Хромель-алюминиевые термопары
Данные схемы термопар применяются в большинстве случаев для производства различных датчиков и щупов, позволяющих контролировать температуру в промышленном производстве.
Их отличительными особенностями можно назвать довольно низкую цену и огромный диапазон измеряемой температуры. Они позволяют зафиксировать температуру от -200 до +13000 градусов Цельсия.
Нецелесообразно применять термопары с подобными сплавами в цехах и на объектах с высоким содержанием серы в воздухе, так как этот химический элемент негативно влияет как на хром, так и на алюминий, вызывая нарушения в функционировании устройства.
Схема подключения термопары
Наиболее распространенными способами подключения измерительных приборов к термопарам являются так называемый простой способ, а также дифференцированный. Суть первого метода заключается в следующем: прибор (потенциометр или гальванометр) напрямую соединяется с двумя проводниками. При дифференцированном методе спаивается не одни, а оба конца проводников, при этом один из электродов «разрывается» измерительным прибором.
Нельзя не упомянуть и о так называемом дистанционном способе подключения термопары. Принцип работы остается неизменным. Разница лишь в том, что в цепь добавляются удлинительные провода. Для этих целей не подойдет обычный медный шнур, так как компенсационные провода в обязательном порядке должны выполняться из тех же материалов, что и проводники термопары.
Алгоритм измерения температуры
Если по теореме об эквивалентном генераторе электрической цепи левый (по схеме) спай заменить источником напряжения, а затем перенести этот источник к вольтметру, то получим окончательно измерительную цепь, которая используется в большинстве приборов для измерения температуры на основе термопар (рис.4). Величина ЭДС источника Екомп является функцией температуры холодного спая T1. «Холодным спаем» в этом случае являются контакты между медью и железом и медью и константаном. Эти контакты должны иметь одинаковую температуру. Источник Екомп в системе RealLab! реализуется программно, а температура, на основании которой вычисляется величина компенсирующей ЭДС, измеряется каким-либо термодатчиком, например, терморезистором, полупроводниковым датчиком или RTD.
Таким образом, алгоритм измерения температуры должен состоять из следующих шагов:
- измерение температуры холодного спая;
- преобразование этой температуры в эквивалентное напряжение на выводах холодного спая термопары, используя градуировочную таблицу термопары или линеаризующее уравнение;
- добавление этого напряжения к измеренному напряжению на выводах термопары;
- преобразование полученного напряжения в температуру используя градуировочную таблицу термопары или линеаризующее уравнение.
Рис.3. Замена левого спая эквивалентным генератором
Виды устройств
Каждый вид термопар имеет свое обозначение, и разделены они согласно общепринятому стандарту. Каждый тип электродов имеет свое сокращение: ТХА, ТХК, ТВР и т. д. Распределяются преобразователи соответственно классификации:
- Тип E — представляет собой сплав хромеля и константана. Характеристикой этого устройства считается высокая чувствительность и производительность. Особенно это подходит для использования при крайне низких температурах.
- J — относится к сплаву железа и константана. Отличается высокой чувствительностью, которая может достигать до 50 мкВ/ °C.
- Вид K — считается самым популярным устройством, состоящим из сплава хромеля и алюминия. Эти термопары могут определить температуру в диапазоне от -200 °C до +1350 °C. Приборы используются в схемах, расположенных в неокисляющих и инертных условиях без признаков старения. При применении устройств в довольно кислой среде хромель быстро разъедается и приходит в негодность для измерения температуры термопарой.
- Тип M — представляет сплавы никеля с молибденом или кобальтом. Устройства могут выдерживать до 1400 °C и применяются в установках, работающих по принципу вакуумных печей.
- Вид N — нихросил-нисиловые устройства, отличием которых считается устойчивость к окислению. Используются они для измерения температур в диапазоне от -270 до +1300 °C.
Вам это будет интересно Как сделать простой регулятор напряжения своими руками
При высоких температурах широко используются устройства из сплавов рения и вольфрама. Кроме того, по назначению и условиям эксплуатации термопары могут бывать погружаемыми и поверхностными.
По конструкции крепления устройства обладают статическим и подвижным штуцером или фланцем. Широкое применение термоэлектрические преобразователи нашли в устройстве компьютеров, которые обычно подсоединяются через COM порт и предназначены для измерения температуры внутри корпуса.
Проверка работы термопары
В случае выхода из строя термопары не подлежит ремонту. Теоретически можно, конечно, ее починить, но вот будет ли прибор после этого показывать точную температуру – это большой вопрос.
Иногда неисправность термопары не является явной и очевидной. В частности, это касается газовых колонок. Принцип работы термопары все тот же. Однако она выполняет несколько иную роль и предназначается не для визуализации температурных показаний, а для работы клапанов. Поэтому, чтобы выявить неисправность такой термопары, необходимо подключить к ней измерительный прибор (тестер, гальванометр или потенциометр) и нагреть спай термопары. Для этого не обязательно держать ее над открытым огнем. Достаточно лишь зажать его в кулак и посмотреть, будет ли отклоняться стрелка прибора.
Причины выхода из строя термопар могут быть разными. Так, если не надеть специальное экранирующее устройство на термопару, помещенную в вакуумную камеру установки ионно-плазменного азотирования, то с течением времени она будет становиться все более хрупкой до тех пор, пока не переломается один из проводников. Кроме того, не исключается и вероятность неправильной работы термопары из-за изменения химического состава электродов. Ведь нарушаются основополагающие принципы работы термопары.
Газовая аппаратура (котлы, колонки) также оснащается термопарами. Основной причиной выхода из строя электродов являются окислительные процессы, которые развиваются при высоких температурах.
В том случае, когда показания прибора являются заведомо ложными, а при внешнем осмотре не были обнаружены слабые зажимы, то причина, скорее всего, кроется в выходе из строя контрольно-измерительного прибора. В этом случае его необходимо отдать в ремонт. Если имеется соответствующая квалификация, то можно попытаться устранить неполадки самостоятельно.
Да и вообще, если стрелка потенциометра или цифровой индикатор показывают хоть какие-то «признаки жизни», то термопара является исправной. В таком случае проблема, совершенно очевидно, кроется в чем-то другом. И соответственно, если прибор никак не реагирует на явные изменения температурного режима, то можно смело менять термопару.
Однако прежде чем демонтировать термопару и ставить новую, нужно полностью убедиться в ее неисправности. Для этого достаточно прозвонить термопару обычным тестером, а еще лучше – померить напряжение на выходе. Только обычный вольтметр здесь вряд ли поможет. Понадобится милливольтметр или тестер с возможностью подбора шкалы измерения. Ведь разность потенциалов является очень маленькой величиной. И стандартный прибор ее даже не почувствует и не зафиксирует.
Конструкции термопар
Сварка проводов, изготовленных из разных металлов, выполняется таким образом, чтобы получилось небольшое по размеру соединение — спай. Провода можно просто скрутить, однако такое соединение ненадежно и имеет большой уровень шумов. Сварку металлов иногда заменяют пайкой, однако верхний температурный диапазон такой термопары ограничен температуров плавления припоя. При температурах, близких к температуре плавления припоя, контакт разнородных металлов в термопаре может нарушаться. Термопары, изготвленные сваркой, выдерживают более высокие температуры, однако химический состав термопары и структура металла в месте сварки могут нарушаться, что приводит к разбросу температурных коэффициентов термопар. Под действием высоких температур может произойти раскалибровка термопары вследствие изменения диффуции компонентов металла в месте сварки. В таких случаях термопару следует откалибровать заново или заменить.
Промышленностью выпускаются термопары трех различных конструкций: с открытым спаем, с изолированным незаземленным спаем и с заземленным спаем. Термопары с открытым контактом имеют малую постоянную времени, но плохую коррозионную стойкость. Термопары двух других типов применимы для измерения температуры в агрессивных средах. В таблице 3 приведены типы термопар и их маркировка в соответствии со стандартом ANSI.
Таблица 3
Обозначение, ANSI | Тип по ГОСТ Р 8.585-2001 | Материал положительного электрода | Материал отрицательного электрода | Максимальная погрешность | Максимальная температура | Температурный коэффициент при 20 град Цельсия | Выходное напряжение при 100 град. Цельсия |
J | ТЖК | Железо, Fe | Константан, Cu-Ni | 2,2 oС или 0,75% | 760 | 51,45 | 5,268 |
K | TXA | Хромель, Cr-Ni | Алюмель, Ni-Al | 2,2 oС или 0,75% выше 0 oС, 2,2 oС или 2% ниже | 1370 | 40,28 | 4,095 |
T | ТМК | Медь, Cu | Константан, Cu-Ni | 1 oС или 0,75% выше 0 oС, 1 oС или 1,5% ниже | 400 | 40,28 | 4,277 |
E | ТХКн | Хромель, Cr-Ni | Константан, Cu-Ni | 1,7 oС или 0,5% выше 0 oС, 1,7 oС или 1% ниже | 1000 | 60,48 | 6,317 |
N | ТНН | Никросил, Ni-Cr-Si | Нисил, Ni-Si-Mg | 2,2 oС или 0,75% выше 0 oС, 2,2 oС или 2% ниже | — | — | — |
R | ТПП | Платина-Родий (13% Rh) | Платина Pt | 1,5 oС или 0,25% | 1750 | 5,8 | 0,647 |
S | ТПП | Платина-Родий (10% Rh) | Платина Pt | 1,5 oС или 0,25% | 1750 | 5,88 | 0,645 |
B | ТПР | Платина-Родий (30% Rh) | Платина-Родий (6% Rh) | 0,5% выше +800 oС | 1800 | — | 0,033 |
L | TXK | Хромель-Копель | 900 | ||||
C | ТВР,A (A-1, A-2, A-3) | Вольфрам-Рений, W-Re (5% Re) | Вольфрам-Рений, W-Re (26% Re) | 4,5 oС до _425 oС, 1% до 2320 oС | — | — | — |
Особенностью термопар по сравнению с другими типами термодатчиков является то, что температурный коэффициент зависит только от материала, из которого изготовлена термопара и не зависит от ее конструкции (термопары выполняются в форме щупа, проклодки, бронированного зонда, и т.п.). Это делает термопары взаимозаменяемыми без дополнительной подстройки.
При высоких температурах сопротивление материала изоляции термопары уменьшается и токи утечки через изоляцию могут вносить погрешность в результат измерения. Погрешность термопары возрастает также при попадании жидкости внутрь термопары, вследствие чего возникает гальванический эффект.
Принцип работы датчика-термопары
Основной принцип работы температурных датчиков в системах автоматического управления – преобразование температуры в электрическое значение. Эффективность использования электрических величин обеспечена: удобством передачи на большие расстояния с высокой скоростью, возможностью их обратной трансформации, преобразования в цифровой код, чувствительностью измерений. Различают несколько типов устройств.
Принцип действия устройства основан на термоэлектрическом эффекте: если в замкнутом контуре из двух полупроводников или проводников места спаев (контактов) имеют разную температуру, то в нем возникает электрический ток. Спай, расположенный в среде, в которой происходит измерение температуры, называется «горячим», противоположный контакт – «холодным». Чем больше температура измеряемой среды отличается от температуры воздуха, тем больший электрический ток возникает. Эти измерительные устройства могут иметь изоляционный слой или изготавливаться без него. Во втором случае термопары могут использоваться только в схемах, не контактирующих с «землей».
Схематичное изображение термодатчика
Недостатки термопары
Недостатков у термопары не так много, в особенности если сравнивать с ближайшими конкурентами (температурными датчиками других типов), но все же они есть, и было бы несправедливо о них умолчать.
Так, разность потенциала измеряется в милливольтах. Поэтому необходимо применять весьма чувствительные потенциометры. А если учесть, что не всегда приборы учета можно разместить в непосредственной близости от места сбора экспериментальных данных, то приходится применять некие усилители. Это доставляет ряд неудобств и приводит к лишним затратам при организации и подготовке производства.
Измерительная цепь
Основная проблема построения измерительной схемы на базе термопары связана с ее низким выходным напряжением (около 50 мкВ на градус), поскольку синфазные помехи промышленной частоты 50 Гц и радиопомехи, наведенные на элементах измерительной цепи, намного превышают это значение
Поэтому очень важно хорошо экранировать провода, идущие от термопары к системе сбора данных. Термопара должна быть подключена витой парой проводов, помещенных в общий экран
Если провод, идущий к термопаре, достаточно длинный (несколько сотен метров), то наилучшие результаты получаются, если предварительно усилить сигнал термопары усилителем RL-4DA200 из серии RealLab! и уже усиленный сигнал передавать на большое расстояние. При этом электромагнитные наводки становятся малы по сравнению с усиленным сигналом от термопары, что увеличивает достоверность получаемых результатов. Поэтому усиление должно быть выбрано таким, чтобы верхний предел измерения температуры был равен верхнему пределу выходного напряжения усилителя, то есть 10 В.
Для улучшения отношения сигнал/помеха при значительном удалении термодатчика от системы сбора данных можно использовать также фильтр нижних частот третьего порядка с полосой 5 Гц, типа RL-8F3 из серии RealLab!, который позволяет существенно ослабить помеху частотой 50 Гц. На частоте 50 Гц уровень помехи ослабляется на 60 дБ. Фильтр RL-4F3 устанавливается перед системой ввода данных, т.е. перед мультиплексором. Поэтому инерционность фильтра не требует уменьшения скорости опроса датчиков. При использовании модулей серии NL фильтр использовать не нужно, т.к. он имеется во входных цепях модуля NL-8TI.
Обычно используют два способа компенсации температуры холодного спая. Первый способ состоит в том, что провода, идущие от термопары к системе сбора данных, выполняют термопарным проводом, т.е. проводом, изготовленным из того же материала, что и электроды термпары. При этом «холодные спаи» всех термопар (если их несколько) оказываются расположенными в одном месте и температуры всех «холодных спаев» одинаковы. В этом случае можно использовать один общий термодатчик, измеряющий термпературу холодных спаев. Этот способ удобен, когда все термопары расположены недалеко друг от друга и от системы сбора данных.
Второй способ состоит в том, что для каждой термопары используют свой измеритель температуры холодного спая. Это позволяет использовать обычные провода для подсоединения термпары к системе сбора данных, однако одновременно с ними необходимо подвести и сигнал от термопреобразователя, который регистрирует температуру холодного спая. Такой способ удобен, когда термопары пространственно разнесены одна от другой на большое расстояние.
Если термопара в рабочем режиме находится под высоким напряжением или может случайно оказаться под напряженим, необходимо использовать изолирующий усилитель RL-1IDA200.
Принцип действия
Работа термопары основана на принципе термоэлектрического эффекта. Это явление было открыто физиком из Германии Т. Зеебеком в начале XIX века. Его суть состоит в следующем:
- Если соединить два термоэлектрода из разных металлов или сплавов в замкнутую электрическую цепь, а их рабочую поверхность подвергнуть воздействию разных температур, то по ней начнет протекать электрический ток.
- Цепь, состоящая только из двух разных электродов, называется термоэлементом.
- Работает термопара за счет электродвижущей силы, которая вызывает ток в цепи и зависит от материала элементов и разности температуры их соединения.
- Элемент, из которого поступает ток от горячего соединения к холодному, считается положительным электродом, а от холодного к горячему — отрицательным.
- Если говорить простым языком, то зная температуру одного соединения, которая поддерживается обычно постоянной, в результате измерения значения тока можно узнать величину нагрева другого соединения.