Биполярный транзистор

Принцип работы биполярного транзистора.

Итак, транзистор содержит два p-n перехода (эмиттер-база и база-коллектор). Если не прикладывать к выводам транзистора никаких внешних напряжений, то на каждом из p-n переходов формируются области, обедненные свободными носителями заряда. Все в точности так же как здесь

В активном же режиме переход эмиттер-база (эмиттерный переход) имеет прямое смещение, а коллекторный переход – обратное.

Так как переход эмиттер-база смещен в прямом направлении, то внешнее электрическое поле будет перемещать электроны из области эмиттера в область базы. Там они частично будут вступать во взаимодействие с дырками и рекомбинировать.

Но большая часть электронов доберется до перехода база-коллектор (это связано с тем, что область базы конструктивно выполняется очень тонкой и содержит небольшой количество примесей), который смещен уже в обратном направлении. И в этом случае внешнее электрическое поле снова будет содействовать электронам, а именно помогать им проскочить в область коллектора.

В результате получается, что ток коллектора приблизительно равен току эмиттера:

Коэффициент alpha численно равен 0.9…0.99. В то же время:

А что произойдет, если мы увеличим ток базы? Это приведет к тому, что переход эмиттер-база откроется еще сильнее, и большее количество электронов смогут попасть в область коллектора (все по тому же маршруту, который мы обсудили ). Давайте выразим ток эмиттера из первой формулы, подставим во вторую и получим:

Выражаем ток коллектора через ток базы:

Коэффициент beta обычно составляет 100-500. Таким образом, незначительный ток базы управляет гораздо большим током коллектора. В этом и заключается принцип работы биполярного транзистора!

Коэффициент, связывающий величину тока коллектора с величиной тока базы называют коэффициентом увеличения по току и обозначают h_ . Этот коэффициент является одной из основных характеристик биполярного транзистора. В следующих статьях мы будем рассматривать схемы включения транзисторов и подробнее разберем этот параметр и его зависимость от условий эксплуатации.

  • коллектор
  • эмиттер
  • база

Устройство биполярного транзистора

Биполярный транзистор представляет собой полупроводниковый прибор, имеющий два р-n-перехода, образованных в одном монокристалле полупроводника. Эти переходы образуют в полупроводнике три области с различными типами электропроводности. Одна крайняя область называется эмиттером (Э), другая — коллектором (К), средняя — базой (Б). К каждой области припаивают металлические выводы для включения транзистора в электрическую цепь.

Электропроводность эмиттера и коллектора противоположна электропроводности базы.

В зависимости от порядка чередования р- и n-областей различают транзисторы со структурой р-n-р (рис. 1, а) и n-р-n (рис. 1, б) (иногда их еще называют прямой и обратный).

Условные графические обозначения транзисторов p-n-р и n-p-n отличаются лишь направлением стрелки у электрода, обозначающего эмиттер. Принцип работы транзисторов p-n-р и n-p-n одинаков.

Рис. 1 — Структуры и условные графические обозначения биполярных транзисторов типа р-n-р (а) и n-р-n (б)

Электронно-дырочный переход, образованный эмиттером и базой, называется эмиттерным, а коллектором и базой — коллекторным. Расстояние между переходами очень мало; у высокочастотных транзисторов оно менее 10 микрометров, а у низкочастотных не превышает 50 мкм (1 мкм=0,001 мм).

Основная функция транзистора — это усиление сигнала. Если на базу транзистора подать напряжение, то транзистор начнет открываться. В транзисторе переход коллектор-эмитер открывается плавно: от полностью закрытого состояния (= 0 В) до полностью открытого (этот момент называют напряжение насыщения).

Между коллектором и эмиттером течет сильный ток, он называется коллекторный ток (), между базой и эмиттером — слабый управляющий ток базы (). Величина коллекторного тока зависит от величины тока базы. Причем, коллекторый ток всегда больше тока базы в определенное количество раз. Эта величина называется коэффициент усиления по току, обозначается . У различных типов транзисторов это значение колеблется от единиц до сотен раз.

Коэффициент усиления по току — это отношение коллекторного тока к току базы:

Для того, чтобы вычислить коллекторный ток, нужно умножить ток базы на коэффициент усиления:

Пример: Возмем источник питания, транзистор, резистор и лампочку. Если подключить всё это согласно схеме (рис. 2), то: через резистор, подключенный между источником питания и базой транзистора потечет ток базы .

Рис. 2 — Принцип работы биполярных транзисторов

Транзистор откроется и лампочка загориться. Причем яркость свечения лампочки будет зависить от сопротивления резистора и коэффициента усиления транзистора.

Напряжение, прилагаемое к базе и необходимое для открытия транзистора, называют напряжением смещения. Если вместо постоянного резистора поставить переменный резистор, то получим возможность регулировать яркость свечения лампочки.

Таким же образом можно усиливать и сигналы: подавая на базу транзистора определенный сигнал (к примеру звук), в коллекторной цепи получим тот же сигнал, но уже усиленный в раз.

Если базовое смещение транзистора застабилизировать при помощи стабилитрона (рис. 3), то мы получим простейший стабилизатор напряжения, т.у. схему, которая будет поддерживать постоянное напряжение на выходе, даже если входное напряжение будет изменяться.

Рис. 3 — Пример простого стабилизатора напряжения

Для получения повышенной мощности используются схемы последовательного включения наскольких транзисторов, так называемые схемы Дарлингтона (или составные транзисторы)

Рис. 4 — Схема Дарлингтона

Математическая модель биполярного транзистора. Обозначение.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Биполярный транзистор имеет три вывода. Выводы называются: Эмиттер, Коллектор, База. Биполярный транзистор обладает следующим свойством, обуславливающим его применение. = h * . h — коэффициент передачи тока. С точки зрения инженера — схемотехника любой прибор, обладающий таким свойством, может называться транзистором вне зависимости от его внутреннего устройства.

Биполярный транзистор позволяет силой одного тока регулировать силу другого.

Биполярный транзистор может быть устроен так, что ток втекает через базу или коллектор и вытекает через эмиттер, то есть на базу и коллектор подается положительное напряжение относительно эмиттера. Про такой транзистор говорят, что он имеет структуру NPN. У других биполярных транзисторов ток вытекает через базу или коллектор и втекает через эмиттер, то есть на базу и коллектор подается отрицательное напряжение относительно эмиттера. Про такой транзистор говорят, что он имеет структуру PNP.

На схемах биполярный транзистор обозначается, как показано на рисунке.

Что такое транзистор?

Резистор ограничивает ток, конденсатор накапливает заряд, а светодиод светится. Это понятно. Но что делает транзистор? Транзистор, очень популярный элемент, но описать его работу вкратце, непросто. Одно можно сказать наверняка: транзисторы произвели революцию в современной электронике.

Транзисторы повсюду, а интегральные схемы состоят из миллионов крошечных транзисторов!

Про работу транзистора можно сказать так, транзистор контролирует поток тока или усиливает его. Если сказать по-другому, то, транзистор является электронным переключателем. Благодаря ему мы можем безопасно (с низким током) включить поток с более высоким током.

Представьте себе электронное устройство, такое как Arduino , которое можно программировать, и с которым можно создавать чрезвычайно интересные проекты. Однако эта плата не может контролировать поток сильного тока. Вы можете, конечно, подключить к цепи светодиод, который будет потреблять небольшой ток, и все будет работать, но если вы подключите, например, мотор, то он будет потреблять такой большой ток, что вся система или плата просто сгорит.

Повреждение платы Arduino из-за слишком большого тока

Чтобы этого не произошло, мы должны будем поставить в схему транзистор. Благодаря такому решению, наша ардуиновская плата «скажет» транзистору «включиться» и принять большой ток, необходимый для питания мощного устройства, например, мотора. Таким образом, наша плата не повредится.

Схемы подключения

Существует несколько схем включения биполярных транзисторов.

Их конструкция зависит от общего вывода, и делятся они на 3 группы:

  • с общей базой;
  • с общим эмиттером;
  • с общим коллектором.

Схема включения с общей базой:

В функции эмиттера входит инжекция (поставка) основных носителей на базу. Как пример – электроны. Источники должны быть согласованы с условием E2 >> E1. За ограничение тока открытого перехода p-n отвечает резистор Rэ.

Электрический ток будет небольшим при условии E1 = 0. Также он является начальным коллекторным током (I к 0). Если E1 > 0 электроны смогут попасть в базу, так как проходят через p-n-переход.

У базы должно быть довольно большое удельное сопротивления, что делает в ней концентрацию ней дырок низкой. В связи с этим некоторые электроны, которые достигли базы, проходят процесс рекомбинации с дырками. Так, получается базовый электрический ток Iб. В это же время с областью E2 воздействует гораздо большее поле, по сравнению с переходом эмиттера. Это и заводит электроны в сам коллектор. Именно это и обуславливает достижение коллектора большей частью электронов.

Схема включения биполярного транзистора с общим эмиттером:

Схема включения с общим коллектором. А – принципиальная схема, б – эквивалентная.

Как работает

Принцип действия устройства похож на работу крана, регулирующего подачу воды, с той лишь разницей, что через него идет поток отрицательных частиц. Прибор пропускает через себя 2 тока:

  • основной «большой»;
  • управляющий «маленький».

Мощность первого зависит от мощности второго. Если изменить показатель малого тока, то изменится интенсивность образования «дырок» на базе: пропорционально изменится амплитуда напряжения на выходе, но частота сигнала сохранится. Поэтому, при подаче на базовую пластину слабого импульса, усиление на выходе не теряется, но значительно возрастает амплитуда.

Тип имеющегося биполярного транзистора можно легко распознать по схеме, основанной на принципе: ток течет от «плюса» к «минусу». В приборе N-P-N базовая плата представлена p-полупроводником (положительными «дырками»), на схеме это показано направлением к эмиттеру от базы. P-N-P-разновидность имеет «отрицательную» n-базу (стрелка на схеме направлена к ней).

Единственное отличие этих типов устройств заключается в том, что схема N-P-N начинается с “плюса”, а P-N-P с “минуса” (так как на базовую плату подается минусовой потенциал). Т.е. для транзистора с N-полупроводником характерно «перевёрнутое» поведение: ток не останавливается при заземленной базе и сталкивается с преградой, когда через неё идет ток.

Даже при незначительном отличии типов NPN-устройства более эффективны и распространены в электронной промышленности. Это связано с тем, что носители тока в них представлены электронами, которые более мобильны чем положительные частицы. Поэтому приборы с P-полупроводником более высокочастотны.

Что такое транзистор

Транзистор – это прибор, изготовленный из полупроводниковых материалов. Выглядит как маленькая металлическая пластинка с тремя контактами. Назначений у него два: усиливать поступающий сигнал и участвовать в управлении компонентами электроприборов.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.

Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.

Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.

Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.

Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.

Рис. 1. Строение транзисторов

На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.

Базовый принцип работы

В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.

На рисунке 2 показана схема, объясняющая принцип работы триода.

Рис. 2. Принцип работы

Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.

Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.

Работу устройства в режиме электронного ключа можно понять из рисунка 3.

Рис. 3. Триод в режиме ключа

Обозначение на схемах

Общепринятое обозначение: «VT» или «Q», после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.

На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.

Простейший усилитель на биполярном транзисторе

Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы.
Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного
напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для
понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов
в приведенном ниже примере носит несколько упрощенный характер.

1.Описание основных элементов цепи

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200).
Со стороны коллектора подключим относительно мощный источник питания в 20V,
за счет энергии которого будет происходить усиление. Со стороны базы транзистора
подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного
напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить.
Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала,
обычно обладающего слабой мощностью.

2. Расчет входного тока базы Ib

Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением,
нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin).
Назовем эти значения тока соответственно — Ibmax и Ibmin.

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается
один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение,
при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности
вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель,
согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между
базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0),
то напряжение от базы до земли тоже 0.6V (VB = 0.6V).

Посчитаем Ibmax и Ibmin с помощью закона Ома:

2. Расчет выходного тока коллектора IС

Теперь, зная коэффициент усиления (β = 200),
можно с легкостью посчитать максимальное и
минимальное значения тока коллектора ( Icmax и Icmin).

3. Расчет выходного напряжения Vout

Осталось посчитать напряжение на выходе нашего усилителя Vout.
В данной цепи — это напряжение на коллекторе VC.

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

4. Анализ результатов

Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того,
что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве
случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда,
которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же,
соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя,
однако для иллюстрации процесса усиления вполне подойдет.

Итак, подытожим принцип работы усилителя на биполярном транзисторе.
Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие.
Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся».
Переменная составляющая – это, собственно, сам сигнал (полезная информация).
Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β.
В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний,
но с сохранившейся формой и частотой

Важно подчеркнуть, что энергию для усиления транзистор
берет у источника питания VCC. Если напряжения питания будет недостаточно,
транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Принцип работы биполярного транзистора.

Биполярный транзистор может быть либо p-n-p, либо n-p-n в зависимости от чередования слоев полупроводника
в кристалле. В любом случае выводы называются — база, коллектор и эмиттер.
Слой полупроводника, соответствующий базе заключен между слоями эмиттера и коллектора.
Он имеет принципиально очень малую ширину.
Носители заряда движутся от эмиттера через базу — к коллектору.
Условием возникновения тока между коллектором и эмиттером является наличие свободных носителей
в области базы. Эти носители проникают туда при возникновении тока эмиттер-база. причиной которого
может являться разность напряжения между этими электродами.

Т.е. — для нормальной работы биполярного транзистора в качестве усилителя сигнала
всегда необходимо присутствие напряжения некого минимального уровня, для смещения перехода эмиттер-база в
прямом направлении.
Прямое смещение перехода база-эмиттер приоткрывая транзистор, задает
так называемую — рабочую точку режима. Для гармоничного усиления сигнала по напряжению и току используют
режим — А. В этом режиме напряжение между коллектором
и нагрузкой, примерно равно половине питающего напряжения — т. е выходное сопротивление транзистора
и нагрузки примерно равны . Если подавать теперь на переход база — эмиттер
сигнал переменного тока, СОПРОТИВЛЕНИЕ эмиттер — коллектор будет изменяться, графически повторяя
форму входного сигнала. Соответственно, то же будет происходить и с током через эмиттер к коллектору
протекающим. Причем амплитуда тока будет большей, нежели амплитуда
входного сигнала — будет происходить усиление сигнала.

Если увеличивать напряжение смещения база — эмиттер дальше, это приведет к росту
тока в этой цепи, и как результат — еще большему росту тока эмиттер — коллектор.
В конце, концов ток перестает расти — транзистор переходит в полностью открытое
состояние(насыщения). Если затем убрать напряжение смещения — транзистор закроется,
ток эмиттер — коллектор уменьшится, почти исчезнет. Так транзистор может работать
в качестве электронного ключа. Этот режим наиболее эффективен в отношении
управления мощностями, при протекании тока через полностью открытый транзистор величина падения напряжения
минимальна. Соответственно малы потери тока и нагрев переходов транзистора.

Существует три вида подключения биполярного транзистора.
С общим эмиттером (ОЭ) — осуществляется усиление как по току, так и по напряжению — наиболее
часто применяемая схема.
Усилительные каскады построенные подобным образом, легче согласуются между собой,
так как значения их входного и выходного сопротивления относительно близки, если
сравнивать с двумя остальными видами включения (хотя иногда и отличаются в десятки раз).

С общим коллектором (ОК) осуществляется усиление только по току — применяется для согласования
источников сигнала с высоким внутренним сопротивлением(импендансом) и низкоомными сопротивлениями нагрузок.
Например, в выходных каскадах усилителей и контроллеров.

С общей базой (ОБ) осуществляется усиление только по напряжению. Имеет низкое входное и высокое
выходное сопротивление и более широкий частотный диапазон. Это позволяет использовать подобное включение для согласования
источников сигнала с низким внутренним сопротивлением(импендансом) с последующим каскадом
усиления. Например — в входных цепях радиоприемных устройств.

Использование транзисторов NPN и PNP

Пришло время объяснить практические различия между транзисторами NPN и PNP. Независимо от типа транзистора, который мы используем для пропускания большого тока (эмиттер-коллектор), нам нужно «замкнуть» схему база-эмиттер, чтобы он работал.

  • В транзисторах NPN, эмиттер соединен с землей системы (GND), поэтому база должна быть подключена (через токоограничивающий резистор) к плюсу батареи (VCC).
  • Однако в случае PNP, эмиттер подключен к VCC, поэтому база должна быть подключена (через резистор) к земле системы (GND).
В таких системах, ток, протекающий через базу, чаще всего ограничивают резистором 10 кОм!

Другими словами, протекание сильного тока можно «активировать» через резистор:

  • масса системы (GND) в случае PNP,
  • положительная подача (VCC) в случае NPN.

На практике, схемы, управляющие светодиодом через транзистор, могут выглядеть так, как на картинке ниже. Светодиод является здесь лишь примером, используемым для легкой демонстрации. Обычно вместо светодиодов подключаются элементы, потребляющие большой ток (например, двигатели или реле).

Обязательно запомните эти схемы. Лучше всего сейчас собрать обе схемы и протестировать их! Главное — запомнить разницу между вышеперечисленными транзисторами. Один из них позволяет току протекать по «положительной силовой шине», а другой, по «отрицательной силовой шине».

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: