Транзисторы — основные параметры и характеристики, маркировка транзисторов

Виды транзисторов

В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.

В настоящее время начинают набирать популярность триоды на основе органических материалов и даже веществ биологического происхождения: протеинов, пептидов, молекул хлорофилла и целых вирусов. Биотранзисторы используются в медицине и биотехнике.

Другие классификации транзисторов:

  1. По мощности подразделяются на маломощные (до 0,1 Вт), средней мощности (от 0,1 до 1 Вт) и просто мощные (свыше 1 Вт).
  2. Также разделяются по материалу корпуса (металл или пластмасса), типу исполнения (в корпусе, бескорпусные, в составе интегральных схем).
  3. Нередко их объединяют друг с другом для улучшения характеристик. Такие транзисторы называются составными или комбинированными и могут состоять из двух и более полупроводниковых приборов. Строение и у них простое: эмиттер первого является базой для второго и так далее до необходимого количества триодов. Бывает нескольких типов: Дарлинга (все составляющие с одинаковым типом проводимости), Шиклаи (тип проводимости разный), каскодный усилитель (два прибора, работающие как один с подключением по схеме с общим эмиттером).
  4. К составным относится также и IGBT-транзистор, представляющий собой биполярный, который управляется при помощи полярного триода с изолированным затвором. Такой тип полупроводниковых приборов применяется в основном там, где нужно управлять большим током (сварочные аппараты, городские электросети) или электромеханическими приводами (электротранспорт).
  5. В качестве управления может применяться не ток, а другое электромагнитное воздействие. К примеру, в фототранзисторах в качестве базы используется чувствительный фотоэлемент, а в магнитотранзисторах – материал, индуцирующий ток при воздействии на него магнитного поля.

Технологический предел для транзисторов еще не достигнут. Их размеры уменьшаются с каждым голом, а различные научно-исследовательские институты ведут поиск новых материалов для использования в качестве полупроводника. Можно сказать, что эти полупроводниковые приборы еще не сказали миру своего последнего слова.

Преимущества схемы Дарлингтона

Транзисторы Дарлингтона используются так же, как одинарные биполярные. Их можно рассматривать как один транзистор с измененными параметрами

Наиболее важной особенностью такого изменения является умножение текущих коэффициентов усиления

Вернемся к примеру, приведенному в начале: объединив мощный транзистор с β = 40 с меньшим значением β, мы получим коэффициент усиления 1600. Для включения нагрузки, потребляющей 5 А, потребуется всего 3 мА — это ток, который успешно обеспечивает большинство микроконтроллеров.

Однако необходимо помнить, что транзисторы в этом соединении загружены неравномерно: большая часть тока проходит через T2. Это означает, что они не обязательно должны быть одного типа. Например, T1 может быть транзистором малой мощности с большим β, что делает результирующее усиление еще выше!

Советская «силиконовая долина»

В советское время, в начале 60-х годов, город Зеленоград стал плацдармом для организации в нем Центра микроэлектроники. Советский инженер Щиголь Ф. А. разрабатывает транзистор 2Т312 и его аналог 2Т319, который в последующем стал главным компонентом гибридных цепей. Именно этот человек заложил основу для выпуска в СССР германиевых транзисторов.

В 1964 году на базе Научно-исследовательского института точных технологий создал первую интегральную микросхему IC-Path с 20 элементами на кристалле, выполняющую задачу совокупности транзисторов с резистивными соединениями. В это же время появилась другая технология: были запущены первые плоские транзисторы «Плоскость».

В 1966 году в Пульсарском научно-исследовательском институте начала действовать первая экспериментальная станция по производству плоских интегральных микросхем. В NIIME группа доктора Валиева начала производство линейных резисторов с логическими интегральными схемами.

В 1968 году Исследовательский институт Пульсар произвел первую часть тонкопленочных гибридных ИС с плоскими транзисторами с открытой рамой типов KD910, KD911, KT318, которые предназначены для связи, телевидения, радиовещания.

Линейные транзисторы с цифровыми ИС массового использования (типа 155) были разработаны в Научно-исследовательском институте МЭ. В 1969 году советский физик Алферов Ж. И. открыл миру теорию по управлению электронными и световыми потоками в гетероструктурах на базе арсенид-галлиевой системы.

Схема Дарлингтона на практике

Пришло время проверить свойства схемы Дарлингтона на практике. Конечно, согласно предыдущей схеме, такую ​​конфигурацию можно построить «вручную» на двух транзисторах. Однако, эта схема настолько популярна, что производители также продают готовые транзисторы Дарлингтона, которые имеют такое двойное соединение и выглядят, как обычный одиночный транзистор.

В нашем эксперименте мы будем использовать транзистор MPSA29 (β> 10000), который представляет собой готовый транзистор Дарлингтона. Сравним его работу с ранее рассмотренным BC546 (β = 200–450). На этот раз, мы построим две версии «графитово-бумажного потенциометра», в которых один из путей, по которым протекает ток, будет нарисован карандашом на листе бумаги!

Для выполнения этого упражнения вам потребуются:

  • Резистор 1 × 10 кОм,
  • Резистор 1 × 1 кОм,
  • 1 × светодиод (выберите свой любимый цвет),
  • 1 × транзистор BC546,
  • 1 × транзистор MPSA29,
  • 1 × карандаш,
  • 1 × лист бумаги,
  • батареи 4 × AA,1 × слот для 4 батареек АА,
  • 1 × макетная плата,
  • комплект соединительных проводов.

При выполнении упражнений обратите внимание на то, что транзисторы BC546 и MPSA29 имеют разные положения выводов (подробности см. ниже)!. Сначала сделайте потенциометр самостоятельно

На листе бумаги проведите карандашом толстую линию, длиной в несколько сантиметров. Несколько раз проведите карандашом по линии, чтобы она была четкой (одного проведения недостаточно, потому что углеродный след на листе не будет сплошным). Как вы, наверное, знаете, графит проводит электричество, но обладает довольно большим сопротивлением. Проведя линию, вы сделали резистор с сопротивлением в сотни килоом на сантиметр. Это вы можете проверить с помощь. мультиметра

Сначала сделайте потенциометр самостоятельно. На листе бумаги проведите карандашом толстую линию, длиной в несколько сантиметров. Несколько раз проведите карандашом по линии, чтобы она была четкой (одного проведения недостаточно, потому что углеродный след на листе не будет сплошным). Как вы, наверное, знаете, графит проводит электричество, но обладает довольно большим сопротивлением. Проведя линию, вы сделали резистор с сопротивлением в сотни килоом на сантиметр. Это вы можете проверить с помощь. мультиметра.

С помощью мультиметра, можно измерить сопротивление линии, проведенной карандашом

Теперь нам нужно разместить на макетной плате микросхему, которая будет использовать наш графитовый резистор. Пока мы будем использовать хорошо известный транзистор BC546

Однако, стоит сразу обратить внимание на другое расположение выводов MPSA29!

Сравнение выводов транзисторов BC546 и MPSA29

Мы будем использовать графитовую линию как «потенциометр», регулирующий ток, протекающий через основание. Просто прижмите провода к листу бумаги. Чем больше расстояние между проводниками, тем больше сопротивление между ними. Резистор 10 кОм используется для защиты транзистора от возгорания, в случае случайного короткого замыкания этих проводов.

Принципиальная схема для тестирования усиления BC546

На практике вся схема может выглядеть так:

Сборка схемы на макетной плате Схема с BC546 на практике

Пришло время проверить, как ведет себя схема при разном сопротивлении. Выполняя это упражнение, не касайтесь пальцами проводов «потенциометра» — сопротивление кожи относительно низкое, что нарушит ход данного эксперимента.

Сопротивление низкое — светодиод горит Сопротивление высокое — светодиод не горит

Чем длиннее дорожка между концами проводов, тем выше сопротивление и меньше тока течет в базу. На какой длине дорожки светодиод перестает гореть? Запишите свой результат, выключите питание и замените транзистор на MPSA29. Однако помните, что у этого транзистора другой эмиттер и коллектор!

Принципиальная схема для тестирования усиления MPSA29

На практике вся схема может выглядеть так:

Схема на макетной плате Пример с MPSA29

После сборки схемы включите питание, и снова прижмите концы проводов к дорожке на листе. Теперь расстояние между проводами, на которых горит светодиод, должно быть намного больше. Это все благодаря свойствам нового транзистора, который имеет гораздо более высокое бета-усиление.

Сопротивление низкое — светодиод горит Сопротивление высокое — светодиод все еще горит

↑ Возможная модернизация

1. Транзисторы типа КТ814, вставленные в панельки «смотрят» надписями от пользователя. Для устранения надо зеркально поменять справа налево рисунок печатной платы.

2. Если пробит переход К-Б, на стабилитрон TL431 поступит напряжение без ограничительного резистора. Поэтому сомнительные транзисторы надо предварительно проверять на замыкание омметром тестера. Для защиты TL431 можно вместо резистора 100 кОм (он предотвращает режим с оторванной базой, я поставил его для перестраховки) поставить резистор 100 Ом и включить его последовательно с миллиамперметром.

3. При длительной подаче повышенного напряжения питания, мощность на балластном резисторе TL431 превышает номинальную. Резистор надо умудриться сжечь, но если есть такие таланты, можно поставить его мощностью 0,5 Вт сопротивлением 200 Ом.

Я не стал вносить эти изменения — делать «защиту от дурака» для себя в схеме из одного стабилитрона и нескольких резисторов считаю ненужным. Плата просто приклеена к кусочку пенопласта с жесткой пленкой. Выглядит неэстетично, но работает, меня это устраивает, как говорится: «дёшево, надёжно и практично».

↑ Техническое задание

Как всегда, считаю, что любительская конструкция, как правило, должна быть простой, дешевой, технологичной, состоять из недефицитных деталей. Кроме того, я давно пришел к выводу, что для подобных целей лучше делать небольшие простые платы без блока питания, без цифрового индикатора, без сложного корпуса. Достаточно предусмотреть зажимы для подключения внешнего лабораторного регулируемого блока питания, индикатора в виде простого цифрового тестера или стрелочного прибора, при необходимости — осциллографа и т. п.

Такие приборы быстро делаются и переделываются, а главное — они работают и приносят пользу. Если же задумать многофункциональный самодостаточный прибор в отдельном красивом корпусе, он обычно так и останется в прожектах. Кроме того, если прибор сделан, вдруг оказывается, что надо добавить еще одну функцию, например, капацитовизор, а места на передней панели уже нет и дизигн надо портить… Поэтому я считаю, что неказистые любительские узкофункциональные изделия имеют право на жизнь.

Итак, задумана проверка кремниевых транзисторов в режиме — ток 200 мА, напряжение К-Э = 2 В. Оперативно можно изменять ток в диапазоне примерно 150…300 мА, напряжение К-Э до 5…7 В. Можно проверять (чуть изменив настройки) составные транзисторы с двумя последовательными P-N переходами.

Тумблером можно изменить ток, например, в 10 раз. Это позволит проверять и маломощные транзисторы при токе 15…30 мА (заменой одного резистора можно установить любой разумный ток). Важным считаю удобство подключения любых транзисторов. Для транзисторов КТ814-819 на плате стоят панельки, для мощных транзисторов в корпусах типа ТО-247, ТО-3Р, есть зажимы. В них устанавливают провода с «крокодилами», которые позволяют подключать транзисторы в корпусе ТО-3, любые транзисторы с гнутыми паяными выводами и т. д.

Изменение напряжения К-Э осуществляется внешним источником питания, цель – проверка идентичности режимов при большем напряжении и значительном нагреве транзисторов. При 5 В и 200 мА получаем предельную мощность для КТ814 без теплоотвода — 1 Вт. Для бОльших корпусов без теплоотводов тепловая мощность обычно = 2 Вт.

Легко заметить, что усиление транзистора зависит в некоторых пределах как от напряжения, так и от температуры, поэтому определение абсолютного значения усиления транзистора с помощью микропроцессора с точностью до седьмого знака, не имеет смысла. По этой причине выбрано простейшее схемное решение, которое дает достаточную для практики точность и позволяет обойтись без ОУ, МК и нескольких источников питания. Для измерения тока базы годится любой цифровой тестер, например, М-832.

Биполярный транзистор BC212 — описание производителя. Основные параметры. Даташиты.

Наименование производителя: BC212

Тип материала: Si

Полярность: PNP

Максимальная рассеиваемая мощность (Pc): 0.3
W

Макcимально допустимое напряжение коллектор-база (Ucb): 60
V

Макcимально допустимое напряжение коллектор-эмиттер (Uce): 50
V

Макcимально допустимое напряжение эмиттер-база (Ueb): 5
V

Макcимальный постоянный ток коллектора (Ic): 0.2
A

Предельная температура PN-перехода (Tj): 150
°C

Граничная частота коэффициента передачи тока (ft): 200
MHz

Ёмкость коллекторного перехода (Cc): 9
pf

Статический коэффициент передачи тока (hfe): 60

Корпус транзистора:

BC212
Datasheet (PDF)

..1. bc212 bc213 bc214.pdf Size:107K _motorola

MOTOROLAOrder this documentSEMICONDUCTOR TECHNICAL DATAby BC212/DAmplifier TransistorsBC212,BPNP SiliconBC213COLLECTORBC21432BASE1EMITTER1MAXIMUM RATINGS23BC BC

0.1. bc212lb.pdf Size:27K _fairchild_semi

BC212LBPNP General Purpose Amplifier This device is designed for general purpose amplifier application at collector currents to 100mA. Sourced from process 68.TO-9211. Emitter 2. Collector 3. BaseAbsolute Maximum Ratings* TC=25C unless otherwise notedSymbol Parameter Value UnitsVCEO Collector-Emitter Voltage 50 VVCBO Collector-Base Voltage 60 VVEBO Emitter-Base V

0.2. bc212l.pdf Size:29K _fairchild_semi

BC212LB CETO-92 PNP General Purpose Amplifier This device is designed for general purpose amplifier applications at collector currents to 300mA.Sourced from Process 68. Absolute Maximum Ratings* TA = 25C unless otherwise notedSymbol Parameter Value Units50 VVCEO Collector-Emitter Voltage60 VVCBO Collector-Base Voltage5 VVEBO Emitter-Base VoltageCollector Curr

 0.3. bc212b.pdf Size:27K _fairchild_semi

BC212BPNP General Purpose Amplifier This device is designed for general purpose amplifier application at collector currents to 100mA. Sourced from process 68.TO-9211. Collector 2. Base 3. EmitterAbsolute Maximum Ratings* TC=25C unless otherwise notedSymbol Parameter Value UnitsVCEO Collector-Emitter Voltage 50 VVCBO Collector-Base Voltage 60 VVEBO Emitter-Base Vo

0.4. bc212b-d.pdf Size:59K _onsemi

BC212BAmplifier TransistorsPNP SiliconFeatures These are Pb-Free Devices* http://onsemi.comCOLLECTOR1MAXIMUM RATINGSRating Symbol Value Unit2BASECollector-Emitter Voltage VCEO -50 VdcCollector-Base Voltage VCBO -60 Vdc3EMITTEREmitter-Base Voltage VEBO -5.0 VdcCollector Current — Continuous IC -100 mAdcTotal Device Dissipation @ TA = 25C PD 350 mWDerate a

 0.5. bc212csm.pdf Size:11K _semelab

BC212CSMDimensions in mm (inches). Bipolar PNP Device in a 0.51 0.10 Hermetically sealed LCC1 (0.02 0.004) 0.31rad.(0.012) Ceramic Surface Mount 3Package for High Reliability Applications 211.91 0.10(0.075 0.004)A0.31rad.Bipolar PNP Device. (0.012)3.05 0.13(0.12 0.005)1.40(0.055)1.02 0.10max.VCEO = 50V A =(0.04 0.004)

0.6. bc212dcsm.pdf Size:10K _semelab

BC212DCSMDimensions in mm (inches). Dual Bipolar PNP Devices in a hermetically sealed LCC2 Ceramic Surface Mount Package for High Reliability 1.40 0.152.29 0.20 1.65 0.13(0.055 0.006)(0.09 0.008) (0.065 0.005)Applications 2 314Dual Bipolar PNP Devices. A0.236 5rad. (0.009) V = 50V CEO6.22 0.13 A = 1.27 0.13I = 0.2A C(0.05

0.7. bc212l la lb bc214l.pdf Size:76K _cdil

Continental Device India LimitedAn ISO/TS 16949, ISO 9001 and ISO 14001 Certified CompanyTO-92 Plastic PackageBC212L, BC212LA, BC212LBBC214L, BC214LB, BC214LCPNP SILICON PLANAR EPITAXIAL TRANSISTORSAmplifier TransistorsDIM MIN MAXA 4,32 5,33B 4,45 5,20C 3,18 4,19D 0,41 0,55E 0,35 0,50F 5 DEGG 1,14 1,40H 1,14 1,53K 12,70 L 1.982 2.082ALL DIMENSIONS IN M.M.

Другие транзисторы… BC211A
, BC211A-10
, BC211A-16
, BC211A-6
, BC211B
, BC211C
, BC211D
, BC211E
, , BC212A
, BC212AP
, BC212B
, BC212BP
, BC212K
, BC212KA
, BC212KB
, BC212L
.

Заключение

Устройства SiC являются отличными кандидатами для улучшения силовой электроники, работающей в области среднего и высокого напряжения. От полупроводниковых трансформаторов до электроприводов класса мегаватт, вспомогательных систем питания и твердотельных автоматических выключателей мы показали, как SiC МОП-транзисторы в целом и Supercascode на основе SiC JFET в частности предлагают весьма убедительные преимущества в высокой производительности и упрощении системы. Рост использования в этих приложениях будет стимулировать и развитие силовой электроники на основе SiC в будущем, далеко за пределами бума в области электроавтомобилестроения в 2020-х годах.

Следующая, последняя статья этого цикла предоставит информацию о применении SiC-транзисторов в блоках питания телекоммуникационной аппаратуры и центров обработки данных. Дополнительные сведения по SiC JFET в рассматриваемом контексте представлены в презентации и публикации , а более подробную информацию по этим и другим вопросам применения SiC-транзисторов можно найти на веб-сайте компании UnitedSiC . К сожалению, опубликованный оригинал этой части статьи содержит ряд неточностей, соответственно, он был переработан его автором и вновь опубликован как .

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: