Регулируемый стабилизатор тока на l200

Зарубежные и российские аналоги

Чем можно заменить lm317 ? Полными аналогами микросхемы являются GL317, SG317, UPC317, ECG1900.  Очень известным отечественным аналогом lm317t c фиксированным напряжением является микросхема KP142ЕН12. Если нужен регулируемый линейный стабилизатор, то подойдет КРЕН12А (можно и Б).

Безопасность при эксплуатации

Максимальное напряжение между входом и выходом не должно превышать 40 В. Мощность рассеивания не более 20 Вт. Температура пайки не должна превышать 260 °С, при соблюдении расстоянии от корпуса микросхемы более 1,6 мм и времени нагревания до 10 секунд. Температура хранения устройства должна находится в пределах от -65 до + 150 °С, рабочая температура не более + 150 °С.

Это максимальные значения, которые могут привести к повреждению устройства или повлиять на стабильность его работы. Микросхема хорошо защищена от тепловой перегрузки и короткого замыкания контактов. Однако не стоит превышать допустимые параметры при эксплуатации, для избежания выхода её из строя и достижения максимально надежной работы.

Использование интегральных стабилизаторов напряжения в качестве источников опорного напряжения

Интегральные стабилизаторы напряжения, выпускаемые промышленностью в настоящее время, имеет широкую номенклатуру изделий, и характеризуются высокими техническими параметрами. Так, например, широко применяемая микросхема стабилизатора напряжений серии КР142ЕН выпускаются на различные стабилизируемые напряжения от 5 до 30 В, имеют коэффициент нестабильности по напряжения не менее 0,1 %/В, а коэффициент сглаживания пульсаций не менее 30 дБ. Поэтому они наилучшим образом подходят в качестве источников опорного напряжения в мощных линейных стабилизаторах напряжения. Схема использования их в качестве опорных источников напряжения показана ниже


Использование интегральных стабилизаторов напряжения в качестве источника опорного напряжения.

Согласно технической документации микросхемы типа КР142ЕНхх на вход и выход необходимо включить конденсаторы: С1 ≥ 2,2 мкФ, С2 ≥ 1 мкФ.

При использовании интегральных стабилизаторов достаточно просто реализовать регулируемый стабилизатор напряжения, для этого достаточно поставить на выходе источника опорного напряжения переменный резистор, со среднего отвода которого снимать напряжение на операционный усилитель


Регулируемый стабилизатор напряжения с интегральным стабилизатором в качестве опорного напряжения.

Вышеописанные схемы стабилизаторов напряжения на ОУ позволяют получить очень хорошие показатели стабильности выходного напряжения. Однако ОУ не могут обеспечить достаточно большой выходной ток (обычно несколько десятков мА), поэтому выходная мощность ограничена долями ваттами, в зависимости от выходного напряжения.

Для того чтобы такие стабилизаторы отдавали больше мощности необходимо на его выходе включить каскад усилителя мощности в виде транзистора.

Схема включения КР142ЕН5А

Как видно, микросхема DA1 включена по типовой схеме в плюсовое плечо СН. С появлением специализированных микросхем ситуация изменилась. Выпускаемые микросхемные стабилизаторы напряжения способны работать в широких пределах выходных напряжения и тока, часто имеют встроенную систему защиты от перегрузки по току и от перегревания — как только температура кристалла микросхемы превысит допустимое значение, происходит ограничение выходного тока.


Если исходить из того, что напряжение на эмиттерном переходе транзистора VT1 и прямое напряжение диода VD1 примерно одинаковы, то распределение тока между микросхемой DA1 и регулирующим транзистором зависит от отношения значений сопротивления резисторов R2 и R1.


Все сказанное служит только для предварительного выбора стабилизатора, перед проектированием блока питания следует ознакомиться м полными справочными характеристиками, хотя бы для того, чтобы точно знать, каково максимально допустимое входное напряжение, достаточна ли стабильность выходного напряжения при изменении входного напряжения, тока нагрузки или температуры.


СН с регулируемым выходным напряжением, выходное напряжение которого можно регулировать от 0 до 10 В.

Облегчить режим работы микросхемы в подобных случаях можно, подключив к ней внешний регулирующий транзистор.


При этом нужно обязательно учитывать различия цоколевки микросхем для положительных и отрицательных напряжений. Для достижения очень высокого значения коэффициента подавления пульсаций вход регулирования может быть зашунтирован емкостью. Такое схемотехническое решение заимствовано из . Работа стабилизатора напряжения КРЕН8Б

Характеристики

Технические параметры LM317 при температуре окружающей среды +25 °C:

физические:

  • корпус TO-220, TO-220FP, TO-3, D2PAK, SOT-23;
  • материал корпуса — пластмасса;

электрические:

  • диапазон от 1.25 до 37 В;
  • сила тока на выходе не более 1.5 А;
  • нестабильность на выходе до 0,1 %;
  • опорное (Vref) от 0,1 до 1,3 В;
  • ток вытекающий из вывода подстройки (Iadj) от 50 до 100 мкА (µA);

внутренняя защита:

  • от короткого замыкания (Internal Short-Circuit Current Limiting);
  • от тепловой перегрузки (Thermal Overload Protection);
  • ограничение по максимальной рассеиваемой мощности (Output Safe-Area Compensation);

Все системы защиты от перегрузок остаются полностью работоспособными даже если вход регулирования отключен.

Схема включения

Зная номера контактов и их назначение можно понизить напряжение, подаваемое на вход микросхемы до необходимого значения. Для этого надо изменить сопротивление R1, подключенного к регулируемому выводу Adj. Давайте посмотрим как это выглядит.

Как видно на схеме включения lm317 к контакту Adj надо подключить два резистора R1 и R2. Они определяют напряжение, которое понижает стабилизатор и выдает на выход. Посмотрим следующую формулу выходного напряжения.

Исходя из формулы видно, что величина Vout зависит от значения резистора R2.Чем больше увеличивается значение сопротивления R2, тем больше будет выходное напряжение.

Измерение сварочного тока

После того как вы изготовили и настроили регулятор, его можно использовать в работе. Для этого вам нужен еще один прибор, который будет измерять сварочный ток. К сожалению, не получится использовать бытовые амперметры, поскольку они не способны работать с полуавтоматами мощностью более 200 ампер. Поэтому рекомендуем использовать токоизмерительные клещи. Это относительно недорогой и точный способ узнать значение тока, управление клещами понятное и простое.

Так называемые «клещи» в верхней части прибора охватывают провод и измеряют ток. На корпусе прибора находится переключатель пределов измерения тока. В зависимости от модели и цены разные производители изготавливают токоизмерительные клещи, способные работать в диапазоне от 100 до 500 ампер. Выберите прибор, характеристики которого совпадают с вашим сварочным аппаратом.

Токоизмерительные клещи — это отличный выбор, если нужно оперативно измерить значение тока, при этом не влияя на цепь и не подключая в нее дополнительные элементы. Но есть один недостаток: клещи абсолютно бесполезны при измерении значения постоянного тока. Дело в том, что постоянный ток не создает переменное электромагнитное поле, поэтому прибор просто не видит его. Но в работе с переменным током такой прибор оправдывает все ожидания.

Есть другой способ измерения тока, он более радикальный. Можно добавить в цепь вашего сварочного полуавтомата промышленный амперметр, способный измерять большие значения тока. Еще можно просто временно добавлять амперметр в разрыв цепи сварочных проводов. Слева вы можете видеть схему такого амперметра, по которой можете его собрать.

Это дешевый и эффективный способ измерения тока, но использование амперметра в сварочных аппаратах тоже имеет свои особенности. В цепь добавляется не сам амперметр, а его резистор или шунт, при этом стрелочный индикатор должен параллельно подключаться к резистору или шунту. Если не соблюдать эту последовательность, прибор в лучшем случае просто не будет работать.

SK54 Datasheet PDF

Для включения и отключения стабилизатора тока в схему введен транзистор VT1 и ограничительный резистор R3. В схеме показано напряжение соответствующее ТТЛ логике, но ничего не мешает управлять стабилизатором и другой величиной напряжения. При отсутствии напряжения управления транзистор VT1 закрыт и не влияет на работу схемы. Как только появится сигнал управления, транзистор откроется и подтянет вывод компаратора тока (вывод 2 DA1) к общему проводу. В таком режиме внутренний управляющий транзистор полностью закроется и отключит нагрузку. При испытаниях моей конкретной микросхемы в состоянии отключения нагрузки остаточное напряжение в режиме ХХ составляло 377мВ.

Если использовать данную схему в качестве зарядного устройства, например, для зарядки аккумуляторов шуруповерта, то в качестве отключающего устройства можно использовать схему термореле. Или, что намного проще, термоконтакты на определенную температуру, с соответствующей схемой включения в зависимости от типа контактов (нормально-замкнутые или нормально-разомкнутые), если окончание заряда будет определяться заданным уровнем повышенной температуры корпуса аккумулятора. Если окончание заряда будет определяться временем, то на вход схемы отключения можно подать сигнал с реле времени.

Транзистор С945 можно заменить любым маломощным n-p-n транзистором, например, КТ315. Можно заменить и полевым транзистором с каналом типа N, например 2N7000.

Сопротивление нагрузки

В то же время стоит учитывать сопротивление нагрузки. Например если требуется обеспечить 100 мА через нагрузку сопротивлением 100 Ом, то по закону ома получаем напряжение

V= I*R = 0.1 * 100 = 10 Вольт

Такими нехитрыми подсчетами мы получили величину напряжения, которую требуется приложить к нагрузке в 100 Ом, чтобы обеспечить в ней ток в 100мА. Это означает, что для данной задачи рационально поставить стабилизатор 7812 или 7815 на 12вольт и 15 вольт соответственно, дабы иметь запас.

А вот обеспечить такой же ток, через резистор в 10кОм уже не выйдет. Для этого необходимо напряжение в 100 вольт, что данные микросхемы уже не умеют.

Замена симистора (Triac-а) в диммере

Пустотелые заклёпки можно удалить с помощью сверла, заточенного под углом 90°, или с помощью кусачек-бокорезов. Но, чтобы не повредить радиатор, делать это нужно непременно со стороны расположения триака.

Радиаторы, изготовленные из очень мягкого алюминия, при клёпке были немного деформированы. Поэтому, пришлось ошкурить контактные поверхности наждачной бумагой.

  1. Винт М2,5х8.
  2. Шайба пружинная (гровер) М2,5.
  3. Шайба М2,5 – стеклотекстолит.
  4. Корпус симистора.
  5. Прокладка – фторопласт 0,1мм.
  6. Гайка М2,5.
  7. Шайба М2,5.
  8. Трубка (кембрик) Ø2,5х1,5мм.
  9. Шайба М2,5.
  10. Радиатор.

Так как я использовал триак, не имеющий гальванической развязки между электродами и контактной площадкой, то применил старый проверенный способ изоляции. На чертеже видно, как он реализуется.

А это те же детали гальванической развязки триака в натуральном виде.

Для предотвращения продавливания стенки радиатора в месте крепления симистора, под головку винта была подложена шайба. А у самого винта была сточена большая часть шляпки, чтобы последняя не цеплялась за ручку потенциометра, регулятора мощности.

Вот так выглядит симистор, изолированный от радиатора. Для улучшения теплоотвода, использовалась термопроводящая паста КПТ-8.

Что находится под кожухом диммера.

Снова в строю.

Как сделать стабилизатор тока для светодиодов самостоятельно

Изготовление стабилизатора для светодиодов своими руками осуществляется несколькими способами. Новичку целесообразно работать с простыми схемами.

На основе драйверов


Понадобится выбрать микросхему, которую трудно выжечь – LM317. Она будет выполнять роль стабилизатора. Второй элемент – переменный резистор с сопротивлением в 0,5 кОм с тремя выводами и ручкой регулировки.

Сборка осуществляется по следующему алгоритму:

  1. Припаять проводники к среднему и крайнему выводу резистора.
  2. Перевести мультиметр в режим сопротивления.
  3. Замерить параметры резистора – они должны равняться 500 Ом.
  4. Проверить соединения на целостность и собрать цепь.

На выходе получится модуль с мощностью 1,5 А. Для увеличения тока до 10 А можно добавить полевик.

Стабилизатор для автомобильной подсветки


Стабилизатор L7812

Для работы потребуется линейный прибор в виде микросхемы L7812, две клеммы, конденсатор 100n (1-2 шт.), текстолитовый материал и трубка с термоусадкой. Изготовление производится пошагово:

  1. Выбор схемы под L7805 из даташита.
  2. Вырезать из текстолита нужный по размеру кусок.
  3. Наметить дорожки, делая насечки отверткой.
  4. Припаять элементы так, чтобы вход был слева, а выход – справа.
  5. Сделать корпус из термотрубки.

Стабилизирующее устройство выдерживает до 1,5 А нагрузки, монтируется на радиатор.

Регулятор напряжения генератора

Генератор преобразует электричество. Без генератора не работала бы вся бортовая система машины. К обмотке магнита подключён специальный датчик. Простые пружины являются задающим устройством. Для устройства сравнения используется маленький рычаг. Группа контактов играет роль исполнительного устройства. Постоянное сопротивление представляет собой орган регулировки, который часто используется в машинах.

Во время работы генератора на его выходе возникает ток. Возникший ток переходит в обмотку магнитного реле. В результате появляется магнитное поле и под его воздействием плечо рычага раздвигается. На него начинает действовать пружина, и играет роль сравнивающего устройства. Когда ток превышает положенные значения, на магнитном реле контакты раздвигаются. В это время отключается постоянное сопротивление в цепи. Меньший ток поступает на обмотку.

Пожалуй, всем полезно знать, что такое класс точности электросчетчика.

L200 Datasheet PDF

Мощность, на которую рассчитана данная микросхема в документации, я не нашел. Но ее можно косвенно определить по представленному графику «Безопасная рабочая зона»

По графику можно определить, например, что при температуре +125⁰С, при токе нагрузки, на который рассчитана данная микросхема — 2А и падении напряжения на ней, равному 18 вольт, микросхема может обеспечить без разрушения мощность, равную 36 Вт. Вообще данная микросхема имеет внутреннюю функцию ограничения максимальной мощности, что очень хорошо.

Для обеспечения большого зарядного тока в схему введен дополнительный мощный составной транзистор КТ825. При соответствующем размере радиатора данный транзистор может обеспечить зарядный ток в 12,5А, который соответствует току заряда аккумулятора емкость 125 ампер-часов. Прикинуть необходимую площадь теплоотвода можно по монограмме из статьи «Расчет радиаторов» . Данный транзистор можно заменить импортным составным p-n-p транзистором, например, серии TIP145, но у этого транзистора максимальный ток коллектора – 10А.

Виды стабилизаторов напряжения

Различают всего 2 основных типа стабилизаторов напряжения:

  • линейные
  • импульсные

Линейные стабилизаторы напряжения

Например, микросхемы КРЕН или LM7805, LM1117, LM350.

Кстати, КРЕН — это не аббревиатура, как многие думают. Это сокращение. Советская микросхема-стабилизатор, аналогичная LM7805 имела обозначение КР142ЕН5А. Ну а ещё есть КР1157ЕН12В, КР1157ЕН502, КР1157ЕН24А и куча других. Для краткости всё семейство микросхем стали называть «КРЕН». КР142ЕН5А тогда превращается в КРЕН142.

Советский стабилизатор КР142ЕН5А. Аналог LM7805.

Стабилизатор LM7805

Наиболее распространенный вид. Недостаток их в том, что они не могут работать на напряжении ниже, чем заявленное выходное напряжение. Если LM7805 стабилизирует напряжение на 5 вольтах, то на вход ему подать нужно как минимум на полтора вольта больше. Если подать меньше 6,5 В, то выходное напряжение «просядет», и мы уже не получим 5 В. Еще один минус линейных стабилизаторов — сильный нагрев при нагрузке. Собственно, в этом и заключается принцип их работы — всё, что выше стабилизируемого напряжения, просто превращается в тепло. Если мы на вход LM7805 подадим 12 В, то 7 потратятся на нагрев корпуса, а 5 пойдут потребителю. Корпус при этом нагреется настолько сильно, что без радиатора микросхема просто сгорит. Из всего этого вытекает ещё один серьёзный недостаток — линейный стабилизатор не стоит применять в устройствах с питанием от батареек. Энергия батареек будет тратиться на нагрев стабилизатора. Всех этих недостатков лишены импульсные стабилизаторы.

Импульсные стабилизаторы напряжения

Импульсные стабилизаторы — лишены недостатков линейных, но и стоят дороже. Это уже не просто микросхема с тремя выводами. Выглядят они, как плата с детальками.

Один из вариантов исполнения импульсного стабилизатора.

Импульсные стабилизаторы бывают двух видов: понижающие и повышающие. Независимо от напряжения на входе, на выходе будет именно то, которое нам нужно. Если в характеристиках заявлено, что стабилизатору на вход можно подать от 1 до 15 вольт и на выходе будет стабильно 5, то так оно и будет. Кроме того, нагрев импульсных стабилизаторов настолько незначителен, что в большинстве случаев им можно пренебречь. Если ваша схема будет питаться от батареек или размещаться в закрытом корпусе, где сильный нагрев линейного стабилизатора недопустим — ставьте импульсный. Я использую настраиваемые импульсные стабилизаторы напряжения за копейки, которые заказываю с Aliexpress. Вот понижающие, а вот повышающие. Существуют и более дорогие универсальные стабилизаторы, которые поддерживают заданное напряжение независимо от подаваемого.

Хорошо. А что со стабилизатором тока?

Не открою Америку, если скажу, что стабилизатор тока стабилизирует ток.
Токовые стабилизаторы ещё иногда называют светодиодным драйвером. Внешне они похожи на импульсные стабилизаторы напряжения. Хотя сам стабилизатор — маленькая микросхема, а всё остальное нужно для обеспечения правильного режима работы. Но обычно драйвером называют всю схему сразу.

Примерно так выглядит стабилизатор тока. Красным кружком обведена та самая схема, которая и является стабилизатором. Всё остальное на плате — обвязка.

Итак. Драйвер задаёт ток. Стабильно! Если написано, что на выходе будет ток в 350мА, то будет именно 350мА. А вот напряжение на выходе может меняется в зависимости от требуемого потребителем напряжения. Не будем пускаться в дебри теории о том. как всё это работает. Просто запомним, что вы напряжение не регулируете, драйвер сделает все за вас исходя из потребителя.

Схема включения

Сама по себе LM7812 представляет собой схему стабилизации напряжения и подключения к ней устройство обычно осуществляется только для этого. По сути, кроме неё для выполнения этой функции больше ничего не требуется. Начинающие радиолюбители применяют её в своих разработках без дополнительной обвязки и она в них работает, но это не совсем правильное решение.

Желательно следовать рекомендациям производителей, которые приводят схему включения 7812 с использованием двух конденсаторов на 25 В и более. Их необходимо паять как можно ближе к контактам, для более устойчивой работы микросхемы. При этом на входе необходима емкость больше, чем на выходе. Несоблюдении этого правила приводит к нестабильности выходного напряжения при резком изменении в нагрузке. Кроме того, такая емкостная обвязка выполняет защитные функции от самовозбуждения.

В паспорте заявлено, что на выходе допускается вообще не устанавливать сглаживающий конденсатор. Это возможно благодаря тому, что роль силового регулирующего элемента внутри серии 78xx выполняет эмиттерный повторитель на транзисторе Дарлингтона. Но как показывает практика, небольшую емкость все же ставят для лучшего подавления выходных высокочастотных пульсаций.

Пример работы подобной схемы можно посмотреть в небольшом видеоролике.

Технические характеристики LM7812

  • предельно допустимое напряжение на входе – 35 В;
  • термическое сопротивление кристалл — окружающая среда – 62,5 О С/Вт;
  • тепловое сопротивление кристалл — корпус 3 О С/Вт;
  • рабочая температура– 0 … +150 О С;
  • температура хранения — -55 …+150 О С .

Электрические

Теперь можно детально рассмотреть электрические характеристики микросхемы lm7812 (официальные datasheet можно скачать в конце). Значения всех параметров были измерены при температуре +25 О С. Остальные условия проведения тестирования можно найти в колонке «Условия тестирования» приведённой ниже таблицы.

Название параметра Обозн Условия тестирования мин макс Ед. изм
Напряжение на выходе VO Vin=19V;

IO=500mA

11,5 12,5 В
IO=5mA … 1A;

Vin=14.5 … 27V;

11,4 12,6
Отклонение выходного напряжения в зависимости от входного △VO 14.5V≤Vin≤30V 240 мВ
16V≤Vin≤22V 120
Отклонение выходного напряжения в зависимости от тока нагрузки △VO 5.0mA≤IO≤1.0 A 240 мВ
250mA≤IO≤750mA 120
Ток покоя Id Vin=19V; IO=0.5A 8,0 мА
Отклонения тока покоя △ Id 5.0mA≤IO≤1.0A 0,5 мА
14.5V≤Vin≤30V 1,0

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

  • резисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

От напряжения к току

Назначение стабилизатора напряжения – обеспечить неизменное выходное напряжение независимо от сопротивления нагрузки. Другими словами, идеальный стабилизатор будет выдавать напряжение, которое (например) равно 3,3 В при подключении к нагрузке 100 кОм и ровно 3,3 В при подключении к нагрузке 5 Ом. Что, конечно, меняется, так это ток нагрузки, который полностью определяется сопротивлением нагрузки (потому что напряжение на нагрузке не изменяется).

Что же произойдет, если мы дадим идеальному стабилизатору напряжения фиксированное сопротивление нагрузки? Если напряжение нагрузки не меняется и сопротивление нагрузки не меняется, и если закон Ома всё еще действует, то ток тоже не изменится.

Вуаля: источник тока.

На следующей диаграмме показано, как использовать LT3085 для решения задач, связанных с управлением светодиодами.

Рисунок 4 – Схема взята из технического описания LT3085

Вот как это работает:

  • Внутренний источник тока посылает 10 мкА через R1, генерируя напряжение, которое будет равно выходному напряжению (т.е. напряжению на R2).
  • Это выходное напряжение постоянно (потому что сопротивление R1 и значение силы тока внутреннего источника тока постоянны).
  • Это постоянное выходное напряжение будет создавать неизменный ток через R2, потому что сопротивление R2 постоянно.
  • Инвертирующий вход усилителя не выдает ток, поэтому почти весь ток R2 идет от положительного источника питания через транзистор, подключенный к выходу усилителя. (Я говорю «почти», потому что ток эмиттера биполярного транзистора представляет собой сумму тока базы и тока коллектора, но ток базы намного меньше тока коллектора.)
  • Светодиод включен последовательно с коллектором биполярного транзистора, и поэтому ток через светодиод фиксирован и (почти) равен току, протекающему через R2.

Ток через светодиод можно изменить, изменив значение R1 или R2; как показано в следующем уравнении, ток через светодиод – это просто значение силы тока внутреннего источника тока, умноженное на отношение R1 к R2.

\

Я бы назвал это довольно удобной схемой: процесс проектирования чрезвычайно прост, и требуется лишь несколько компонентов. Если вы замените один из резисторов потенциометром, результатом станет высокоточный светодиодный драйвер с регулируемым током с широким диапазоном входных напряжений и защитой от перегрева, который может обеспечивать ток до 500 мА.

И, конечно, эта схема не ограничивается светодиодами; вы могли бы так же легко использовать ее, скажем, с резистивным нагревательным элементом. Это позволит вам, несмотря на колебания напряжения питания, генерировать постоянное тепло (потому что P = I2R).

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: