высокие частоты, он называется фильтром нижних частот. Если он блокирует низкие частоты и пропускает высокие частоты, это фильтр верхних частот. Существуют также полосовые фильтры, которые пропускают только относительно узкий диапазон частот, и режекторные фильтры, которые блокируют только относительно узкий диапазон частот.
Рисунок 4 – Амплитудно-частотные характеристики фильтров
Фильтры также могут быть классифицированы в соответствии с типами компонентов, которые используются для реализации схемы. Пассивные фильтры используют резисторы, конденсаторы и катушки индуктивности; эти компоненты не способны обеспечить усиление, и, следовательно, пассивный фильтр может только сохранять или уменьшать амплитуду входного сигнала. Активный фильтр, напротив, может фильтровать сигнал и применять усиление, поскольку он включает в себя активный компонент, такой как транзистор или операционный усилитель.
Рисунок 5 – Этот активный фильтр нижних частот основан на популярной топологии Саллена-Ки
В данной статье рассматривается анализ и проектирование пассивных фильтров нижних частот. Эти схемы играют важную роль в самых разных системах и приложениях.
Пример расчета емкостного сопротивления
Для расчета понадобится большинство из перечисленных физических величин. Они обозначены на схеме и в качестве примера имеют следующие значения:
- частота f = 50 Гц (типичная бытовая сеть);
- ёмкость C = 33 нФ = 0,000000033 Ф = 3,3*10-8 Ф;
Схема для примера
Реактив будет рассчитываться по вышеописанной формуле:
Xc = 1/(2pfC).
В таком случае сопротивление конденсатора в цепи переменного тока равно 96,5 кОм. Если расписать все вычисления, то получится следующее.
Пример расчёта
Сама по себе формула не вызывает сложности. Однако для проведения вычислений необходимы знания школьного курса алгебры, т.е. умение работать со степенями, дробями и прочими алгоритмами математики. На практике имеет смысл немного схитрить. Чтобы каждый раз не городить сложные вычисления, можно воспользоваться одним из онлайн калькуляторов из сети Интернет. Подобные ресурсы позволяют произвести комплексный расчёт и выяснить некоторые другие параметры цепи.
Рекомендации по проверке конденсатора
Многие не знают, что конденсаторы имеют особенность — они после пайки, по причине воздействия на них высоких температур, редко восстанавливаются.
С другой стороны, возникает противоречие, чтобы проверить деталь, ее нужно выпаять, так как находясь в схеме на плате конденсатор будут выкорачивать другие элементы, а сами показания будут ошибочными.
Поэтому, после впаивания уже проверенной и исправной, на первый взгляд, детали, устройство (материнская плата, электродвигатель, радиоприемник) нужно сразу включить и проверить их работу.
Если все нормально, то старый конденсатор меняют на новый, это обеспечит стабильную работу устройства в будущем.
Во избежание оплошностей учтите следующие моменты:
- При выявлении проблем в работе схемы посмотрите на дату выпуска конденсатора. В среднем последний усыхает на 65 процентов уже после пяти лет работы. Такой элемент, даже если он пока работает, лучше выпаять и проверить, а при необходимости поменять.
- Для ускорения проверки не обязательно выпаивать оба контакта — достаточно только одного. Но есть нюанс. Для большей части электролитических элементов этот способ не подходит из-за конструкции корпуса.
- При проверке сложной схемы с множеством проверяемых деталей повреждение лучше определить путем проверки напряжения. При отклонении этого показателя от требований или наличии подозрений на исправность, нужно выпаять и проверить деталь.
- В новых версиях мультиметров максимальным параметром для измерения является 200 мкФ. Если проводить проверку большей емкости, устройство может поломаться, несмотря на наличие защиты.
- В наиболее новых устройствах предусмотрены SMD-электроконденсаторы, которые слишком маленькие, и их трудно выпаять. В таких деталях лучше ограничиться выпаиванием только одного вывода, приподнять его и изолировать от остальной схемы, а после отпаять второй вывод.
Исходя из изученного материала, можно сделать вывод, что конденсатор можно проверить на работоспособность на плате, но лучше это делать после выпаивания.
Для измерений стоит использовать обычный мультиметр, RLC-прибор и классические формулы расчета из курса физики (в редких случаях).
Помните, что даже незначительное отклонение от нормы может свидетельствовать об ухудшении параметров детали, что может повлиять на работу всего устройства, к примеру, электродвигателя или системной платы компьютера.
Как проверить конденсатор мультиметром. На ёмкость, обрыв, короткое замыкание
RC фильтр нижних частот
Чтобы создать пассивный фильтр нижних частот, нам нужно объединить резистивный элемент с реактивным элементом. Другими словами, нам нужна схема, которая состоит из резистора и либо конденсатора, либо катушки индуктивности. Теоретически, топология фильтров нижних частот резистор-индуктивность (RL) эквивалентна, с точки зрения фильтрующей способности, топологии фильтров нижних частот резистор-конденсатор (RC). Однако на практике версия резистор-конденсатор встречается гораздо чаще, и, следовательно, оставшаяся часть этой статьи будет посвящена RC фильтру нижних частот.
Рисунок 6 – RC фильтр нижних частот
Как вы можете видеть на схеме, пропускающая нижние частоты частотная характеристика RC фильтра создается путем установки резистора последовательно с путем прохождения сигнала и конденсатора параллельно нагрузке. На схеме нагрузка является отдельным компонентом, но в реальной цепи она может представлять что-то гораздо более сложное, например, аналого-цифровой преобразователь, усилитель или входной каскад осциллографа, который вы используете для измерения амплитудно-частотной характеристики фильтра.
Мы можем интуитивно проанализировать фильтрующее действие топологии RC фильтра нижних частот, если поймем, что резистор и конденсатор образуют частотно-зависимый делитель напряжения.
Рисунок 7 – RC фильтр нижних частот перерисован так, чтобы он выглядел как делитель напряжения
Когда частота входного сигнала низкая, полное сопротивление конденсатора будет высоким относительно полного сопротивления резистора; таким образом, большая часть входного напряжения падает на конденсаторе (и на нагрузке, которая параллельна конденсатору). Когда входная частота высокая, полное сопротивление конденсатора будет низким по сравнению с полным сопротивлением резистора, что означает, что на резисторе падает большее напряжение, и меньшее напряжение передается на нагрузку. Таким образом, низкие частоты пропускаются, а высокие частоты блокируются.
Это качественное объяснение работы RC фильтра нижних частот является важным первым шагом, но оно не очень полезно, когда нам нужно проектировать реальную схему, потому что термины «высокая частота» и «низкая частота» чрезвычайно расплывчаты. Инженеры должны создавать схемы, которые пропускают и блокируют определенные частоты. Например, в аудиосистеме, описанной выше, мы хотим сохранить сигнал 5 кГц и подавить сигнал 500 кГц. Это означает, что нам нужен фильтр, который переходит от пропускания к блокировке где-то между 5 кГц и 500 кГц.
Применение на практике
Свойства конденсатора используются при конструировании различных фильтров. Действие ёмкостного сопротивления в этом случае зависит от способа подключения детали:
- Если он присоединён параллельно нагрузке, то получится фильтр, задерживающий высокие частоты. С их ростом падает сопротивление конденсатора. Соответственно, нагрузка на высоких частотах шунтируется сильнее, чем на низких.
- Если деталь подключена последовательно с нагрузкой, то получится фильтр, задерживающий низкие частоты. Эта схема также не пропускает постоянное напряжение.
В фильтрах электропитания, наряду с ёмкостным сопротивлением, используется также свойство накопления и отдачи заряда. В момент повышения нагрузки заряженная ёмкость фильтра разряжается, отдавая дополнительную энергию. Она также осуществляет подавление пульсаций и прочих паразитных сигналов, пропуская их через себя и замыкая на общий провод. Таким образом, обеспечивается сглаживание и поддержание напряжения на нагрузке в заданных пределах, и устранение нежелательных междукаскадных связей, вызывающих нестабильную работу.
Благодаря своим свойствам конденсаторы используются в тех случаях, когда необходимо передать и постоянный, и переменный ток по одним и тем же проводам. Источник постоянного напряжения подключается к общему проводу и второму выводу ёмкости, через которую присоединяется источник переменного напряжения. На другой стороне происходит разделение: потребитель переменного подключается через конденсатор той же ёмкости, а потребитель постоянного — напрямую, до выводов детали.
Нормативно-техническая документация
ГОСТ 8.567-99 ГСИ. Измерения времени и частоты. Термины и определения ГОСТ 7590-93 Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 4. Особые требования к частотомерам ГОСТ 7590-78 Приборы электроизмерительные для измерения частоты аналоговые показывающие. Общие технические условия ГОСТ 22335-85 Частотомеры электронно-счетные. Технические требования, методы испытаний ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия ГОСТ 8.422-81 ГСИ. Частотомеры. Методы и средства поверки ГОСТ 12692-67 Измерители частоты резонансные. Методы и средства поверки ОСТ 11-272.000-80 Частотомеры резонансные. Основные параметры МИ 1835-88 Частотомеры электронно-счетные. Методика поверки
Амплитудно-частотная характеристика RC фильтра второго порядка
Мы можем попытаться создать RC фильтр нижних частот второго порядка, разработав фильтр первого порядка в соответствии с необходимой частотой среза, а затем соединив два этих каскада первого порядка последовательно. Это даст фильтр, который имеет аналогичную общую амплитудно-частотную характеристику и максимальный спад 40 дБ/декада вместо 20 дБ/декада.
Однако если мы посмотрим на АЧХ более внимательно, то увидим, что частота –3 дБ снизилась. RC фильтр второго порядка ведет себя не так, как ожидалось, поскольку эти два звена не являются независимыми – мы не можем просто соединить эти две звена вместе и проанализировать схему как фильтр нижних частот первого порядка, за которым следует идентичный фильтр нижних частот первого порядка.
Кроме того, даже если мы вставим буфер между этими двумя звеньями, чтобы первое RC звено и второе RC звено могли работать как независимые фильтры, затухание на исходной частоте среза будет составлять 6 дБ вместо 3 дБ. Это происходит именно потому, что два звена работают независимо – первый фильтр вносит затухание 3 дБ на частоте среза, а второй фильтр добавляет еще 3 дБ затухания.
Рисунок 13 – Сравнение амплитудно-частотных характеристик фильтров нижних частот второго порядка
Основное ограничение RC фильтра нижних частот второго порядка состоит в том, что разработчик не может точно настроить переход от полосы пропускания к полосе задерживания, регулируя добротность (Q) фильтра; этот параметр указывает, насколько сглажена амплитудно-частотная характеристика. Если вы каскадно соединяете два идентичных RC фильтра нижних частот, общая передаточная функция соответствует отклику второго порядка, но добротность всегда равна 0,5. Когда Q = 0,5, фильтр находится на границе чрезмерного затухания, и это приводит к амплитудно-частотной характеристике, которая «провисает» в переходной области. Активные фильтры второго порядка и резонансные фильтры второго порядка не имеют такого ограничения; разработчик может управлять добротностью и, таким образом, точно настраивать амплитудно-частотную характеристику в переходной области.