Импортные аналоги отечественных транзисторов таблица соответствия отечественных транзисторов импортным аналогам

Сварочный инвертор не включается

«Титан — БИС — 2300»- именно эта модель инвертора поступила в ремонт, схемотехника повторяет сварочный аппарат аналогичной мощности «Ресанта» и как я предполагаю ещё многие другие инверторы. Посмотреть и скачать схему можно здесь.

В этом сварочном аппарате для питания низковольтных цепей применяется импульсный блок питания, как раз он и был неисправен. ИБП выполнен на ШИМ контролере UC 3842BN. Аналоги — отечественный 1114ЕУ7, Импортные UC3842AN отличается от BN только меньшим потребляемым током, и КА3842BN (AN). Схема ИБП ниже. (Кликните по ней для увеличения) Красным отмечены напряжения которые выдавал уже рабочий ИБП

Обратите внимание на то, что измерять напряжения 25V нужно не относительно общего минуса, а именно с точек V1+,V1- и также V2+,V2- они не связанны с общей шиной

Ключ ИБП выполнен на транзисторе, полевик 4N90C. В моём случае транзистор остался целым, а вот микросхема потребовала замены. Также был в обрыве резистор R 010 — 22 Om/1Wt. После этого блок питания заработал.

Однако радоваться было рано, замерив напряжение на выходе сварочника, оказалось что его нет, а в режиме холостого хода должно быть примерно 85 вольт. Попробовал пошевелить плату, помните со слов хозяина это влияло, но ничего.

Дальнейшие поиски выявили отсутствие одного из напряжений 25 вольт в точках V2-,V2+. Причина, обрыв в трансформаторе обмотки 1-2. Пришлось выпаивать транс, использовал медицинскую иглу для освобождения выводов.

В трансформаторе один из концов обмотки был оборван от вывода.

Аккуратно восстанавливаем соединение используя подходящий проводок, восстановленное соединение не будет лишним зафиксировать капелькой клея или герметика. У меня под руками оказался полиуретановый клей им и воспользовался, делаем ревизию других выводов, если необходимо пропаиваем.

Перед установкой трансформатора следует подготовить плату, чтобы он без усилий вошёл в своё место. Для этого нужно очистить от остатков припоя отверстия, сделать это можно так же иглой от шприца подходящего диаметра.

После установки трансформатора сварочный инвертор заработал.

Как проверить микросхему

Как проверить микросхему не выпаивая её из платы и на что ещё обратить внимание. Частично проверить микросхему можно при наличии вольтметра и регулируемого стабилизированного источника постоянного напряжения

Для полной проверки нужны генератор сигналов и осциллограф

Частично проверить микросхему можно при наличии вольтметра и регулируемого стабилизированного источника постоянного напряжения. Для полной проверки нужны генератор сигналов и осциллограф.

Поговорим о том, что проще. Перед проверкой обязательно выключите инвертор от сети питания. Далее — от внешнего регулируемого блока питания на вывод 7 микросхемы подаём напряжение 16 — 17 вольт, это напряжение запуска МС. При этом на выводе 8 должно быть 5 В. это опорное напряжение от внутреннего стабилизатора микросхемы.

Оно должно оставаться стабильным при изменении напряжения на 7 выводе. Если это не так МС неисправна.

Изменяя напряжение на микросхеме имейте в виду, что ниже 10 В микросхема отключается, и включится при 15-17 вольт. Не следует повышать напряжение питания МС выше 34 В Внутри микросхемы стоит защитный стабилитрон и при сильно завышенном напряжении его просто пробьёт.

Ниже приведена структурная схема UC3842.

Дополнение к этой статье: Через некоторое время принесли ещё один аппарат. Вышел из строя из за падения на бок. Это произошло потому, что за время работы винты скрепляющие корпус разболтались, а некоторые просто потерялись, поэтому при падении плата сыграла и коснулась корпуса монтажной стороной В результате замыкания вышли из строя все 4 выходных транзистора K 30N60HS Аналоги G30N60A4D, G40N60UFD. После замены всё заработало.

Рабочие примеры

Электрические параметры

Существуют тысячи типов транзисторов с разными свойствами для разных целей. Важными параметрами являются

  • допустимая нагрузка по току I C (ток коллектора; от нескольких миллиампер до примерно 50 ампер),
  • максимальное напряжение нагрузки U CE (обратное напряжение коллектор-эмиттер; от нескольких вольт до нескольких сотен вольт),
  • максимальная потеря мощности P max (от нескольких милливатт до нескольких сотен ватт),
  • коэффициент усиления по току B (примерно от 5 до примерно 1000) и
  • частота среза (примерно от 10 кГц до примерно 100 ГГц).
  1. Малосигнальные транзисторы (общее применение):
    • Корпус TO-92 (проводной): BC547B (транзистор npn) / BC557B (транзистор pnp): потери мощности P max  = 0,50 Вт; Величина коллекторного тока I C  ≤ 100 мА; Величина обратного напряжения U CE  ≤ 45 В; Коэффициент усиления по току B ≈ 290 (при I C  = 2 мА)
    • Корпус SOT-23 ( SMD ): BC817 (npn) / BC807 (pnp): P max = 0,25 Вт; I C  ≤ 500… 800 мА; U CE  ≤ 45 В; B = 100… 600 (при I C  = 100 мА); Частота передачи F T (мин.) 100 МГц
    Цена на эти типы составляет около 3 центов за небольшие количества, а за большие количества цена снова значительно снижается.
  2. Силовые транзисторы:
    • Корпус ТО-32N3055 (npn) / MJ2955 (pnp): P max  = 115 Вт; I C  ≤ 15 А; U CEO  ≤ 60 В; B = 20… 70 (при I C | = 4 A); Частота передачи не менее 0,8 МГц
    • Корпус ТО-220 , транзисторы Дарлингтона : TIP130… 132 (npn) / TIP135… 137 (pnp); Ток коллектора до 8 ампер, коэффициент усиления по току не менее 1000 (при токе коллектора 4 ампера), обратное напряжение от 60 до 100 вольт.

Транзисторы Дарлингтона объединяют два транзистора на одной микросхеме в одном корпусе, меньший из которых используется для управления базой большего в схеме эмиттерного повторителя . Коэффициент усиления по току двойного транзистора значительно выше (от 1000 до 30 000), чем у одиночного транзистора, но напряжение насыщения также (около 1 В). Напряжение BE примерно в два раза больше, чем у одиночного транзистора (1,4 В).

Жилищные конструкции

см. также: Список корпусов полупроводников

Дискретные биполярные транзисторы размещаются в разных корпусах в зависимости от предполагаемого использования. Самыми распространенными формами жилья являются:

  • Проводной корпус ( монтаж в сквозное отверстие , короткий THT от технологии сквозного отверстия ):
    • ТО-92 (пластиковый корпус 5 мм × 5,2 мм)
    • ТО-18 и ТО-39 (корпус металлический чашеобразный, герметизированный; устаревший)
    • ТО-220 (пластиковый корпус с выступом для крепления радиатора, 9,9 мм × 15,6 мм)
    • ТО-218 (15 мм × 20,3 мм; пластик с металлической охлаждающей поверхностью)
    • ТО-247 (пластиковый корпус с металлической поверхностью для крепления радиатора)
    • ТО-3 (металлический корпус для крепления радиатора; устарел)
    • ТО-3П (аналог ТО-218; с металлической поверхностью для крепления радиатора)
  • Корпус для поверхностного монтажа ( SMD англ. Surface mount device ); Отвод тепла через паяные соединения на печатной плате :
    • СОТ-23 (1,3 мм × 2,9 мм)
    • СОТ-89 (2,6 мм × 4,5 мм)
    • СОТ-223 (3,5 мм × 6,5 мм)
    • Д-ПАК, Д2-ПАК (повышенные потери мощности)

Разная реакция на нагрев

У биполярных транзисторов температурный коэффициент сопротивления коллектор-эмиттер отрицательный (т. е. с ростом температуры сопротивление уменьшается и ток коллектор — эмиттер растет). У полевых транзисторов все наоборот — температурный коэффициент сток-исток положительный (с ростом температуры сопротивление растет, и ток сток-исток уменьшается).

Важное следствие из этого факта — если биполярные транзисторы нельзя просто так включать параллельно (с целью умощнения), без токовыравнивающих резисторов в цепи эмиттера, то с полевыми все намного проще — благодаря автобалансировке тока сток-исток при изменении нагрузки/нагрева — их можно свободно включать параллельно без выравнивающих резисторов. Это связано с температурными свойствами p-n перехода и простого полупроводника p- или n-типа

По этой причине у полевых транзисторов гораздо реже случается необратимый выходной тепловой пробой, чем у биполярных.

Так для достижения высоких показателей коммутационных токов, можно легко набрать составной ключ из нескольких параллельных полевых транзисторов, что и используется много где на практике, например в инверторах.

А вот биполярные транзисторы нельзя просто так параллелить, им нужны обязательно токовыравнивающие резисторы в цепях эмиттеров. Иначе, из-за разбаланса в мощном составном ключе, у одного из биполярных транзисторов рано или поздно случится необратимый тепловой пробой. Полевым составным ключам названная проблема почти не грозит. Эти характерные тепловые особенности связаны со свойствами простого n- и p-канала и p-n перехода, которые кардинально отличаются.

Основные параметры

  • Коэффициент передачи по току.
  • Входное сопротивление.
  • Выходная проводимость.
  • Обратный ток коллектор-эмиттер.
  • Время включения.
  • Предельная частота коэффициента передачи тока базы.
  • Обратный ток коллектора.
  • Максимально допустимый ток.
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

  • коэффициент усиления по току α;
  • сопротивления эмиттера, коллектора и базы переменному току rэrкrб, которые представляют собой:
    • rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
    • rк — сумму сопротивлений коллекторной области и коллекторного перехода;
    • rб — поперечное сопротивление базы.

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».

Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

h11 = Um1/Im1, при Um2 = 0

Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

h12 = Um1/Um2, при Im1 = 0.

Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

h21 = Im2/Im1, при Um2 = 0.

Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

h22 = Im2/Um2, при Im1 = 0.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

Um1 = h11Im1 + h12Um2;
Im2 = h21Im1 + h22Um2.

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.

Для схемы ОЭ: Im1 = IIm2 = IUm1 = Umб-эUm2 = Umк-э. Например, для данной схемы:

h21э = I/I = β.

Для схемы ОБ: Im1 = IIm2 = IUm1 = Umэ-бUm2 = Umк-б.

Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:

;

;

;

.

С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.

В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τфВременем включения транзистора называется τвкл = τз + τф.

Графические данные

Рис. 1. Зависимость коэффициента усиления hFE от коллекторной нагрузки IC при различных температурах п/п структуры и величине напряжения коллектор-эмиттер UCE = 2 В.

Рис. 2. Характеристики области насыщения транзистора: зависимости коллекторного напряжения UCE от управляющего тока базы IB при различных нагрузках IC.

Характеристики сняты при температуре п/п структуры Tj = 25°C.

Рис. 3. Характеристики включенного состояния транзистора:

  • зависимость напряжения насыщения UCE(sat) коллектор-эмиттер от тока нагрузки IC;
  • зависимость напряжения насыщения UBE(sat) от тока нагрузки IC (Обе характеристики сняты при соотношении тока коллектора к току базы как 10:1);
  • зависимость управляющего напряжения UBE база-эмиттер от тока нагрузки IC при коллекторном напряжении UCE = 4 В.

Рис. 4. Зависимости тепловых коэффициентов изменения напряжений от коллекторной нагрузки IC:

  • ƟUC – для коллекторного напряжения насыщения UCE(sat);
  • ƟUB – напряжения базы UBE.

Каждая характеристика снята для двух диапазонов температур и коэффициента усиления по току IC/IB не превышающем ¼ от значения hFE по постоянному току.

Рис. 5. Характеристики области выключения транзистора:

  • зависимости сняты при различных значениях температуры п/п структуры и значении коллекторного напряжения UCE = 30 В;
  • область разделена осью UBE = 0 на две половины – отрицательных напряжений базы (помечено на графике REVERSE) и область положительных напряжений базы (помечено на графике FORWARD). По этой оси отсчитываются значения тока выключения коллектора ICES.

Рис. 6. Ограничение предельной мощности рассеивания транзистора при увеличении температуры п/п структуры. Зависимость снята для двух шкал по мощности:

  • шкала (помечена на графике TA) для условия отсчета по горизонтальной оси температуры среды;
  • шкала (помечена на графике TC) для условия отсчета по горизонтальной оси температуры контакта коллектора и охладителя.

Рис. 7. Характеристики включения транзистора.

Зависимость времени задержки td и времени нарастания tr импульса, передаваемого транзистором, от величины коллекторной нагрузки IC.

Характеристики сняты при величине напряжения питания UCC = 30 В, температуре коллектора (контакта с охладителем корпуса) TC = 25°C и отношении тока коллектора к току базы IC/IB = 10.

Рис. 8. Характеристики выключения транзистора.

Зависимость времени рассасывания заряда ts в п/п структуре и времени спадания tf импульса от величины коллекторной нагрузки IC.

Характеристики сняты при величине напряжения питания UCC = 30 В, температуре коллектора (контакта с охладителем корпуса) TC = 25°C, отношении тока коллектора к току базы IC/IB = 10 и равенстве токов IB1 = IB2.

Рис. 9. Область безопасной работы транзистора. Ограничена несколькими основными линиями.

Производитель выделяет три причины выхода транзистора из строя (выделены отдельными надписями на поле характеристик):

  • сплошная ограничивающая линия -повреждение в результате вторичного пробоя п/п структуры при превышении предельного напряжения UCEO коллектор-эмиттер (напряжения отмечены на горизонтальной оси для нескольких типов транзисторов);
  • штрихпунктирная ограничивающая линия –
  • UCE повреждение в результате расплавления внутренних контактных соединений в конструкции транзистора;
  • пунктирная ограничивающая линия – повреждение в результате перегрева п/п структуры выше предельной температуры Tj = 150 °C.

Характеристики сняты для нагружения транзистора одиночными импульсами коллекторного тока длительностью 0,5 мс, 1,0 мс, 5 мс и при постоянном токе (при температуре контакта коллектора с охладителем корпуса TC = 25°C).

Электрические параметры

В следующей таблице приведены основные параметры, используемые при расчете электрических схем.

Обратный ток коллектора – обратный ток коллекторногоперехода при свободном (не подключенном никуда) эмиттере. Его наличие приводит к нагреву транзистора. С увеличением температуры быстро растет.

Коэффициент усиления по току – отношение величин коллекторного и базового токов при активном режиме. Его величина определяет способность транзистора к усилению сигналов.

Напряжения насыщения – величина напряжений на p-n переходах транзистора, который находится в состоянии насыщения, то есть оба перехода смещены в прямом направлении (открыты). Такое состояние прибора используется в ключевых схемах.

Граничная частота – частота сигнала, при которой hFE транзистора падает до 1. Обычно приемлемой для работы считается частота 0,1 fT.

Выходная и входная емкости – эквивалентные емкости, являющиеся суммой емкостей Скб и Сбэ. Их величина существенна при работе с сигналами высокой частоты и в переключателях.

Коэффициент шума – отношение полной мощности шумов на выходе к ее части, вызываемой тепловыми шумами генератора шума. Параметр играет роль в случае необходимости усиления слабых сигналов. RG – выходное сопротивление источника сигнала.

Обозначение Параметр Условия измерений Значение
Мин. Тип. Макс.
ICBO Обратный ток коллектора, nA VCB =30В, IE =0 15
hFE (h21) Коэффициент усиления VCE =5В, IC =2мА 110 800
VCE(sat) (UBEsat) Напряжение насыщения к-э, мВ IC=10 мA, IB =0,5мA 90 250
IC=100 мA, IB =5мA 200 600
VBE(sat) (UBEsat) Напряжение насыщения б-э, мВ IC =10 мA, IB =0,5мA 700
IC =100 мA, IB =5мA 900
VBE (UBE) Напряжение б-э (прямое), В VCE =5 В, IC =2 мA 580 660 700
VCE =5 В, IC =10 мA 720
fT Граничная частота, МГц VCE =5В, IC =10мA, f=100 MГц 300
Cob Выходная емкость, пФ VCB =10В, IE =0, f= 1MГц 3,5 6
Cib Входная емкость, пФ VEB =0,5В, IС =0, f= 1MГц 9
NF (F) Коэффициент шума, дБ ВС546-548 VCE =5В, IC =0,2мA, RG=2кОм, f= 1кГц, Δf=200Гц 2 10
ВС549, 550 1,2 4
ВС549 VCE =5В, IC =0,2мA, RG=2кОм, f= 30-15000 Гц 1,4 4
ВС550 1,4 3

Примечания:

  1. Измерение параметров проводилось при температуре окружающей среды 25° С. Предельно допустимые значения указаны для тех же условий.
  2. В первом столбце обеих таблиц в скобках указаны обозначения, принятые в соответствии с ГОСТ 15172-70.

Транзисторы КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315И, КТ315Ж.

Т ранзисторы КТ315 — кремниевые, маломощные высокочастотные, структуры — n-p-n. Корпус пластиковый — желтого, красного, темно — зеленого, оранжевого цветов. Масса — около 0,18г. Маркировка буквенно — цифровая, либо буквенная. Цоколевка легко определяется с помощью буквы, обозначающей подкласс транзистора. Она распологается напротив вывода эмиттера. Вывод коллектора — посередине, базы — оставшийся, крайний.

Наиболее широко распространенный отечественный транзистор. При изготовлении КТ315 впервые массово была применена планарно — эпитаксиальная технология. На пластине из материала n — проводимости формировался участок базы, проводимостью — p, затем, уже в нем — n участок эмиттера. Эта технология способствовала значительному удешевлению производства, при меньшем разбросе параметрических характеристик, по тому времени — довольно высоких.

Благодаря плоской форме корпуса и выводов КТ315 хорошо подходит для поверхностного монтажа. Таким образом, применение КТ315 позволило в свое время значительно уменьшить размеры элементов ТТЛ советских ЭВМ второго поколения. Область применения КТ315 черезвычайно широка, кроме элементов логики это — низкочастотные, среднечастотные, высокочастотные усилители, генераторы, все что сотавляло основу огромного количества бытовых и промышленных электронных устройств советской эпохи.

Разработка КТ315 была отмечена в 1973 г. Государственной премией СССР. Примечательно, что КТ315 до сих пор производятся в Белоруссии, в корпусе ТО-92.

Наиболее важные параметры.

Граничная частота передачи тока — 250 МГц. Коэффициент передачи тока у транзисторов КТ315А, КТ315В, КТ315Д — от 20 до 90. У транзисторов КТ315Б,КТ315Г,КТ315Е — от 50 до 350. У транзистора КТ315Ж, — от 30 до 250. У транзистора КТ315Ж, не менее 30.

Максимальное напряжение коллектор — эмиттер. транзистора КТ315А — 25в. Транзистора КТ315Б — 20в, транзистора КТ315Ж — 15в. У транзисторов КТ315В, КТ315Д — 40 в. у транзисторов КТ315Г, КТ315Е — 35 в. У транзистора КТ315И — 60 в.

Напряжение насыщения база — эмиттер при токе коллектора 20 мА, а токе базы — 2 мА: У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г — 1,1 в. У транзисторов КТ315Д, КТ315Е — 1,5 в. У транзисторов КТ315Ж — 0,9 в.

Напряжение насыщения коллектор — эмиттер при токе коллектора 20 мА, а токе базы 2 мА: У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г — 0,4 в. У транзисторов КТ315Д, КТ315Е — 1 в. У транзисторов КТ315Ж — 0,5 в.

Максимальное напряжение эмиттер-база — 6 в.

Обратный ток коллектор-эмиттер при предельном напряжении : У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315Е — 1 мкА. У транзисторов КТ315Ж — 10 мкА. У транзисторов КТ315И — 100 мкА.

Обратный ток коллектора при напряжении колектор-база 10в — 1 мкА.

Максимальный ток коллектора. У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315Е — 100 мА. У транзисторов КТ315Ж, КТ315И — 50 мА.

Емкость коллекторного перехода при напряжении коллектор-база 10 в, не более: У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г,КТ315Д, КТ315Е, КТ315И — 7 пФ. У транзисторов КТ315Ж — 10 пФ.

Рассеиваемая мощность коллектора.

У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315Е — 150 мВт. У транзисторов КТ315Ж, КТ315И — 100 мВт.

Зарубежные аналоги транзисторов КТ315.

Прямых зарубежных аналогов у КТ315 нет. Наиболее близкий аналог(полное совпадение параметров) транзистора КТ315А — BFP719.

Аналог КТ315Б — 2SC633. Параметры этих транзисторов в основном совпадают, но у 2SC633 несколько ниже граничная частота передачи тока — 200МГц.

Аналог КТ315Г — BFP722, КТ315Д — BC546B

Ток или поле, управление транзисторами

Большинству людей, так или иначе имеющими дело с электроникой, принципиальное устройство полевых и биполярных транзисторов должно быть известно. По крайней мере, из названия «полевой транзистор», очевидно, что управляется он полем, электрическим полем затвора, в то время как биполярный транзистор управляется током базы.

Ток и поле, различие здесь кардинальное. У биполярных транзисторов управление током коллектора осуществляется путем изменения управляющего тока базы, в то время как для управления током стока полевого транзистора, достаточно изменить приложенное между затвором и истоком напряжение, и не нужен уже никакой управляющий ток как таковой.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: