Радиосхемы схемы электрические принципиальные

Содержание / Contents

  • 1 Для сборки замка потребуется
  • 2 Схема простейшего кодового замка на реле
  • 3 Первый замок:
  • 4 А вот второй замок:
  • 5 Вот видео работы моих замков по этой схеме.

Отошел от транзисторных ключей. Задумался над созданием замка на триггерах, но подходящих микросхем в наличии не было. И тут я наткнулся на схему триггера на 4-х электромагнитных реле. Уже что-то, но для замка на 4 цифры требовалось аж 16 реле.Что мне нужно было:

код из четырех цифр, которые нажимаются последовательно, а при одновременном нажатии всех кнопок панели замок, естественно, не должен открываться. На основе найденной схемы, была разработана очень простая рабочая схема кодового замка на электромагнитных реле.

Схема мощного тиристорного регулятора напряжения

Cхемы электронных устройств

 С помощью этого устройства можно регулировать напряжения от несколько десятков вольт до 220 В, при активной нагрузке.

Тринисторы VS1 и VS2 подключены параллельно между собой, на встречу друг к другу и последовательно к нагрузке. При включении тринисторы закрыты, через R5 происходит зарядка конденсаторов C1, C2. Конденсаторы C1, C2  и переменный резистор R5 образуют фазосдвигающую цепочку.

Динисторы VS3 и VS4 образуют импульсы, с помощью которых происходит управление тринисторами.

В тот момент когда конденсаторы зарядятся напряжением равным напряжению открытия динистора, произойдет скачок напряжения который включит тринистор и через нагрузку потечет ток. В начале отрицательного полупериода напряжения сети, происходит отключение данного тринистора и происходит новый цикл зарядки конденсаторов, но уже в обратной полярности. Происходит открытие другого тринистера и динистора.

Используемые детали

  • R1, R2, R3, R4 — 51 Ом
  • R5 — 270 кОм
  • VS1 — КУ202Н
  • VS2 — КУ202Н
  • VS3 — КН102А
  • VS4 — КН102Н
  • C1 — 0,25 мкФ
  • C2 — 0,25 мкФ

Установив VS1 и VS2 на радиаторы, можно увеличить нагрузку до 1,5 кВт.

Конденсаторы необходимо использовать рассчитанные на напряжение не менее 300 В.

В схеме можно использовать динисторы КН102Б  но при этом нужно уменьшить емкость конденсаторов до 0,2 мкФ или КН102В — ёмкость уменьшить до 0,15 мкФ. Переменный резистор типа СП2-2-1

Дальше »

Таблица 2.5.3 — Технические характеристики датчика DC-2541

Для этой цели нам подходит датчик DC-2541 (рисунок 2.5.1). Его технические характеристики приведены в таблице 2.5.3.

Основными требованиями, предъявляемыми к микроконтроллеру в этом проекте, являются:

Наличие параллельных портов ввода-вывода в количестве, достаточном для подключения всех устройств, входящих в структурную схему системы;

Достаточно высокая надёжность и стабильность работы;

Возможность работы в расширенном температурном диапазоне.

Для выполнения поставленной задачи подходят микроконтроллеры с архитектурой MCS-51, поскольку они доступны, относительно просты, и их возможностей вполне достаточно для обеспечения функционирования данного устройства.

Первым двум требованиям удовлетворяют все производимые на данный момент микроконтроллеры с архитектурой MCS-51. Большинство моделей имеют модификации, рассчитанные на расширенный температурный диапазон. Исходя из этого, выбор производился из наиболее дешёвых изделий известных фирм, чтобы минимизировать стоимость системы. В итоге, был выбран микроконтроллер AT89S51 фирмы Atmel.

Корпорация Atmel (США), являясь на сегодняшний день одним из признанных мировых лидеров в производстве изделий современной микроэлектроники, хорошо известна на российском рынке электронных компонентов. Основанная в 1984 году, фирма Atmel определила сферы приложений для своей продукции как телекоммуникации и сети, вычислительную технику и компьютеры, встраиваемые системы контроля и управления, бытовую технику и автомобилестроение.

Atmel выпускает широкий спектр микроконтроллеров, основанных на архитектуре MCS-51. Данная линейка микроконтроллеров включает изделия в корпусах стандартных типоразмеров с поддержкой функции внутрисистемного программирования, а также, производные разновидности микроконтроллеров (ROMLESS, ROM, OTP и FLASH) в малогабаритных корпусах с 20-ю выводами. Некоторые из устройств, также, имеют поддержку высокоскоростного (х2) режима работы ядра, который, по- требованию, удваивает внутреннюю тактовую частоту для CPU и периферийных устройств.

AT89S51 – экономичный высокопроизводительный КМОП 8-разрядный микроконтроллер с 4 кБ внутрисхемно программируемой флэш-памятью. Устройство производится с использованием технологии Atmel энергонезависимой памяти большой емкости и совместимо по системе команд и расположению выводов со стандартным микроконтроллером 80C51. Встроенная флэш-память может быть запрограммирована внутрисхемно или с помощью обычного программатора энергонезависимой памяти. За счет комбинации 8-разрядного ЦПУ с внутрисхемно программируемой флэш-памятью на одном кристалле AT89S51 от Atmel является мощным микроконтроллером, обеспечивающим высокую гибкость и рентабельность решений для многих задач встроенного управления.

AT89S51 (рисунок 2.6.1) имеет следующие стандартные характеристики: 4 кБ флэш-памяти, 128 байт ОЗУ, 32 линии ввода-вывода, сторожевой таймер, два указателя данных, два 16-разрядных таймера-счетчика, 5-векторная 2-уровневая система прерываний, полнодуплексный последовательный порт, встроенный генератор и схема тактирования. Кроме того, AT89S51 разработан со статической логикой для работы на частоте вплоть до 0 Гц и поддерживает два программно настраиваемых режима снижения энергопотребления:

В режиме холостого хода (Idle) останавливается ЦПУ, но ОЗУ, таймеры-счетчики, последовательный порт и система прерываний продолжают функционировать. В экономичном режиме (Power-down) сохраняется информация в ОЗУ, но остановлен генератор, выключены все остальные функциональные блоки до внешнего запроса на прерывание или аппаратного сброса.

Отличительные особенности микроконтроллерaAT89S51:

Cовместимость с серией MCS-51;

4 кБ флэш-памяти с внутрисхемным программированием (ISP) Износостойкость: 1000 циклов записи/стирания;

Рабочий диапазон питания 4.0…5.5В;

Полностью статическое функционирование: 0 …33 МГц;

Три уровня защиты памяти программ;

Внутреннее ОЗУ размером 128 x 8;

32 программируемые линии ввода-вывода;

Два 16-разрядных таймера-счетчика;

Шесть источников прерываний;

Полнодуплексный канал последовательной связи на УАПП;

Режимы снижения потребления: холостой ход и экономичный;

Восстановление прерываний при выходе из экономичного режима;

Сторожевой таймер;

Двойной указатель данных;

Флаг выключения питания;

Быстрое время программирования;

Гибкое внутрисхемное программирование (побайтный или постраничный режимы) .

Структурная схема микроконтроллера представлена на рисунке 2.6.2.

Материалы для самоделки:

Необходимо вырезать из фанеры основу для нашего замка, размер делайте удобный для вас, но так, чтобы на нем могла уместиться вся электроника. Затем берём «шпингалет», прикладываем его к фанерной заготовочке и отмечаем карандашом или маркером отметки под места крепежа «шпингалета»:

Затем прикручиваем «шпингалет» к фанерке.

Берём наш модуль беспроводного управления реле и вынимаем из его оригинальной коробочки (если в комплекте с вашим реле не шла коробочка для использования, то сделайте такую самостоятельно, на ваш вкус и цвет), после чего проверяем на работоспособность:

Устанавливаем реле на предназначенные ей «ножки» и так же прикручиваем с помощью винтов и отвёртки:

Затем берём самозатвердивающийся пластик, который кстати очень похож на пластилин и в начальном виде по свойствам очень с ним похож, благодаря этому его можно превратить в практически любую форму использую только свои руки, что очень удобно. Следующим инструкции вашего пластика, формируем небольшое колечко и наносим его на гайку, так как показано на фото. После чего приклеиваем его к ручке «шпингалета» всё тем же самозатвердивающимся пластиком так, как показано на фото, и ждём нужное количество времени пока пластик не застынет:

Берём длинный болт под гайку и вкручиваем его в нашу заготовочку, примерно на треть:

Теперь необходимо взять мотор редуктор, стоит он всего лишь в районе 60 рублей и припаять к его контактам пару проводов, желательно разного цвета, чтобы не допустить ошибки при подключении:

Приклеиваем отрезок от колпачка шприца к оси мотора, а оставшуюся половину надеваем на болт так, как показано на фото:

Тестируем наш механизм для открытия «шпингалета». Подключаем мотор-редуктор к источнику питания, который в нашем случае является кроной на 9 вольт, после подключения мотор начинает вращать болт вокруг своей оси, тем самым выкручивая его из гайки, но поскольку болт в горизонтальной плоскости находится в неподвижном состоянии, то гайка начинает движение в противоположную сторону выкручивания и из-за этого «шпингалет» двигаться вперёд. Если же поменять кантакты местами (изменяя этим полярность) мотор начнет движение в другую сторону и «шпингалет» начнет движение обратно. Если вы всё сделали правильно и у вас всё работает, то можно продолжать сборку:

К модулю с реле необходимо подключить всю нашу внешнюю электронику так как показано на фото ниже, синий и зелёный провод это провода от мотора, а красные и черные это провода питания. В данном модуле установлены зажимы для подключения проводов, что упрощает их подключение, так что берём отвёртку и начинаем сборку:

Вот теперь наш самодельный дверной электрозамок готов и осталось только его протестировать. Для этого просто берём пульт от модуля и нажимаем на кнопку отвечающую за реле, которое запускает мотор таким образом, чтобы он вкручивал болт в гайку, а затем которая отвечает за то реле, которое заставляет вращаться мотор в противоположную сторону. Таким образом получается так, что одна кнопка на пульте отвечает за открытие замка, а вторая за закрытие.

В итоге у нас получился вот такой электрозамок, его можно установить на входную дверь или калитку, по такому же принципу можно сделать замок по мощнее, например для гаража.

В этом видео, подробно показан процесс изготовления данной самоделки.

Источник

Как сделать кодовый замок: выбор разновидности

Чтобы установить кнопочный дверной замок потребуется сначала выбрать его вид. Они бывают: накладные и врезные. Для монтажа замка накладного типа достаточно просто установить его на поверхность двери, а планку с расположенным в ней ригелем на косяк дверной коробки. Для монтажа не потребуется более 15 минут

Установка врезного кодового замка может доставить немало хлопот и именно здесь требуется особое внимание и грамотный подход

Сделать кодовый замок несложно, главное — грамотно подойти к этому процессу

Как правило, каждый магнитный замок на дверь имеет инструкцию от производителя, которой нужно следовать максимально четко
:

  1. Создается шаблон замка, что делается своими руками. Некоторые производители вкладывают его в комплект, и это существенно упрощает процесс монтажа. При помощи мела или карандаша нужно нанести разметку на дверное полотно. Таким образом, на двери с двух сторон будут сделаны пометки расположения конструкции.
  2. Чтобы сделать нишу на дверном полотне для установки замка, можно использовать стамеску или специальную насадку на дрель.
  3. Далее сверлятся отверстия для установки болтов.
  4. Там, где располагается ригель замочной конструкции, нужно сделать углубление, причем размеры должны полностью соответствовать с лицевой планкой.
  5. После завершения таких работ, кодовый замок ставится на его законное место и надежно крепится болтами.
  6. Проводится монтаж лицевой планки.
  7. Нужно на дверном косяке сделать разметку для монтажа планки запора, в которую и будет помещаться ригель. Чтобы осуществить данный процесс достаточно один из ригелей смазать мелом, за счет чего на косяке будет сделана отметка.
  8. В косяке проделывается выемка под планку, а также нужно сделать разметку для отверстий, чтобы ее установить. Процесс монтажа полностью соответствует установке лицевой планке.
  9. В завершении нужно закрепить ответную или запорную часть замка.

Судя по выше описанным действиям, можно сделать вывод о том, что монтаж врезного кодового замка схож с установкой замков других видов таким же образом.

Заливка кнопок

Настало время закрепить кнопки на свое место в заранее просверленных отверстиях. Вставляем кембрик в кнопки и ставим их на свое место, как это видно на фото. После, нужно скрепить их каплями клея или термоклея. Но делать это надо аккуратно, так чтобы не осталось щелей, в том случае если заливать кнопки эпоксидной смолой! Потому что у меня, первая панелька, залитая эпоксидкой, осталась в качестве музейного экспоната. Эпоксидка, очень текучая, и она просочилась в кнопки и склеила их. Вот так. Пришлось делать все по новому и на этот раз, заливал панель термоклеем. Кнопки можно предварительно клеить, так чтобы закрепить их на свои места, двухкомпонентным, мгновенным клеем применяемым мебельщиками для склеивания МДФ, продается там же где и алюминиевые профиля – в магазинах мебельной фурнитуры.

↑ Для сборки замка потребуется

Для сборки замка потребуется всего ничего, а именно: 1. 5 электромагнитных реле, любых. Можно больше. Главное что-бы подходили вам по рабочему напряжению. Ну и еще одно условие, у четырех реле должно быть хотя-бы по одной группе нормально разомкнутых контактов, а в пятом реле — нормально замкнутых. Я использовал РЭС-32.

2. Сам механизм замка (электромагнитный, электромеханический, электромагнитная защелка). Короче то, что у вас есть или вы сможете приобрести или сами сделать.

3. Наборная панель кодовых кнопок. Тут уж придется самому делать, но ничего сложного в этом нет.

4. Кнопка для открывания двери изнутри помещения.

5. Геркон с нормально разомкутыми контактами и небольшой магнит. Например, такое используют в сигнализации.


Ну или можно геркон выковырить из старого домашнего телефона (такой геркон можно вытащить из телефона, у которого трубка ложится на корпус и при этом не нажимает никаких видимых рычагов. Там в трубке собственно спрятан магнит, а в корпусе телефона — геркон), а магнит например из старого шкафа. Там на дверках стоят такие маленькие магнитики.

6. Паяльник, провода, припой, канифоль и прямые руки.

Плюсы и минусы использования электронных замков

Электронный замок на входную дверь имеет следующие преимущества:

  • Возможность установки своими руками.
  • Обеспечение высокой надёжности и защиту от проникновения — взломать электронный замок непросто даже опытному вору, а подобрать подходящий код практически невозможно, электронные отмычки на него также не действуют.
  • Возможность установить на любое место на дверном полотне.
  • Несколько способов открывания/закрывания замка — пластиковая карта, цифровой контактный брелок, дистанционный пульт.
  • Возможность открывать и закрывать дверь при помощи смартфона.

Также среди преимуществ электронных замков можно выделить их популярность и широкое разнообразие моделей на рынке. Однако такие модели замков имеют и свои недостатки. Например — невозможность вскрытия конструкции при ее поломке (в большинстве случаев приходится полностью менять замок), а также ограниченный доступ в помещение при отсутствии сетевого напряжения и сложности в изготовлении нового ключа при поломке или потере старого.

Электронные ключи для дверей программируются мастером во время установки двери (для каждого замка свой индивидуальный ключ), поэтому измерить данные или установить их самостоятельно невозможно.

Программы для разводки печатных плат

программы для радиолюбителей

На данный момент существует множество программ и онлайн сервисов для разводки печатных плат. Когда в интернете находишь интересную электронную схему то сразу хочется её собрать своими руками, но не всегда к ней прилагается рисунок печатной платы. Когда-то давно, дорожки рисовали лаком на фольгированном текстолите. Сейчас радиолюбители не рисуют дорожки от руки, а распечатывают с помощью лазерного принтера — эта технология называется ЛУТ. Можно отдать схему специалистам, которые за определённую сумму все сделают, но лучше освоить одну из программ и сделать все своими руками.

Я подобрал несколько программ для разводки (трассировки) печатной платы.

Sprint-Layout

Самая популярная программа среди радиолюбителей, почти все новички начинали именно с неё. Простой и понятный интерфейс, существует русифицированная версия. Спринт лайт имеет большую базу электронных компонентов (макросов), которые можно скачать в интернете. Огромное количество обучающих видеороликов на Ютубе, помогут освоить весь интерфейс и научат рисовать печатные платы. Программа является условно — бесплатной.

easyeda

Китайский онлайн сервис с большими возможностями. В Китае студенты создают проекты с помощью данного сервиса и его преподают в некоторых учебных заведениях. Основное удобство заключается в том что созданные проекты можно редактировать на любом компьютере с доступом в интернет, необходимо только пройти простую регистрацию для создания аккаунта. Easyeda имеет огромную базу электронных компонентов которые постоянно обновляются и добавляются самими пользователями. Данный сервис имеет функцию автоматической трассировки печатной платы и симуляцию электронных схем. Интерфейс интуитивно понятный с поддержкой русского языка. После того как печатная плата разведена на дорожки её можно заказать в этом сервисе, причем промышленного качества, а можно и не заказывать, а распечатать на принтере и сделать самому. Также можно открыть доступ к проекту и делится им с другими пользователями или совместно создавать один проект.

ZenitPCB

Простая и бесплатная программа для рисования принципиальных схем с возможностью трассировки. Минусом является ограничение контактных площадок в 800 штук. База элементов около 1000.

DesignSpark PCB

Мощная программа с возможностью автоматической трассировки печатных плат. Подходит как для новичков так и для профессионалов.
DesignSpark PCB это бесплатная программа со встроенными специализированными калькуляторами для разных расчётов облегчающими подбор компонентов. На официальном сайте можно скачать библиотеку готовых печатных плат. Единственный минус это отсутствие русского языка в интерфейсе.

Я пользуюсь двумя;
Программа Sprint-Layout
Онлайн сервис easyeda.com
Для моей деятельности, на данном этапе моего развития, этого вполне хватает. В освоении перечисленных программ, справится любой начинающий радиолюбитель.

Дальше »

↑ Схема простейшего кодового замка на реле

Вот моя схема на четыре цифры.

Принцип работы замка очень прост. На рисунке представлена схема замка в исходном положении при открытой двери. При закрытии двери геркон замыкается и питание подается через нормально замкнутые контакты Р1 на нормально разомкнутые контакты Р2 (второе реле). Реле Р2 — Р5 включены по схеме самоподхвата.

В наборе кода участвуют кнопки КЛ2 — КЛ5. При нажатии кнопки КЛ2 запитывается реле Р2, и соответственно реле получает питание, и ее контакты замыкаются. При отпускании КЛ2 реле продолжает питаться через собственные контакты. Дальше питание поступает на контакты реле Р3 и таким-же образом до реле Р5. При замыкании контактов реле Р5, питание поступает, но исполняющее устройство (в моем случае это электромагнитная защелка, но может быть и высоковольтное реле, при питании механизма замка от 220В.)

Есть еще кнопки КЛ1 и КЛ6. При нажатии кнопки КЛ1 обесточивается вся дальнейшая схема, все реле сбрасываются в начальное положение. Паралельно КЛ1 включаются все свободные кнопки наборной панели.

Кнопка КЛ6 — это открытие замка изнутри помещения. При нажатии КЛ6 поочередно срабатывают реле р5-р4-р3-р2 и продолжают держать свои контакты, пока не откроется дверь (не разомкнется геркон и вся цепь не обесточится. Тоже происходит и при правильном наборе кода, только реле срабатывают в обратном порядке 2-3-4-5).

К относительным недостаткам этого замка можно отнести следующее:

1. Открытие двери и при одновременном нажатии всех «правильных кнопок». 2. Отсутствие резервного источника питания. При пропадании питания — замок не открыть. Хотя зарезервировать можно с помощью акума и еще одной релюшки. 3. Нельзя выбрать код с повторяющимися цифрами, например такой: 2325.

Вот фото моих двух замков. Работают уже больше года без проблем. Главное — придумать кодовую панель, но это уже дело вкуса.

Рисунок 3.1.1 — Схема сопряжения МК и клавиатуры

Для работы с клавиатурой используются 7 выводов порта P0. Все четыре ряда кнопок опрашиваются по очереди. Для опроса первого ряда на выводах P0.1-P0.3 программно устанавливаются единицы, а на выводе P0.0 – ноль. Теперь если нажать любую кнопку первого ряда, вывод P0.0 замкнётся с выводом P0.4, P0.5 или P0.6, и на нём установится ноль. Если ни одна кнопка не нажата, на выводах P0.4, P0.5 и P0.6 будет единица за счёт подтягивающих резисторов R6-R8, которые создают на выводах высокий потенциал. Резисторы возьмём равными 4,7КОм. Аналогично опрашиваются оставшиеся три ряда кнопок на клавиатуре. При нажатии на кнопку имеет место явление дребезга контактов, однако эту проблему можно решить программно. Для этого при нажатии кнопки вводится задержка, по длительности равная переходному процессу в цепи, что позволяет избежать ложных срабатываний кнопок. Величина задержки подбирается экспериментально для каждого типа оборудования. Для примера будем используется задержка длительностью 5 мс. У такого способа есть недостаток – он замедляет работу программы, однако в данном случае это не имеет значения, так как для выполнения поставленной задачи не требуется большое быстродействие. За те 5 мс, которые программа ждёт, пользователь просто не успеет нажать на другую кнопку.

Для коммутации цепи питания привода электромеханического замка используются NPN-транзистор Q1 и оптопара OC1 (рисунок 3.2.1). Таким образом обеспечивается замыкание цепи с большими токами и напряжениями и гальваническая развязка цепей микроконтроллера и привода замка. Здесь используется широко распространённый транзистор отечественного производства КТ815А, характеристики которого (таблица 3.2.1) удовлетворяют требуемым (напряжение 12В и ток 0,5А) с некоторым запасом.

Таблица 3.2.1 – Параметры транзисторов серии КТ815

Наимен. тип U кб,В U кэ, В I к
max(и), мА
P к
max(т), Вт
h 21э I кбо, мкА f гр.
, МГц
U кэн, В
КТ815А n-p-n 40 30 1500(3000) 1(10) 40-275 50 3
КТ815Б 50 45 1500(3000) 1(10) 40-275 50 3
КТ815В 70 65 1500(3000) 1(10) 40-275 50 3
КТ815Г 100 85 1500(3000) 1(10) 30-275 50 3

Оптопара подключается к порту P0.0 микроконтроллера через резистор R2, ограничивающий ток. Входное напряжение оптопары 1,3В при токе 25 мА, значит, падение напряжения на резисторе должно быть (5-1,3)В=3,7 В. Тогда номинал сопротивления будет 3,7В/0,025А=148 Ом. Ближайшее значение ряда номинальных сопротивлений 150 Ом. Выходной каскад оптопары открывается низким уровнем на выводе микросхемы и закрывается высоким. Когда он открыт, напряжение подаётся на базу транзистора Q1 и он открывается, замыкая цепь привода замка. Рассчитаем сопротивление резистора R3. Для этого воспользуемся законом Ома . Через цепь коллектор-эмиттер протекает ток 0,5А. Коэффициент передачи транзистора по току равен 40, значит ток база-эмиттер будет равен 0,5А/40=0,0125А. На базу подаётся 5В, а на базовом переходе транзистора падает 1,2В, поэтому сопротивление резистора будет равно (5-1,2)В/0,0125А=304 Ом. Возьмём резистор на 300Ом. Для того чтобы транзистор самопроизвольно не открываться обратным током коллектора, ставится шунтирующий резистор R10. Пусть через него протекает ток, в три раза меньший, чем ток базы транзистора. Падение напряжения на базовом переходе 1,2В. Тогда сопротивление R10 будет равно 1,2В/(0,0125А/3)=288 Ом. Используем резистор 270 Ом. Так как привод замка основан на индуктивности, то по закону электромагнитной индукции при коммутации в ней возникают обратные токи. Диод D2 шунтирует индуктивность в обратном направлении и препятствует появлению обратных токов в цепи. По своим характеристикам нам подходит диод КД208А. Его максимальное обратное напряжение 100 В, прямой ток 1 А.

Рисунок 2.6.1 — Внешний вид и расположение выводов AT89S51

Назначение основных выводовмикросхемы:

VCC – напряжение питания;

GND – земля;

VDD – напряжение питания, подводимое только к ядру и встроенной памяти программ;

P0,P1,P2,P3 – двунаправленные порты ввода-вывода;

EA – доступ к внешней памяти;

RxD – выход приёмника UART;

TxD – выход передатчика UART;

PSEN – переключатель разрешения внешней памяти;

ALE – разрешение защёлкивания старшей части адреса при доступе к внешней памяти

XTAL1, XTAL2 – выводы для подсоединения внешнего кварцевого резонатора;

RESET – вход сброса .

Рисунок 2.6.2 – структурная схема микроконтроллера AT89S51

Микроконтроллер выпускается в нескольких вариантах (таблица 2.6.1).

Таблица 2.6.1 – варианты исполнения микроконтроллера

Для выполнения поставленной задачи, как было сказано выше, нам нужен микроконтроллер, рассчитанный на коммерческий диапазон температур

(-40…+85°С). Тип корпуса в данном случае роли не играет, так как в корпусе кодового замка входной двери дома достаточно места для расположения любого из них.

Для питания микроконтроллера элементов необходим стабилизированный источник питания напряжением +5В. В качестве стабилизатора лучше всего использовать микросхему КР142ЕН5. Она обеспечивает достаточную стабильность выходного напряжения и осуществляет фильтрацию помех, амплитуда которых может достигать 1В. При установке ее на дополнительный радиатор максимальный ток нагрузки составляет около 2А. Помимо этого микросхема имеет защиту от короткого замыкания.

Серия КР142ЕН5 — трехвыводные стабилизаторы с фиксированным выходным напряжением в диапазоне от 5В до 27 В, могут найти применение в широком спектре радиоэлектронных устройств. Диапазон напряжений, перекрываемых данной серией стабилизаторов, позволяет использовать их в качестве источников питания, логических систем, измерительной техники, устройств высококачественного воспроизведения и других радиоэлектронных устройств. Несмотря на то, что основное назначение этих приборов — источники фиксированного напряжения, они могут быть использованы и как источники с регулированием напряжения и тока путем добавления в схемы их применения внешних компонентов. Внешние компоненты могут быть использованы для ускорения переходных процессов. Входной конденсатор необходим только в том случае, если регулятор находится на расстоянии более 5 см от фильтрующего конденсатора источника питания. Внешний вид и типовая схема включения приведены на рисунках 2.7.1 и 2.7.2 соответственно. Технические характеристики представлены в таблице 2.7.1.

Основные особенности:

Встроенная защита от перегрева;

Встроенный ограничитель тока КЗ;

Коррекция зоны безопасной работы выходного транзистора;

Диапазон температур хранения -55 … +150С;

Рабочий диапазон температур кристалла -45 … +125С.

Рисунок 2.7.1 – Внешний вид и расположение выводов стабилизатора КР142ЕН5А

Назначение выводов стабилизатора КР142ЕН5А:

1 – вход;

2 – общий;

3 – выход.

Рисунок 2.7.2 – Типовая схема включения стабилизатора

Таблица 2.7.1 — Электрические характеристики стабилизатора КР142ЕН5А:

Наименование Обозначение Условия измерения Мин. Тип. Макс. Единица измерения
Выходное напряжение Vout Tj=25°C 4.9 5.0 5.1 B

5mA

4.75 5.25 B
Нестабильность по входному напряжению Tj=25°C 7B 3 100 mB
8B 1 50 mB
Нестабильность по току нагрузки Tj=25°C 5mA 15 100 mB
5 50 mB
Ток покоя Iq Tj=25°C,Iout=0 4.2 8.0 mA
Нестабильность тока покоя Iq 7B 1.3 mA
5mA 0.5 mA
Выходное напряжение шума Vn Ta=25°C, 10Гц 40 mkB
Коэффициент подавления пульсации Rrej f=120Гц 62 78 дБ
Падение напряжения Vdrop Iout=1.0A, Tj=25°C 2.0 B
Выходное сопротивление Rout f=1 кГц 17 мОм
Ток КЗ Ios Tj=25°C 750 mA
Максимальный выходной ток Io peak Tj=25°C 2.2 A
Температурная нестабильность выходного напряжения Iout=5mA, 0°C 1.1 мВ/°C

3. Построение принципиальной электрической схемы

В данном устройстве используется динамический опрос клавиатуры, так как выбранная двенадцатикнопочная клавиатура имеет всего семь выводов и подключить каждую кнопку к отдельному выводу порта микроконтроллера не представляется возможным, хотя микроконтроллер и имеет достаточное количество свободных портов. Кроме того, такой способ включения упрощает схему и уменьшает число портов, занятых клавиатурой (рисунок 3.1.1).

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: