Транзистор кт815: параметры, цоколёвка и аналоги

Наиболее важные параметры.

Коэффициент передачи тока у 13001 может быть от 10 до 70, в зависимости от буквы. У MJE13001A — от 10 до 15. У MJE13001B — от 15 до 20. У MJE13001C — от 20 до 25. У MJE13001D — от 25 до 30. У MJE13001E — от 30 до 35. У MJE13001F — от 35 до 40. У MJE13001G — от 40 до 45. У MJE13001H — от 45 до 50. У MJE13001I — от 50 до 55. У MJE13001J — от 55 до 60. У MJE13001K — от 60 до 65. У MJE13001L — от 65 до 70.

Граничная частота передачи тока — 8МГц.

Максимальное напряжение коллектор — эмиттер — 400 в.

Максимальный ток коллектора(постоянный) — 200 мА.

Напряжение насыщения коллектор-эмиттер при токе коллектора 50мА, базы 10мА — 0,5в.

Напряжение насыщения база-эмиттер при токе коллектора 50мА, базы 10мА — не выше 1,2в.

Рассеиваемая мощность коллектора — в корпусе TO-92 — 0.75 Вт, в корпусе TO-126 — 1.2 Вт без радиатора.

Настройка транзисторного усилителя низкой частоты

Питание обоих усилителей можно осуществить от 3 пальчиковых батарей или же от простого и надежного стабилизатора напряжения построенного на микросхеме LM317.

Настройка усилителя первого варианта сводится к подбору сопротивлений R2 и R4. Величину сопротивлений нужно подобрать такой, чтобы миллиамперметр, подключенный в коллекторную цепь каждого транзистора, показывал ток в районе 0,5…0,8 мА. По второй схеме необходимо также выставить коллекторный ток второго транзистора путем подбора сопротивления резистора R3.

В первом варианте возможно применить транзисторы марки КТ312, КТ3102, или их зарубежные аналоги, однако при этом необходимо будет выставить правильное смещение напряжения транзисторов путем подбора сопротивлений R2, R4. Во втором варианте в свою очередь, возможно применить кремневые транзисторы марки КТ209, КТ361, или зарубежные аналоги. При этом выставить режимы работы транзисторов можно путем изменения сопротивления R3.

В коллекторную электроцепь транзистора VT2 (обоих усилителей) взамен наушников возможно подключить динамик с высоким сопротивлением. Если же необходимо получить более мощное усиление звука, то можно собрать усилитель на TDA2030, который обеспечивает усиление до 15 Вт.

STI13005-1 Datasheet (PDF)

1.1. sti13005-1.pdf Size:235K _update

STI13005-1 High voltage fast-switching NPN power transistor Preliminary data Features ■ STI13005-1 is opposite pin out versus standard IPAK package ■ High voltage capability ■ Low spread of dynamic parameters 3 ■ Very high switching speed 2 1 Application IPAK ■ Switch mode power supplies (AC-DC converters) Description Figure 1. Internal schematic diagram The device

2.1. sti13005h.pdf Size:226K _update

STI13005-H High voltage fast-switching NPN power transistor Datasheet — production data Features ■ Low spread of dynamic parameters ■ Minimum lot-to-lot spread for reliable operation TAB ■ Very high switching speed Applications 3 2 1 ■ Electronic ballast for fluorescent lighting I2PAK ■ Switch mode power supplies Description This device is manufactured using high volta

БЛОК ПИТАНИЯ ЛАМПОВОГО УСИЛИТЕЛЯ

Ничто так не выдаёт консерватизм, чем изготовление ламповых усилителей звука. А может это просто признак особого изысканного вкуса настоящих аудиофилов? В любом случае собрать такой УНЧ представляется прикольным и теоретически выгодным занятием. Как знать, сколько подобный шедевр будет стоить спустя 20 лет. Тут один только внешний вид лампового усилителя уже делает достойной установку его на самом видном месте кабинета. А звук.. Ну это каждый решит после прослушки для себя сам. В общем приступая к сборке самого усилителя, вначале продумайте сам блок питания. Это вам не 12В взятые из БП ATX. Здесь должны присутствовать минимум два напряжения разной величины и мощности. Напряжение накала берётся в пределах 5,5 — 6,5В и чаще всего подаётся на схемы переменным, сразу с обмоток трансформатора, а питание анодов достигает 300 и даже 500В. При уже постоянной форме тока.

Несмотря на то, что в последнее время наметилась стойкая тенденция к импульсным источникам питания всего и вся, рекомендую всё-же забыть на время про электронные трансформаторы и задействовать старый добрый ТС180 (ТС160) от любого чёрно-белого лампового телевизора. Тому есть две причины. Во-первых обычный трансформатор прощает невнимательность монтажа и не взорвётся, как электронный, при случайных боках и замыканиях, а во-вторых цена ЭТ может быть весьма и ввесьма, в отличии от обычных ТС, коих у многих хватает в закромах. Представляется правильным собрать один универсальный блок питания с анодным и накальным напряжением, и питать от него или один конкретный ламповый усилитель (спрятав сам БП подальше), или собирая другие ламповые схемы переключать его при необходимости на них. На каждый ламповый УНЧ блоков питания не напасёшся:)

Смотрим схему простого блока питания лампового усилителя:

По питанию 220В ставим модный пластмассовый тумблер 250В 5А с зелёной подсветкой. Не забываем про предохранители — один на пару ампер по сети, второй трёхамперник по накалу, и третий по высоковольтному напряжению анода. В отличии от электронных трансформаторов, где предохранители сгорают последними, здесь они выполнят свою миссию, так как даже и без них блок питания выдержит кратковременные замыкания выходов. За что я и уважаю трансы в железе. Диоды для двухполупериодных мостов или собираем из советских КД202 с нужной буквой, или берём готовый диодный мост на подходящее напряжение и ток. Если у вас усилитель на пару ламп типа 6П14П с небольшой мощностью выхода, диодный мост выпрямителя пойдёт и советский коричневый КЦ405 или КЦ402. Накал выпрямлять следует только для входных ламп первого одного — двух каскадов. Дальше влияние постоянного накала сводится к нулю и это будет только расход тепла на диодах.

Можно питать накал от моста с конденсатором 4700 — 10000мкФ, а можно и КРЕН5 поставить. и не стремитесь на входные лампы подавать строго 6,3В — лучше питать их немного заниженным напряжением вплоть до 5В. Так что обычная пятивольтовая КРЕНка и всё будет ОК. Обязательно советую поставить пару светодиодов — индикаторов напряжения анода и накала. Во-первых красиво, а во-вторых информативно, сразу видны возможные проблемы с питанием.

Корпус лучше делать делезный, точнее из листового алюминия — он обрабатывается очень удобно. Или просто взять готовый подходящих размеров, где просверлить гнёзда под кнопку сети, светодиоды и разъёмы. Сеть тоже вводите в корпус не просто через дырку, а подключив штеккером к специальному сетевому гнезду. Лично я делаю только так на всех конструкциях — это удобно.

Конденсаторы фильтров анода берём чем больше — тем лучше. Минимум два по 300 микрофарад. Напряжение на них должно быть на 100В выше, чем напряжение на выходе БП. Если у вас схема рассчитана на 250В, то берём конденсатор на 350. Конечно я это правило выполняю далеко не всегда, а бывает вообще ставлю один к одному, но вы так не делайте и в этом с меня пример не берите. Резистор на 47 Ом 5 ватт уточняем по конкретной схеме лампового усилителя. Для простого однотактного его хватит, а для мощного двухтактника надо вообще ставить дроссель. Выдиратся он из любого лампового телевизора и называется ДР-0,38. Трансформатор питания перед установкой в БП обязательно послушайте на предмт гудения и жужжания. А то купите, рассчитете и соберёте под него корпус, а он гудит громче вечернего Пинк Флойда. Будет большой облом. И напоследок порекомендую все диоды шунтировать конденсаторами на 0,01-0,1 мкФ с соответствующими напряжениеми.

Все вопросы — на форум по БП

Ренат СереджиновЛеонтий Самойлов

В статье рассматриваются ограничения, накладываемые схемой импульсного преобразователя и режимами его работы на источник служебного питания. Выделяются параметры элементов источника, определяющие предельные режимы работы. На основании проведенного моделирования даются рекомендации по методике расчета и выбору элементов источника служебного питания.

Источник служебного питания — вспомогательный (служебный) маломощный источник напряжения, необходимый для обеспечения работоспособности контроллеров импульсного преобразователя.

Служебное питание импульсных преобразователей, реализованное на выходных каскадах, — наиболее простое решение вопроса его организации с учетом необходимости гальванического разделения. В отличие от главного выхода преобразователя, переменное напряжение этого источника не является стабилизированным и существенно зависит от напряжения питания преобразователя и величины нагрузки. С одной стороны, это приводит к значительным колебаниям выходного напряжения служебного источника, а с другой — создает в его элементах режимы перегрузок, которые зачастую трудно привести в норму. Целью настоящей работы является проведение анализа процессов в источнике служебного питания, рассмотрение вариантов оптимизации параметров, а также предложение методики расчета.

Принципиальная схема рассматриваемого импульсного преобразователя с источником служебного питания (СП) приведена на рис. 1. На этой схеме ККМ — корректор коэффициента мощности. Остальные обозначения не требуют пояснений.

Блок управляемого пуска обеспечивает начальный заряд конденсаторов источника СП (С1 и С2)

Обратим внимание, что цепь питания С2 гальванически развязана от цепи питания С1. Существуют варианты импульсных преобразователей, когда такой развязки нет, но гальванически развязывается цепь обратной связи с выхода всего преобразователя на ШИМ-контроллер

Как видно на рис. 1, переменное напряжение для источников СП берется с помощью дополнительных обмоток выходного трансформатора.

6.2. Режимы работы усилительного элемента в выходных каскадах усиления

УЭ в ВКУ работают в режиме класса “А” или “В”. Для режима класса “А” РТ выбирается на середине линейного участка УЭ. Этот режим чаще используются в предварительных каскадах усиления и при жестких требованиях к нелинейным искажениям и в ВКУ, в частности усилителях МСП.

для этого режима:

и КПД равен:

Практически ηВКУ.А ≈ 30%, причем величины ψА, ξА и ηВКУ.А зависят от уровня сигнала.

Режим класса “В” характеризуется более сложной схемой, т.к. используется не менее двух УЭ; УЭ работают поочерёдно, а РТ выбирается на оси управляющих напряжений. Этот режим характеризуется также высоким КПД до 78,5% и большими нелинейными искажениями, по сравнению с режимом класса “А”.

Выпрямительное устройство 50ВУК-120М

Предназначе­но для питания постоянным током ксеноновых ламп мощ­ностью 3 кВт, установленных в осветителях кинопроекто­ров типа 23КПК и «Ксенон-ЗА».

Номинальный выпрямленный ток — 120 А, напряже­ние — 25 В. Ток в цепи нагрузки регулируется в пределах 60 — 130 А.

Главный выпрямительный мост собран по шестифазной схеме на кремниевых вентилях В2-200-5Б. Для защиты вентилей от перенапряжения параллельно им включены селеновые выпрямители 30ГД4А. Цепь управления для ре­гулирования тока нагрузки состоит из системы внешнего подмагничивания, куда входят обмотки дросселей, транзи­сторный усилитель, обмотки магнитного усилителя-датчика тока нагрузки. Питание системы подмагничивания осуще­ствляется от селенового выпрямителя 75КТ6Г.

Предусмотрены два режима работы. В основном ре­жиме автоматически поддерживается установленный ток нагрузки, а в другом — осуществляется дистанционное ре­гулирование тока нагрузки. При работе в основном режи­ме обмотки подмагничивания дросселей питаются через транзисторный усилитель, который стабилизирует ток нагрузки, при этом имеющийся в схеме магнитный усилитель является его датчиком. Для получения повышенного на­пряжения в момент розжига ксеноновой лампы (блок под­питки) служит селеновый выпрямитель 75КТ18Г.

Выпрямительное устройство рассчитано на работу с повторно-кратковременными перерывами (через каждые 50 — 60 мин работы).

Импульсный блок питания усилителя на IR2151, IR2153

Импульсные блоки питания – наиболее эффективный класс вторичных источников питания. Они характеризуются компактными размерами, высокой надежностью и КПД. К недостаткам можно отнести лишь создание высокочастотных помех и сложность проектирования /реализации.

Все импульсные ПБ – это своего рода инверторы (системы, генерирующие переменное напряжение на выходе высокой частоты из выпрямленного напряжения на входе). Сложность таких систем даже не в том, чтобы сначала выпрямить входное сетевое напряжение, или в последующем преобразовать выходной высокочастотный сигнал в постоянный, а в обратной связи, которая позволяет эффективно стабилизировать выходное напряжение.

Особо сложным здесь можно назвать процесс управления выходными напряжениями высокого уровня. Очень часто блок управления питается от низковольтного напряжения, что порождает необходимость согласования уровней.

Драйверы IR2151, IR2153

Для того, чтобы управлять независимо (или зависимо, но со специальной паузой, исключающей одновременное открытие ключей) каналами верхнего и нижнего ключа, применяются самотактируемые полумостовые драйвера, такие как IR2151 или IR2153 (последняя микросхема является улучшенной версией исходной IR2151, обе взаимозаменяемы).

Существуют многочисленные модификации данных схем и аналоги от других производителей.

Типовая схема включения драйвера с транзисторами выглядит следующим образом.

Рис. 1. Схема включения драйвера с транзисторами

Тип корпуса может быть PDIP или SOIC (разница на картинке ниже).

Рис. 2. Тип корпуса PDIP и SOIC

Модификация с буквой D в конце предполагает наличие дополнительного диода вольтодобавки.

Различия микросхем IR2151 / 2153 / 2155 по параметрам можно увидеть в таблице ниже.

Таблица

ИБП на IR2153 – простейший вариант

Сама принципиальная схема выглядит следующим образом.

Рис. 3. Принципиальная схема ИБП

На выходе можно получить двухполярное питание (реализуется выпрямителями со средней точкой).

Мощность БП можно увеличить за счет изменения параметров емкости конденсатора C3 (считается как 1:1 – на 1 Вт нагрузки требуется 1 мкф).

В теории выходную мощность можно нарастить до 1.5 кВт (правда для конденсаторов такой ёмкости потребуется система soft-старта).

При конфигурации, обозначенной на принципиальной схеме, достигается выходная сила тока 3,3А (до 511 В) при использовании в усилителях мощности, или 2,5А (387 В) – при подключении постоянной нагрузки.

ИБП с защитой от перегрузок

Сама схема.

Рис. 4. Схема ИБП с защитой от перегрузок

В данном БП предусмотрена система перехода на рабочую частоту, исключающая броски пускового тока (софт-старт), а также простейшая защита от ВЧ помех (на входе и выходе катушки индуктивности).

ИБП мощностью до 1,5 кВт

Схема ниже может обеспечивать работу с мощными силовыми транзисторами, такими как SPW35N60C3, IRFP460 и т.п.

Рис. 5. Схема ИБП мощностью до 1,5 кВт

Управление мощными VT4 и VT5 реализовано через эмиттерные повторители на VT2 и VT1.

БП усилителя на трансформаторе из БП компьютера

Часто случается так, что комплектующие покупать практически и не нужно, они могут стоять и пылиться в составе давно неиспользуемой техники, например, в системном блоке ПК где-то в подвале или на балконе.

Ниже приведена одна из достаточно простых, но не менее работоспособных схем ИБП для усилителя.

Рис. 6. Схема ИБП для усилителя

Пример готовой печатной платы может выглядеть следующим образом.

Рис. 7. Печатная плата устройства

А полностью реализованный узел так.

Рис. 8. Внешний вид устройства

6.3. Однотактная трансформаторная схема на биполярном транзисторе

Данная схема применяется обычно в ВКУ групповых усилителей и работают в режиме класса “А”. В выходной цепи включается трансформатор. Он служит элементом связи выхода усилителя с нагрузкой, рис. 6.1:

Рис. 6.1. ВКУ на биполярном транзисторе.

Заметим, что трансформатор используется как элемент связи и на входе групповых усилителей. Трансформаторная схема ВКУ имеет два основных преимущества:

    • Позволяет заданное сопротивление нагрузки преобразовать к оптимальному значению УЭ;
    • Позволяет повысить КПД ВКУ, т.к. малые потери в выходной цепи; для схемы, приведенной на рис. 6.1

UK0 = EП –iK0·RH= ≈ EП –iK0·RЭ.

Здесь RH= = RЭ + r1 ≈ RЭ, т.к. r1 << RЭ. RH= – сопротивление нагрузки по постоянному току; r1 – активное сопротивление первичной обмотки трансформатора.

К недостаткам трансформаторного каскада относится:

  • Большие размеры, масса и стоимость;
  • Сравнительно узкая полоса рабочих частот;
  • Невозможность выполнения усилителя по интегральной технологии.

При использование БТ коэффициент использования ξ = ψ и согласование обеспечивается при:

Поскольку входное сопротивление трансформатора равно:

то ;

откуда nОПТ равно: ; Выбор транзистора для ВКУ производится по частоте fh21Э ≥ 3·fВ и допустимой мощности рассеивания на коллекторной переходе:

Для усилителей МСП обычно ξ = ψ = 0,5 ÷ 0,7. Это позволяет получить малые нелинейные искажения (большое затухание нелинейности).

Эквивалентная схема трансформатора для широкой полосы частот имеет следующий вид:

Эта схема учитывает влияние всех реактивных элементов. Здесь обозначено: С′ТР = СТР·n2 – эквивалентная емкость трансформатора; – пересчитанное к первичной обмотке сопротивление нагрузки; L1 – индуктивность холостого хода; LS1 и LS2 – индуктивность рассеивания первичной и вторичной обмоток; r1 и r2 – активные сопротивления первичной и вторичной обмоток; ; ; rC – сопротивление потери стали сердечника трансформатора. У малогабаритных трансформаторов СТР = (15÷40) пФ, средних размеров (40÷150) пФ.

В зависимости от области частот проявляется влияние тех или иных элементов схемы. Для области НЧ LS1, L′S2 и C′TP не влияют и можно исключить из эквивалентной схемы. В области НЧ влияет индуктивность холостого хода L1. В области ВЧ влияет LS1, L′S2 и C′TP; при этом индуктивность холостого хода L1 не влияет на частотные искажения.

Транзисторы MJE13001 и 13001

Транзисторы кремниевые структуры n-p-n, высоковольтные усилительные. Производство транзисторов 13001 локализовано в странах Юго-восточной Азии и в Индии. Применяются в маломощных импульсных блоках питания, зарядных устройствах для различных мобильных телефонов, планшетов и т. п.

Внимание!

При близких(почти идентичных) общих параметрах уразных производителей транзисторы 13001 могутотличаться по расположению выводов .

Выпускаются в пластмассовых корпусах TO-92, с гибкими выводами и TO-126 с жесткими. Тип прибора указывается на корпусе. На рисунке ниже — цоколевка MJE13001 и 13001 разных производителей, с разными корпусами.

Разновидности блоков питания

Применение нашли несколько типов инверторов, которые отличаются схемой построения:

  • бестрансформаторные;
  • трансформаторные.

Первые отличаются тем, что импульсная последовательность поступает непосредственно на выходной выпрямитель и сглаживающий фильтр устройства. Такая схема имеет минимум комплектующих. Простой инвертор включает в себя специализированную интегральную микросхему — широтно-импульсный генератор.

Из недостатков бестрансформаторных устройств главным является то, что они не имеют гальванической развязки с питающей сетью и могут представлять опасность удара электрическим током. Также они обычно имеют небольшую мощность и выдают только 1 значение выходного напряжения.

Более распространены трансформаторные устройства, в которых высокочастотная последовательность импульсов поступает на первичную обмотку трансформатора. Вторичных обмоток может быть сколько угодно много, что позволяет формировать несколько выходных напряжений. Каждая вторичная обмотка нагружена на собственный выпрямитель и сглаживающий фильтр.

Мощный импульсный блок питания любого компьютера построен по такой схеме, которая имеет высокую надежность и безопасность. Для сигнала обратной связи здесь используется напряжение 5 или 12 Вольт, поскольку эти значения требуют максимально точной стабилизации.

Использование трансформаторов для преобразования напряжения высокой частоты (десятки килогерц вместо 50 Гц) позволило многократно снизить их габариты и массу и использовать в качестве материала сердечника (магнитопровода) не электротехническое железо, а ферромагнитные материалы с высокой коэрцитивной силой.

На основе широтно-импульсной модуляции построены также преобразователи постоянного тока. Без использования инверторных схем преобразование было связано с большими трудностями.

Какие бывают виды и где применяются

Разделить импульсники можно по разным признакам. По выходному напряжению они делятся на:

  • однополярные с одним уровнем напряжения;
  • ондополярные с несколькими уровнями напряжения;
  • двухполярные.

Эти типы можно комбинировать как угодно – принципиальных ограничений нет. Можно создать блок питания, например, с несколькими однополярными напряжениями (+5 В, +24 В) и с двуполярным (±12 В), или с двумя двуполярными выходами (±12 В, ±5 В). Все зависит от области применения.

Более интересной является информация о типе стабилизации. Здесь ИИП можно разделить на категории:

  1. Нестабилизированные источники. У них выходное напряжение зависит от нагрузки. Могут быть применены для питания оконечных устройств аудиоаппаратуры (усилители и т.п.).
  2. Стабилизированные источники. У таких устройств от нагрузки могут не зависеть напряжение, ток или и то, и другое. Источники со стабилизированным напряжением используются, например, в качестве БП для компьютеров и серверов, или для заряжания кислотно-свинцовых аккумуляторов. Стабилизированный ток подойдет для зарядных устройств для других типов АКБ.
  3. Регулируемые источники. У них уровень выходного напряжения и тока можно выставлять в определенных пределах в зависимости от потребности. Такие устройства используются в качестве лабораторных источников питания.Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Описать все области использования импульсников невозможно. Они применяются там, где надо получить большой ток от легкого и компактного источника.

Также можно разделить ИИП по схемотехнике:

  • с импульсным трансформатором;
  • с накопительной индуктивностью.

В схемотехнику можно углубляться и дальше и классифицировать БП по другим критериям, но это принципиального значения не имеет.

Скорость нарастания выходного напряжения

Также обратите внимание на то, что напряжение на выходе ОУ не может резко менять свое значение. Поэтому, в ОУ есть такой параметр, как скорость нарастания выходного напряжения VUвых

Этот параметр показывает насколько быстро может измениться выходное напряжение ОУ при работе в импульсных схемах. Измеряется в Вольт/сек. Ну и как вы поняли, чем больше значение этого параметра, тем лучше ведет себя ОУ в импульсных схемах. Для LM358 этот параметр равен 0,6 В/мкс.

При участии осциллограф это

Также смотрите видео «Что такое операционный усилитель (ОУ) и как он работает»

Заключение

Усилитель Догерти – идеальный кандидат для максимизации эффективности усилителя мощности при одновременном сохранении линейности усилителя (точного воспроизведения сигнала) для сигналов с высоким отношением пиковой мощности к средней. Если схема модуляции основана на некоторой форме мультиплексирования с частотным разделением или на амплитудной модуляции, то схему Догерти можно рассмотреть для использования в усилителе мощности. Если ваше приложение использует схемы модуляции постоянной несущей (FM, FSK, PSK и т.д.), то усилитель Догерти вам не подходит. В этом случае может оказаться подходящей схема класса C или одна из схем импульсных усилителей. Подведем итоги в виде плюсов и минусов усилителя Догерти.

Достоинства:

  • хороший способ повысить эффективность усилителя при одновременном достижении хорошего качества сигнала;
  • снижает интермодуляционные искажения в сигналах с высоким отношением пиковой мощности к средней, по сравнению с классом AB, работающим вблизи точки компрессии;
  • может использоваться как в усилителях малой мощности (портативные), так и в усилителях большой мощности (например, вещательные);
  • предоставляет множество способов оптимизации для различных приложений (смещение, фазировка);
  • симметричная входная цепь снижает изменение и величину обратных потерь в рабочем диапазоне мощности.

Недостатки:

  • повышенная сложность схемы по сравнению с классической схемой усилителя класса AB;
  • сложно подстроить все параметры, чтобы найти лучшую рабочую точку;
  • паразитные элементы усложняют конструкцию реального усилителя;
  • уровни входного сигнала изменяют рабочие характеристики (это верно и для других типов усилителей больших сигналов);
  • коэффициент усиления усилителя Догерти ниже (часто примерно на 3 дБ ниже), чем у соответствующего усилителя класса AB, из-за деления мощности на входе, необходимого для усилителя несущей и пикового усилителя.
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: