Технические характеристики
Транзистор S9013 (ТО-92) имеет такие максимально допустимые технические характеристики (при температуре окружающей среды +25ОС):
- максимальное напряжение между коллектором и базой VCBO (Uкб max) = 40 В;
- наибольшее допустимое напряжение между коллектор-эмиттером VCEO (Uкэ max) = 25 В;
- напряжение между эмиттером и базой максимально возможное VEBO (Uэб max) = 5 В;
- максимально возможный постоянный ток коллектора IC (Iк max) = 500 мА;
- предельно допустимая мощность, рассеиваемая на коллекторе РС (Рк max) = 625 мВт;
- статический коэффициент передачи тока Hfe (H21э) от 64 до 400;
- диапазон рабочих температур Tstg = -55 … 150ОС;
Устройства в корпусе SOT-23 имеют меньшую допустимую мощность рассеивания — до 300 мВт. Также стоит отметить, что параметр Uкэ max у современных производителей может немного отличатся на ± 5 В.
Электрические
Теперь перейдем к рассмотрению электрических значений S9013. Они так же приведены с учетом температуры окружающего воздуха до +25ОС. Показатели дополнительных параметров, при которых производителем проводились измерения, представлены отдельным столбцом. Эти данные свойственны всем транзисторам данного вида, не зависимо от типа корпуса.
Классификация
В зависимости от статического коэффициента передачи по току (hfe) при VCE (Uкэ) = 1В и IC (Iк) =50 мА, рассматриваемое устройство подразделяют на семь классов: D (64-91); Е (78-112); F (96-135); G (112-166); H (144-202); I (190-300), J (300-400). Как видно из классификации, максимальным hfe обладают транзисторы S9013I и S9013J. В продаже наиболее чаще встречаются S9013H и S9013G, реже S9013D.
Аналоги
У транзистора S9013 отсутствуют полные аналоги. SS9013, C9013, MMBT9013, KTC9013 не в счёт, так как они фактически тоже самое, просто с другой маркировкой. На наш взгляд эта лучшая альтернатива рассматриваемому устройству. Но если таких нет, то можно использовать в качестве замены другие, например: S8050, 2N3904, 2N4401, BC547, BC337, 2N2222 и т. д.
Наиболее подходящим российским аналогом можно считать КТ530. Однако он имеет другую цоколевку (Э Б К), поэтому будьте внимательны при замене. В таком качестве можно рассмотреть также, незначительно отличающуюся по параметрам, отечественную серию КТ680.
Комплементарная пара
Рекомендуемой комплементарной парой, со структурой p-n-p, для рассматриваемого прибора является транзистор S9012.
Аналоги
Для замены подойдут транзисторы кремниевые планарно-эпитаксиальные, NPN, составные, импульсные. Разработаны для применения в преобразователях напряжения, источниках вторичного электропитания, переключающих устройствах и других схемах аппаратуры широкого применения.
Отечественное производство
Модель | PC * | UCB | UCE | UEB | IC | TJ | fT | CC, pF | hFE | Корпус |
---|---|---|---|---|---|---|---|---|---|---|
TIP122 | 65 | 100 | 100 | 5 | 5 | 150 | 300 | ≥ 1000 | TO-220 | |
КТ716А/Б | 60 | 100/80 | 100/80 | 5 | 8/10 | 150 | 6 | 150 | от 500 до 750 | TO-220, TO-66 |
КТ8116А/Б | 65 | 100 | 5 | 4 | — | 1000 | TO-220 | |||
КТ8116А/Б | 25 | 100 | 3 | 4 | — | 1000 | DPAK | |||
КТ8141А | 60 | 100 | 100 | 8 | 7 | — | 750 | TO-220 | ||
КТ8147А/Б | 100 | 700/500 | — | 8 | 10 | 5 | — | 5 | — | |
КТ8158В | 125 | 100 | 100 | 5 | 12 | 5 | — | 2500 | TO-218 |
Зарубежное производство
Модель | PC * | UCB | UCE | UEB | IC | TJ | hFE | Корпус |
---|---|---|---|---|---|---|---|---|
TIP122 | 65 | 100 | 100 | 5 | 5 | 150 | ≥ 1000 | TO-220 |
NTE261 | 65 | 100 | 100 | 5 | 8 | 150 | 1000 | TO-220 |
NTE263 | 65 | 100 | 100 | 5 | 10 | 150 | 1000 | TO-220 |
RCA122 | 65 | 100 | 100 | 5 | 8 | 150 | 1000 | TO-220 |
SE9302 | 70 | 100 | 100 | 5 | 10 | 150 | 1000 | TO-220 |
TIP102 | 80 | 100 | 100 | 5 | 8 | 150 | 1000 | TO-220 |
TIP132 | 70 | 100 | 100 | 5 | 8 | 150 | 1000 | TO-220 |
WW263 | 65 | 100 | 100 | 5 | 10 | 150 | 1000 | TO-220 |
2N6045G | 75 | 100 | 100 | 5 | 8 | 150 | 1000 | TO-220AB |
2SD498 | 75 | 100 | 100 | 5 | 8 | 150 | 1000 | TO-220 |
3DA122 | 65 | 100 | 100 | 5 | 5 | 150 | 1000 | TO-220 |
3DA142T | 80 | 100 | 100 | 5 | 10 | 150 | 1000 | TO-220 |
3DD122 | 65 | 100 | 100 | 5 | 5 | 150 | 1000 | TO-220 |
BDW93C | 80 | 100 | 100 | 5 | 12 | 150 | 15000 | TO-220 |
CFD811 | 65 | 110 | 100 | 5 | 8 | 150 | 1000 | TO-220FP |
HEPS9151 | 65 | 100 | 100 | 5 | 8 | 150 | 1000 | TO-220 |
HP102 | 80 | 100 | 100 | 5 | 8 | 150 | 1000 | TO-220 |
HP122 | 65 | 100 | 100 | 5 | 5 | 150 | 1000 | TO-220 |
HP142T/TS | 80/70 | 100 | 100 | 5 | 10/8 | 150 | 1000 | TO-220 |
MJE6045/T | 75 | 100 | 100 | 5 | 8 | 150 | 1000 | TO-220 TO-220AB |
Примечание: данные в таблицах взяты из даташит производителя.
Аналоги
Для замены могут подойти транзисторы кремниевые, со струкрурой NPN, эпитаксиально-планарные, предназначенные для применения в схемах усилителей низкой частоты, дифференциальных и операционных усилителей.
Отечественное производство
Тип | PC | UCB | UCE | UEB | IC | TJ | hFE | fT | Cob | NF | UCE(sat) | Корпус |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1815 | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 130 | 80 | 3,5 | — | ≤ 0,25 | SOT-23 |
КТ3102А | 0,25 | 50 | 50 | 5 | 0,1 | — | 100…200 | 150 | ≤ 6 | 10 | — | ТО-92, ТО-18 |
КТ3102Б | 0,25 | 50 | 50 | 5 | 0,1 | — | 200…500 | 150 | ≤ 6 | 10 | — | ТО-92, ТО-18 |
КТ602А/Б | 0,85 | 120 | 100 | 5 | 0,075 | 150 | 20…80 | 150 | ≤ 4 | — | ≤ 3,0 | ТО-126 |
КТ602В/Г | 0,85 | 80 | 70 | 5 | 0,075 | 150 | 15…80 | 150 | ≤ 4 | — | ≤ 3,0 | ТО-126 |
КТ611А/Б | 0,8 | 200 | 180 | 4 | 0,1 | 150 | 10…120 | ≥ 60 | ≤ 5 | — | ≤ 0,8 | ТО-126 |
КТ611В/Г | 0,8 | 180 | 180 | 4 | 0,1 | 150 | 10…120 | ≥ 60 | ≤ 5 | — | ≤ 0,8 | ТО-126 |
КТ660А | 0,5 | 50 | 45 | 5 | 0,8 | 150 | 110…220 | ≥ 200 | ≤ 10 | — | ≤ 0,5 | ТО-92 |
Зарубежное производство
Тип | PC | UCB | UCE | UEB | IC | TJ | hFE | fT | Cob | NF | UCE(sat) | Корпус | Маркировка |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2SC1815 | 0,4 | 60 | 50 | 5 | 0,15 | 150 | 70…700 | 80 | ≤ 3,5 | 1…10 | 0,25 | TO-92 | — |
CSC3114/R | 0,4 | — | 50 | — | 0,15 | — | 100 | 100 | ≤ 3,5 | ≤ 100 | ≤ 0,25 | TO-92 | — |
CSC3114S | 0,4 | — | 50 | — | 0,15 | — | 140 | 100 | — | — | — | TO-92 | — |
CSC3114V | 0,4 | — | 50 | — | 0,15 | — | 280 | 100 | — | — | — | TO-92 | — |
CSC3199 | 0,4 | — | 50 | — | 0,15 | — | 70…700 | 80 | — | — | — | TO-92 | — |
CSC3331/R/S/T | 0,5 | — | 50 | — | 0,2 | — | 70 | 200 | — | — | — | TO-92 | — |
CSC3331TU/U/V | 0,5 | — | 50 | — | 0,2 | — | 70 | 200 | — | — | — | TO-92 | — |
C1815 | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 130 | 80 | — | — | 0,25 | SOT-23 | HF |
2N5551SC | 0,35 | 180 | 160 | 6 | 0,6 | 150 | 150 | 100 | ≤ 6 | ≤ 8 | ≤ 0,5 | SOT-23 | ZFC |
2PD601BRL | 0,25 | 60 | 50 | 6 | 0,2 | 150 | 210 | 100 | ≤ 3 | — | ≤ 0,25 | SOT-23 | ML٭ |
2PD601BSL | 0,25 | 60 | 50 | 6 | 0,2 | 150 | 290 | 100 | ≤ 3 | — | ≤ 0,25 | SOT-23 | MM٭ |
2PD602ASL | 0,25 | 60 | 50 | 5 | 0,5 | 150 | 170 | 180 | ≤ 15 | — | ≤ 0,6 | SOT-23 | SF |
2SC2412-R | 0,2 | 60 | 50 | 7 | 0,15 | 150 | 180 | 180 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | BR |
2SC2412-S | 0,2 | 60 | 50 | 7 | 0,15 | 150 | 270 | 180 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | BS |
2SC945LT1 | 0,23 | 60 | 50 | 5 | 0,15 | 150 | 200 | 150 | ≤ 3,5 | — | ≤ 0,3 | SOT-23 | L6 |
2STR1160 | 0,5 | 60 | 50 | 5 | 1 | 150 | 250 | 150 | ≤ 3,5 | — | ≤ 0,43 | SOT-23 | 160 |
BCV47 | 0,36 | 80 | 60 | 10 | 0,5 | 150 | 10000 | 170 | ≤ 3,5 | — | ≤ 1,0 | SOT-23 | DK, FG, FGp, FGs, FGt, W |
BTC2412N3 | 0,225 | 60 | 50 | 7 | 0,2 | 150 | 180 | 80 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | C4 |
BTD2150N3 | 0,225 | 80 | 50 | 6 | 4 | 150 | 270 | 175 | 14 | — | ≤ 0,32 | SOT-23 | CF |
BTN6427N3 | 0,225 | 100 | 60 | 12 | 0,5 | 150 | 10000 | ≤ 7 | — | ≤ 1,5 | SOT-23 | 1N | |
CMPT3820 | 0,35 | 80 | 60 | 5 | 1 | 150 | 200 | 150 | ≤ 10 | — | ≤ 0,28 | SOT-23 | 38C |
CMPT491E | 0,35 | 80 | 60 | 5 | 1 | 150 | 200 | 150 | ≤ 10 | — | ≤ 0,4 | SOT-23 | C49 |
INC5001AC1 | 0,2 | 80 | 60 | 5 | 1 | 150 | 130 | 240 | ≤ 10 | — | ≤ 0,25 | SOT-23 | XY |
INC5006AC1 | 0,2 | 100 | 50 | 7 | 3 | 150 | 400 | 250 | 13 | — | ≤ 0,2 | SOT-23 | CER |
KMMT619 | 0,35 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 20 | — | ≤ 0,5 | SOT-23 | 619, 619H |
KST6428 | 0,35 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | — | — | SOT-23 | 1K |
L2SC1623RLT1G | 0,225 | 60 | 50 | 7 | 0,15 | 150 | 180 | 250 | ≤ 3 | — | ≤ 0,3 | SOT-23 | L6 |
L2SC1623SLT1G | 0,225 | 60 | 50 | 7 | 0,15 | 150 | 270 | 250 | ≤ 3 | — | ≤ 0,3 | SOT-23 | L7 |
L2SC2412KRLT1G | 0,2 | 60 | 50 | 7 | 0,15 | 150 | 180 | 180 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | BR |
L2SC2412KSLT1G | 0,2 | 60 | 50 | 7 | 0,15 | 150 | 270 | 180 | ≤ 3,5 | — | ≤ 0,4 | SOT-23 | G1F |
L2SC5343RLT1G | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 180 | 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | SOT-23 | 7R |
L2SC5343SLT1G | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 270 | 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | SOT-23 | 7S |
LMBT6428LT1G | 0,225 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | ≤ 0,5 | SOT-23 | 1KM | |
MMBT5343-G/L | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 200 | 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | SOT-23 | 5343 |
MMBT6428 | 0,3 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | — | ≤ 0,6 | SOT-23 | 1K, 1KM |
MMBT6428L/LT1/LT1G | 0,225 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | — | ≤ 0,6 | SOT-23 | 1KM |
MMBT945-H/L | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 200/130 | 150 | ≤ 3 | — | ≤ 0,3 | SOT-23 | CR |
MMBTA28 | 0,35 | 80 | 80 | 12 | 0,8 | 150 | 10000 | 125 | ≤ 8 | — | ≤ 1,5 | SOT-23 | 3SS K6R |
NXP3875G | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 200 | 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | SOT-23 | ٭JF |
PBSS4041NT | 0,3 | 60 | 60 | 5 | 3,8 | 150 | 300 | 175 | 17 | — | ≤ 0,3 | SOT-23 | ٭BK |
PBSS4160T | 0,3 | 80 | 60 | 5 | 1 | 150 | 250 | 150 | ≤ 10 | — | ≤ 0,25 | SOT-23 | ٭U5 |
PBSS8110T | 0,3 | 120 | 100 | 5 | 1 | 150 | 150 | 100 | ≤ 7,5 | — | ≤ 0,2 | SOT-23 | ٭U8 |
SSTA28 | 0,2 | 80 | 80 | 12 | 0,3 | 150 | 10000 | 200 | ≤ 8 | — | ≤ 1,5 | SOT-23 SST3 | RAT |
TMPS1654N7 | 0,225 | 80 | 160 | 5 | 0,15 | 150 | 150 | 100 | ≤ 8 | — | ≤ 1,5 | SOT-23 | N7 |
TMPT6428 | 0,225 | 60 | 50 | 6 | 0,2 | 150 | 250 | 100 | ≤ 3 | — | ≤ 0,2 | SOT-23 | 1K |
Примечание: данные в таблицах взяты из даташип компаний-производителей.
Транзистор
Буквально сразу после появления полупроводниковых приборов, скажем, транзисторов, они стремительно начали вытеснять электровакуумные приборы и, в частности, триоды. В настоящее время транзисторы занимают ведущее положение в схемотехнике.
Начинающему, а порой и опытному радиолюбителю-конструктору, не сразу удаётся найти нужное схемотехническое решение или разобраться в назначении тех или иных элементов в схеме. Имея же под рукой набор «кирпичиков» с известными свойствами гораздо легче строить «здание» того или другого устройства.
Не останавливаясь подробно на параметрах транзистора (об этом достаточно написано в современной литературе, например, в ), рассмотрим лишь отдельные свойства и способы их улучшения.
Одна из первых проблем, возникающих перед разработчиком, — увеличение мощности транзистора. Её можно решить параллельным включением транзисторов (рис.1). Токовыравнивающие резисторы в цепях эмиттеров способствуют равномерному распределению нагрузки.
Оказывается, параллельное включение транзисторов полезно не только для увеличения мощности при усилении больших сигналов, но и для уменьшения шума при усилении слабых. Уровень шумов уменьшается пропорционально корню квадратному из количества параллельно включённых транзисторов.
Защита от перегрузки по току наиболее просто решается введением дополнительного транзистора (рис.2). Недостаток такого самозащитного транзистора — снижение КПД из-за наличия датчика тока R. Возможный вариант усовершенствования показан на рис.3. Благодаря введению германиевого диода или диода Шоттки можно в несколько раз уменьшить номинал резистора R, а значит, и рассеиваемую на нём мощность.
Составной транзистор (рис. 4) имеет повышенное выходное сопротивление и значительно уменьшенный эффект Миллера благодаря каскодному включению полевого и биполярного транзисторов.
За счёт полной развязки второго транзистора от входа и питанию стока первого транзистора напряжением, пропорциональным входному, составной транзистор, изображённый на рис.5, имеет ещё более высокие динамические характеристики.
Единственное условие реализации такого транзистора — более высокое напряжение отсечки второго транзистора. Входной транзистор можно заменить на биполярный.
Одна из особенностей транзисторного ключа при изменяющейся нагрузке — изменение времени выключения транзистора. Чем больше насыщение транзистора при минимальной нагрузке, тем больше время выключения. Избежать глубокого насыщения можно путём предотвращения прямого смещения перехода база-коллектор. Наиболее простая реализация этой идеи с помощью диода Шоттки представлена на рис.6. На рис.7 изображён более сложный вариант — схема Бейкера.
https://youtube.com/watch?v=D60LaX9Fza0
Аудио MOSFET транзисторы класса D
Все корпуса
Наим-е |
Корпус |
Напряжение пробоя |
Rds(on) тип. (10 В) |
Ток стока (25°C) |
Заряд затвора |
Класс |
IRFI4024H-117P |
5-pin TO-220 |
55V |
48 mOhm |
11 A |
8.9 nC |
Consumer |
IRFI4212H-117P |
5-pin TO-220 |
100V |
58 mOhm |
11 A |
12 nC |
Consumer |
IRFI4019H-117P |
5-pin TO-220 |
150V |
80 mOhm |
8.7 |
13 nC |
Consumer |
IRFI4020H-117P |
5-pin TO-220 |
200V |
80 mOhm |
9.1 A |
19 nC |
Consumer |
IRF6665TRPBF |
DirectFET SH |
100V |
53 mOhm |
19 A |
8.7 nC |
Consumer |
IRF6645TRPBF |
DirectFET SJ |
100V |
28 mOhm |
25 A |
14 nC |
Consumer |
IRF6644TRPBF |
DirectFET MN |
100V |
10 mOhm |
60 A |
35 nC |
Consumer |
IRF6775MTRPBF |
DirectFET MZ |
150V |
56 mOhm |
28 A |
25 nC |
Consumer |
IRF6785MTRPBF |
DirectFET MZ |
200V |
85 mOhm |
15 A |
26 nC |
Consumer |
IRF6648TRPBF |
DirectFET MN |
60V |
5.5 mOhm |
86 A |
36 nC |
Consumer |
IRF6668TRPBF |
DirectFET MZ |
80V |
12 mOhm |
55 A |
22 nC |
Consumer |
IRF6646TRPBF |
DirectFET MN |
80V |
7.6 mOhm |
68 A |
36 nC |
Consumer |
IRFB4212PBF |
TO-220 |
100V |
72.5 mOhm |
18 A |
15 nC |
Industrial |
IRFB4019PBF |
TO-220 |
150V |
80 mOhm |
17 A |
13 nC |
Consumer |
IRFB5615PBF |
TO-220 |
150V |
32 mOhm |
35 A |
26 nC |
Industrial |
IRFB4228PBF |
TO-220 |
150V |
12 mOhm |
83 A |
72 nC |
Industrial |
IRFB4020PBF |
TO-220 |
200V |
80 mOhm |
18 A |
18 nC |
Consumer |
IRFB4227PBF |
TO-220 |
200V |
19.7 mOhm |
65 A |
70 nC |
Industrial |
IRFB5620PBF |
TO-220 |
200V |
60 mOhm |
25 A |
25 nC |
Industrial |
IRFP4668PBF |
TO-247 |
200V |
8 mOhm |
130 A |
161 nC |
Industrial |
IRFB4229PBF |
TO-220 |
250V |
38 mOhm |
46 A |
72 nC |
Industrial |
IRFP4768PBF |
TO-247 |
250V |
14.5 mOhm |
93 A |
180 nC |
Industrial |
Планарные MOSFETS транзисторы
D-PAK (доступны в корпусах I-Pak)
30 В |
30V, 46A, 19 mOhm, 33.3 nC Qg, Logic Level, D-Pak |
|
40 В |
40V, 87A, 9.2 mOhm, 48 nC Qg, D-Pak |
|
55 В |
55V, 71A, 13 mOhm, 62 nC Qg, D-Pak |
|
75 В |
75V, 42A, 26 mOhm, 74 nC Qg, D-Pak |
|
100 В |
100V, 32A, 44 mOhm, 48 nC Qg, D-Pak |
D2PAK (доступны в корпусах TO-262)
30 В |
30V, 200A, 3 mOhm, 75 nC Qg, Logic Level, D2-Pak |
|
40 В |
40V, 160A, 4 mOhm, 93.3 nC Qg, Logic Level, D2-Pak |
|
40V, 162A, 4 mOhm, 160 nC Qg, D2-Pak |
||
55 В |
55V, 104A, 8 mOhm, 86.7 nC Qg, Logic Level, D2-Pak |
|
55V, 135A, 4.7 mOhm, 150 nC Qg, D2-Pak |
||
75 В |
75V, 105A, 7 mOhm, 150 nC Qg, D2-Pak |
|
100 В |
100V, 80A, 15 mOhm, 81 nC Qg, D2-Pak |
|
100V, 103A, 11.6 mOhm, 100 nC Qg, D2-Pak |
TO-220 и TO-247
30 В |
30V, 200A, 3 mOhm, 75 nC Qg, Logic Level, TO-220AB |
|
40 В |
40V, 160A, 4 mOhm, 93.3 nC Qg, Logic Level, TO-220AB |
|
40V, 162A, 4 mOhm, 160 nC Qg, TO-220AB |
||
55 В |
55V, 133A, 5.3 mOhm, 170 nC Qg, TO-220AB |
|
55V, 160A, 5.3 mOhm, 120 nC Qg, TO-247AC |
||
75 В |
75V, 177A, 4.5 mOhm, 410 nC Qg, TO-247AC |
|
100 В |
100V, 80A, 15 mOhm, 81 nC Qg, TO-220AB |
|
100V, 51A, 250 mOhm, 66.7 nC Qg, TO-247AC |
P-канальные MOSFET транзисторы одноканальные
SOT-23
-20 В |
P-Channel, -20V, 2.6A, 135 mOhm, 2.5V Drive capable, SOT-23 |
|
P-Channel, -20V, 4.3A, 54 mOhm, 2.5V Drive capable, SOT-23 |
||
-30 В |
P-Channel, -30V, 1A, 150 mOhm, SOT-23 |
|
P-Channel, -30V, 3.6A, 64 mOhm, SOT-23 |
PQFN 2×2 мм, 3×3 мм
-20 В |
P-Channel, -20V, 8.5A, 31 mOhm, 2.5V Capable PQFN2x2 |
|
-30 В |
||
P-Channel, -30V, 10A, 15 mOhm, PQFN33 |
||
P-Channel, -30V, 8.5A, 37 mOhm, PQFN2x2 |
SO-8 и TSOP-6
-30 В |
IRFTS9342TRPBF |
P-Channel, -30V, 6A, 39 mOhm, TSOP-6 |
P-Channel, -30V, 5.4A, 59 mOhm, SO-8 |
||
P-Channel, -30V, 7.5A, 19 mOhm, SO-8 |
||
P-Channel, -30V, 9A, 17.5 mOhm, SO-8 |
||
P-Channel, -30V, 10A, 12 mOhm, SO-8 |
||
P-Channel, -30V, 15A, 7.2 mOhm, SO-8 |
||
P-Channel, -30V, 16A, 6.6 mOhm, SO-8 |
||
P-Channel, -30V, 21A, 4.6 mOhm, SO-8 |
PQFN 5×6мм
-30 В |
P-Channel, -30V, 23A, 4.6 mOhm, PQFN5X6 |
Электрические параметры
Данные в таблице действительны при температуре внешней среды Ta = 25°C.
Характеристика | Обознач. | Параметры при измерениях | Значения |
---|---|---|---|
Ток коллектора выключения, мА | ICBO | UCB = 100 В, IE = 0 | ≤ 0,2 |
Ток выключения коллектор-эмиттер, мА | ICEO | UCE = 50 В, IB = 0 | ≤ 0,5 |
Ток базы выключения, мА | IEBO | UEB = 5 В, IC =0 | ≤ 2 |
Напряжение насыщения коллектор-эмиттер, В * | UCE(sat) (1) | IC = 3 А, IB = 12 мА | ≤ 2 В |
Напряжение насыщения коллектор-эмиттер, В * | UCE(sat) (2) | IC = 5 А, IB = 20 мА | ≤ 4 В |
Напряжение включения база-эмиттер, В * | UBE(ON) | IC = 3 А, UCE = 3,0 В | ≤ 2,5 |
Рабочее напряжение коллектор-эмиттер, В * | UCEO(sus) | IC = 30 мА, IB = 0 | 100 |
Статический коэффициент усиления по току * | hFE (1) | UCE = 3 В, IC = 0,5 А | ≥ 1000 |
hFE (2) | UCE = 3 В, IC = 3 А | ≥ 1000 | |
Выходная емкость, pF | COB | UCB = 10 В, IE = 0, f = 0,1 МГц | 300 |
٭ — параметры сняты в импульсном режиме: ширина импульса 300 мкс, коэффициент заполнения (скважность) ≤ 2 %
Графические иллюстрации характеристик
Рис. 1. Внешние характеристики транзистора в схеме с общим эмиттером: зависимость коллекторного тока IC от напряжения коллектор-эмиттер UCE при различных токах управления IB.
Зависимость снята при температуре внешней среды Ta = 25°C (Надпись на поле рисунка).
Рис. 2. Зависимость статического коэффициента усиления hFE от величины коллекторной нагрузки IC.
Характеристики сняты в схеме с общим эмиттером при различных температурах внешней среды и значении коллекторного напряжения UCE = 6 В. Пунктиром показаны отклонения характеристик при малых значениях коллекторного напряжения UCE = 1 В (надпись на поле рисунка).
Рис. 3. Зависимость напряжения насыщения коллектор-эмиттер транзистора UCE(sat) от величины коллекторной нагрузки IC.
Характеристика снята в схеме с общим эмиттером при различных температурах внешней среды Ta и при соотношении токов IC/IB = 10.
Рис. 4. Зависимость напряжения насыщения база-эмиттер транзистора UBE(sat) от величины коллекторной нагрузки IC.
Характеристика снята в схеме с общим эмиттером при соотношении токов IC/IB = 10 и температуре внешней среды Ta = 25°C (надпись на поле рисунка).
Рис. 5. Входная характеристика транзистора в схеме с общим эмиттером: зависимость входного тока (управления) IB от напряжения управления UBE при различных температурах внешней среды и напряжении коллектор-эмиттер UCE = 6 В.
Рис. 6. Зависимость граничной частоты усиления (частоты среза) fT от величины коллекторной нагрузки IC.
Характеристика снята при температуре среды Ta = 25°C и напряжении коллектор-эмиттер UCE = 10 В (надпись на поле рисунка).
Рис. 7. Ограничение величины рассеиваемой мощности транзистора PC при нарастании температуры внешней среды Ta.
Рис. 8. Область безопасной работы транзистора. Характеристики сняты при температуре корпуса TC = 25°C в режиме подачи одиночного импульса (Single Pulse) длительностей 80 мкс, 300 мкс и постоянного тока — DC (надпись на поле рисунка Notes: …).
Ограничение по величине коллекторного тока: IC = 150 мА.
Ограничение по величине коллекторного напряжения: UCEO = 50 В.
Ограничения по общему нагреву и вторичному пробою структуры транзистора показаны в виде сплошных и пунктирных линий в диапазонах по напряжению 5…50 В и по току коллектора 30…150 мА.
Биполярный транзистор: внешний вид, составные элементы, конструкция корпуса — кратко
Сразу стоит определиться, что биполярный транзистор (bipolar transistor) создан для работы в цепях постоянного тока, где и используется. Сократим его название до БТ.
На фотографии ниже показал насколько разнообразные формы он имеет. А ведь этот небольшой ассортимент мной высыпан из одной маленькой коробочки.
Транзисторный корпус может быть изготовлен из пластмассы или металла в виде параллелепипеда, цилиндра, таблетки различной величины. Общими элементами являются три контактных штыря, созданные для подключения к электрической схеме.
Эти выводы необходимо различать в технической документации, правильно подключать при монтаже. Поэтому их назвали:
- Э (E) — эмиттер;
- К (C) — коллектор;
- Б (B) — база.
Буквы в скобках используются в международной документации.
Основной метод соединения БТ в электрических схемах — пайка, хотя допускаются и другие.
Габариты корпуса и контактных выводов зависят от мощности, которую способен коммутировать этот модуль. Чем выше проектная нагрузка, тем большие размеры вынуждены создавать производители для обеспечения надежной работы и отвода опасного тепла.
Общеизвестно, что полупроводниковые переходы не способны выдерживать высокий нагрев — они банально перегорают. Поэтому все мощные корпуса выполняются из металла и снабжаются теплоотводящими радиаторами.
В особо ответственных узлах для них дополнительно создается принудительный обдув струями воздуха. Этим приемом значительно повышается надежность работы системных блоков компьютеров, ноутбуков, сложной электронной техники.
Любой БТ состоит из трех полупроводниковых переходов p и n типа, как обычный диод. Только у диода их меньше: всего два. Он способен пропускать ток всего в одну сторону, а в противоположную — блокирует.
Bipolar transistor создается по одной из двух схем соединения полупроводниковых элементов:
- p-n-p, называемую прямым включением;
- n-p-n — обратным.
При обозначении на схемах их рисуют одинаково, но с небольшими отличиями вывода эмиттера:
- прямое направление: стрелка нацелена на базу;
- обратное — стрелка показывается выходом из базы наружу элемента.
Указатель стрелки эмиттера показывает положительное направление тока через полупроводниковый переход.
Транзисторные пары в усилительных каскадах
Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют «комплементарные», или «согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.
Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.
Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.
Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.
Маркировка полевых SMD транзисторов
Маркировка | Тип прибора | Маркировка | Тип прибора |
6A | MMBF4416 | C92 | SST4392 |
6B | MMBF5484 | C93 | SST4393 |
6C | MMBFU310 | H16 | SST4416 |
6D | MMBF5457 | I08 | SST108 |
6E | MMBF5460 | I09 | SST109 |
6F | MMBF4860 | I10 | SST110 |
6G | MMBF4393 | M4 | BSR56 |
6H | MMBF5486 | M5 | BSR57 |
6J | MMBF4391 | M6 | BSR58 |
6K | MMBF4932 | P01 | SST201 |
6L | MMBF5459 | P02 | SST202 |
6T | MMBFJ310 | P03 | SST203 |
6W | MMBFJ175 | P04 | SST204 |
6Y | MMBFJ177 | S14 | SST5114 |
B08 | SST6908 | S15 | SST5115 |
B09 | SST6909 | S16 | SST5116 |
B10 | SST6910 | S70 | SST270 |
C11 | SST111 | S71 | SST271 |
C12 | SST112 | S74 | SST174 |
C13 | SST113 | S75 | SST175 |
C41 | SST4091 | S76 | SST176 |
C42 | SST4092 | S77 | SST177 |
C43 | SST4093 | TV | MMBF112 |
C59 | SST4859 | Z08 | SST308 |
C60 | SST4860 | Z09 | SST309 |
C61 | SST4861 | Z10 | SST310 |
C91 | SST4391 |
Зачем нужна маркировка
Современному радиолюбителю сейчас доступны не только обычные компоненты с выводами, но и такие маленькие, темненькие, на которых не понять что написано, детали. Они называются “SMD”. По-русски это значит “компоненты поверхностного монтажа”. Их главное преимущество в том, что они позволяют промышленности собирать платы с помощью роботов, которые с огромной скоростью расставляют SMD-компоненты по своим местам на печатных платах, а затем массово “запекают” и на выходе получают смонтированные печатные платы. На долю человека остаются те операции, которые робот не может выполнить. Пока не может.
Маркировка на практике
Применение чип-компонентов в радиолюбительской практике тоже возможно, даже нужно, так как позволяет уменьшить вес, размер и стоимость готового изделия. Да ещё и сверлить практически не придётся
Другое важное качество компонентов поверхностного монтажа заключается в том, что благодаря своим малым размерам они вносят меньше паразитных явлений
Дело в том, что любой электронный компонент, даже простой резистор, обладает не только активным сопротивлением, но также паразитными ёмкостью и индуктивностью, которые могут проявится в виде паразитных сигналов или неправильной работы схемы. SMD-компоненты обладают малыми размерами, что помогает снизить паразитную емкость и индуктивность компонента, поэтому улучшается работа схемы с малыми сигналами или на высоких частотах.
Разнообразные корпуса транзисторов.
Маркировка SMD компонентов
SMD компоненты все чаще используются в промышленных и бытовых устройствах. Поверхностный монтаж улучшил производительность по сравнению с обычным монтажом, так как уменьшились размеры компонентов, а следовательно и размеры дорожек. Все эти факторы снизили паразитические индуктивности и емкости в электрических цепях.
Код | Сопротивление |
101 | 100 Ом |
471 | 470 Ом |
102 | 1 кОм |
122 | 1.2 кОм |
103 | 10 кОм |
123 | 12 кОм |
104 | 100 кОм |
124 | 120 кОм |
474 | 470 кОм |
Маркировка импортных SMD
Маркировка импортных SMD транзисторов происходит в основном по нескольким принятым системам. Одна из них – это система маркировки полупроводниковых приборов JEDEC.Согласно ей первый элемент – это число п-н переходов, второй элемент – тип номинал, третий – серийный номер, при наличие четвертого – модификации.
Вторая распространенная система маркировка – европейская. Согласно ей обозначение SMD транзисторов происходит по следующей схеме: первый элемент – тип исходного материала, второй – подкласс прибора, третий элемент – определение применение данного элемента, четвертый и пятый – основную спецификацию элемента.
Третьей популярной системой маркировки является японская. Эта система скомбинировала в себе две предыдущие. Согласно ей первый элемент – класс прибора, второй – буква S, ставится на всех полупроводниках, третий – тип прибора по исполнению, четвертый – регистрационный номер, пятый – индекс модификации, шестой – (необязательный) отношение к специальным стандартам.
Что бы к Вам ни попало в руки, для полной идентификации данного элемента следует применять маркировочные таблицы и по ним определить все характеристики данного элемента. По оценкам специалистов соотношение между производством ЭРЭ в обычном и SMD-исполнении должно приблизиться к 30:70. Многие радиолюбители уже начинают с успехом осваивать применение SMD в своих конструкциях.
Электрические параметры
Характеристика | Обозначение | Параметры при измерениях | Значения |
---|---|---|---|
Характеристики выключенного состояния | |||
Напряжение пробоя коллектор-база, В | U(BR)CBO | IC = 100 мкА, IE = 0 | ≥ 60 |
Напряжение пробоя коллектор-эмиттер, В | U(BR)CEO | IC = 100 мкА, IB = 0 | ≥ 50 |
Ток коллектора выключения, мкА | ICBO | UCB = 60 В, IE = 0 | ≤ 0,1 |
Ток коллектора выключения, мкА | ICEO | UCE = 50 В, IB = 0 | ≤ 0,1 |
Ток эмиттера выключения, мкА | IEBO | UEB = 5 В, IC = 0 | ≤ 0,1 |
Характеристики включенного состояния | |||
Напряжение насыщения коллектор-эмиттер, В | UCE(sat) | IC = 100 мА, IB = 10 мА | ≤ 0,25 |
Напряжение насыщения база-эмиттер, В | UBE(sat) | IC = 100 мА, IB = 10 мА | ≤ 1,0 |
Статический коэффициент усиления по току | hFE (1) | UCE = 6,0 В, IC = 2,0 мА | 70…700 |
hFE (2) | UCE = 6,0 В, IC = 150,0 мА | ≥ 25 | |
Характеристики работы в режиме малого сигнала | |||
Граничная частота усиления (частота среза), МГц | fT | IC = 1,0 мА, UCE = 10 В | ≥ 80 |
Выходная емкость (коллекторного перехода), пФ | Cob | UCB = 10 В, IE = 0, f = 1 МГц | ≤ 3,5 |
Коэффициент шума | NF | IC = 0,1 мА, UCE = 6 В, RG = 10 кОм, f = 1,0 кГц | 1…10 |
Модификации (версии) транзистора
Тип | PC | UCB | UCE | UEB | IC | TJ | hFE | fT | Cob | NF | UCE(sat) | Корпус | Примечание |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1815 | 0,625 | 60 | 50 | 5 | 0,15 | 125 | 25…700 | ≥ 80 | ≤ 3 | — | ≤ 0,25 | TO-92 | Группы по hFE: O/Y/GR/BL |
2SC1815 | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 130…400 | ≥ 80 | — | — | ≤ 0,25 | SOT-23 | Группы по hFE: L/HМаркировка: HF |
2SC1815 | 0,2 | 60 | 50 | 5 | 0,15 | 125 | 130…400 | ≥ 80 | — | — | ≤ 0,25 | SOT-23 | Группа L по hFE: маркировка: HFL.Группа H маркировка: HF |
2SC1815 | 0,4 | 60 | 50 | 5 | 0,15 | 125 | 25…700 | ≥ 80 | ≤ 3,5 | 1…10 | ≤ 0,25 | TO-92 | Группы по hFE: O/Y/GR/BL |
2SC1815(L) | 0,4 | 60 | 50 | 5 | 0,15 | 125 | 25…700 | ≥ 80 | ≤ 3,5 | ≤ 6 | ≤ 0,25 | TO-92 | Группы по hFE: O/Y/GR/BL |
2SC1815LT1 | 0,225 | 60 | 50 | 5 | 0,15 | 150 | 70…700 | — | — | — | ≤ 0,3 | SOT-23 | Маркировка: L6 |
2SC1815M (BR3DG1815M) | 0,3 | 60 | 50 | 5 | 0,15 | 150 | 25…700 | ≥ 80 | ≤ 3,5 | 1…10 | ≤ 0,25 | SOT-23 | Группы по hFE: O/Y/GR/BL Маркировка: HHFO, HHFY, HHFG, HHFB |
2SC1815 M | 0,3 | 45 | 40 | 5 | 0,1 | 125 | 70…700 | ≥ 80 | ≤ 3,5 | — | ≤ 0,4 | TO-92B | Группы по hFE: O/Y/GR/BL |
C1815 | 0,2 | 60 | 50 | 5 | 0,15 | 150 | 130…400 | ≥ 80 | — | — | ≤ 0,25 | SOT-23 | Группы по hFE: L/HМаркировка: HF |
C1815T | 0,4 | 60 | 50 | 5 | 0,15 | 125 | 70…700 | ≥ 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | TO-92 | Группы по hFE: O/Y/GR |
CSC1815 | 0,625 | 60 | 50 | 5 | 0,15 | 125 | 25…700 | ≥ 80 | ≤ 3 | ≤ 10 | ≤ 0,25 | TO-92 | Группы по hFE: O/Y/GR/BL |
FTC1815 | 0,4 | 60 | 50 | 5 | 0,15 | 125 | 70…700 | ≥ 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | TO-92 | Группы по hFE: O/Y/GR/BL |
KSC1815 | 0,4 | 60 | 50 | 5 | 0,15 | 125 | 25…700 | ≥ 80 | ≤ 3 | 1 | ≤ 0,25 | TO-92 | Группы по hFE: O/Y/GR/L |
KTC1815 | 0,625 | 60 | 50 | 5 | 0,15 | 150 | 25…700 | ≥ 80 | ≤ 3,5 | ≤ 10 | ≤ 0,25 | TO-92 | Группы по hFE: Y/GR |