Основные виды датчиков тока
Датчиками тока являются устройства, с помощью которых определяется сила постоянного или переменного тока в электрических цепях. В их конструкцию входят магнитопровод с зазором и компенсационной обмоткой, датчик Холла, а также электронная плата, выполняющая обработку электрических сигналов. Основным чувствительным элементом служит датчик Холла, закрепляемый в зазоре магнитопровода и соединяемый со входом усилителя.
Принцип действия в целом одинаковый для всех подобных устройств. Под действием измеряемого тока возникает магнитное поле, затем, с помощью датчика Холла осуществляется выработка соответствующего напряжения. Далее это напряжение усиливается на выходе и подается на выходную обмотку.
Датчики прямого усиления (O/L)
Обладают небольшими размерами и массой, низким энергопотреблением. Диапазон преобразований сигналов существенно расширен. Позволяет избежать потерь в первичной цепи. Работа устройства базируется на магнитном поле, которое создает первичный ток Ip. Далее происходит концентрация магнитного поля в магнитной цепи и его дальнейшее преобразование элементом Холла в воздушном зазоре. Сигнал, полученный с элемента Холла усиливается и на выходе образуется пропорциональная копия первичного тока.
Датчики тока (Eta)
Характеризуются широким диапазоном частот и расширенным диапазоном преобразований. Преимуществами данных устройств является низкое энергопотребление и незначительное время задержки. Работа устройства поддерживается однополярным питанием от 0 до +5 вольт. Действие прибора основано на комбинированной технологии, в которой используется компенсационный тип и прямое усиление. Это способствует существенному улучшению характеристик датчика и более сбалансированному функционированию.
Датчики тока компенсационные (C/L)
Отличаются широким диапазоном частот, высокой точностью и малым временем задержки. У приборов этого типа отсутствуют потери первичного сигнала, у них отличные характеристики линейности и низкий температурный дрейф. Компенсация магнитного поля, создаваемого первичным током Ip, происходит за счет такого же поля, образующегося во вторичной обмотке. Генерация вторичного компенсирующего тока осуществляется элементом Холла и электроникой самого датчика. В конечном итоге, вторичный ток представляет собой пропорциональную копию первичного тока.
Датчики тока компенсационные (тип С)
Несомненными достоинствами этих приборов является широкий диапазон частот, высокая точность информации, отличная линейность и сниженный температурный дрейф. Кроме того, данные приборы могут измерять дифференциальные токи (CD). Они обладают высокими уровнями изоляции и пониженным влиянием на первичный сигнал. Конструкция состоит из двух тороидальных магнитопроводов и двух вторичных обмоток. В основе работы датчиков лежит компенсация ампер-витков. Ток с небольшим значением из первичной цепи проходит через первичный резистор и первичную обмотку.
Датчики тока PRIME
Для преобразования переменного тока используется широкий динамический диапазон. Прибор отличается хорошей линейностью, незначительными температурными потерями и отсутствием магнитного насыщения. Преимуществом конструкции являются небольшие габариты и вес, высокая устойчивость к различным видам перегрузок. Точность показаний не зависит от того как в отверстии расположен кабель и не подвержена влиянию внешних полей. В этом датчике используется не традиционная разомкнутая катушка, а измерительная головка с сенсорными печатными платами.
Каждая плата состоит из двух раздельных катушек с воздушными сердечниками. Все они смонтированы на единую базовую печатную плату. Из сенсорных плат формируются два концентрических контура, на выходах которых суммируется наведенное напряжение. В результате, получается информация о параметрах амплитуды и фазы измеряемого тока.
Датчики тока (тип IT)
Характеризуются высокой точностью показаний, широким частотным диапазоном, низким шумом выходного сигнала, высокой стабильностью температуры и низким перекрестным искажением. В конструкции этих датчиков отсутствуют элементы Холла. Первичный ток создает магнитное поле, которое в дальнейшем компенсируется вторичным током. На выходе вторичный ток представляет собой пропорциональную копию первичного тока.
Конструктивные особенности измерительных преобразователей тока.
Первый тип преобразователей тока – это разъёмные трансформаторы тока, основанные на принципе электромагнитной индукции (рис.4).
a) | б) | ||
в) |
Рис.4. Разъёмный токовый трансформатор для установки в стационарной\стендовой системе(а), для использования с переносными приборами (б) и эквивалентная схема подключения вторичной обмотки трансформатора к приёмнику данных, через нагрузочное сопротивление (в).
Разъёмные трансформаторы тока измеряют параметры только переменного тока. Основной недостаток токовых трансформаторов – большие габариты магнитного сердечника и высокие напряжения на выходе при размыкании вторичной электрической цепи. Кроме того, такие трансформаторы не предназначены для измерения постоянной и низкочастотных составляющих тока в диапазоне ниже 2-5Гц, поэтому в переносных средствах измерения их обычно не используют. В то же время их рекомендуется устанавливать в щиты питания машин переменного тока стационарно, с выводом маломощного сигнала в место, доступное для измерений переносной системой диагностики.
Второй тип преобразователей, который получил наиболее широкое распространение при бесконтактном измерении тока, — это токовые клещи с датчиком Холла, которые могут измерять параметры, как переменного, так и постоянного токов (рис.5).
Рис.5. Токовые клещи с датчиком Холла
Измерение параметров тока осуществляется посредством измерения напряжения, индуцируемого на обкладках полупроводниковой пластины (датчика Холла), установленной в зазоре магнитопровода, пропорционально величине напряжённости магнитного поля, созданного в магнитопроводе проводником с измеряемым током.
Недостатком такого вида преобразователей является наличие небольшого постоянного смещения выходного напряжения, вносящего систематическую ошибку в результаты измерения постоянной составляющей тока. Для исключения этой ошибки в преобразователи либо встраивается переменный резистор «установки нуля», который легко настраивается, либо в магнитный сердечник устанавливается обмотка, для компенсации постоянной составляющей магнитного поля. Преобразователи без компенсационной обмотки получили наименования «открытого типа» («open loop») или прямого усиления, с компенсационной обмоткой — «закрытого типа» («closed loop»).
Третий тип – гибкие измерительные преобразователи тока, которые в России более широко известны под термином «пояс Роговского» (рис.6).
Рис.6. Гибкие измерительные преобразователи тока («пояс Роговского»).
Гибкие преобразователи измеряют скорость изменения тока в проводнике, поэтому сигнал с выхода такого преобразователя должен интегрироваться для получения значений тока. С помощью пояса Роговского возможно измерение параметров только переменного тока, причем начиная с частот порядка 5-10Гц. Верхняя граничная частота измеряемых составляющих тока практически неограниченна, поэтому чаще всего такой преобразователь используется для специальных измерений тока на частотах в сотни кГц и выше. При этом, как правило, измеряемый сигнал не интегрируется.
Возможно, вам также будет интересно
Человечество столкнулось с задачей определения веса еще на ранних стадиях своего развития, и с той поры до наших дней эта проблема остается для него актуальной. Она все еще не снята с повестки для вовсе не потому, что не имеет решения — определять вес того или иного объекта, выражае его через некие общепринятые эталоны, человек умеет
Первая часть статьи. Как известно, в отличие от аккумуляторов других типов литий-ионные аккумуляторы могут соединяться в параллельные цепи без применения специальных мер. Причина этого — практическое отсутствие побочных реакций при их заряде/разряде. Параллельное соединение литий-ионных аккумуляторов успешно используется на протяжении многих лет в батареях различных типов, например в ноутбуках. Причем батарея комплектуется из аккумуляторов одной партии одного производителя, что обеспечивает близкие значения емкости,
В статье описан процесс развертывания экосистемы разработки приложений для микроконтроллеров Atmel серии SAM4S в среде операционной системы Linux. Читатель познакомится также с оценочной платой SAM4S-EK и семейством ARM Cortex-M4 микроконтроллеров фирмы Atmel. Приведены рекомендации по работе с адаптером отладки SAM-ICE (он же J‑LINK) и программой OpenOCD.
Схема на микросхеме 711
Микросхема ACS 711
ACS 711 – тот самый чип, благодаря которому удастся изготовить токовый датчик или ТД на основе ДХ (датчика Холла). ЧД такого датчика будет равен почти 100 кГц, что будет вполне эффективно для проведения измерений.
Микросхема этого типа имеет выход, который интегрируется с усилителем. Последний, в свою очередь, за счет своей оперативности способен увеличивать возможности схемы вплоть до 1 А/В.
Что касается питания, то напряжение на усилитель поступает за счет применения внутреннего источника 2-полярного типа. Это может быть вариант NSD10 либо какой-нибудь другой. Сама микросхема питается уже посредством стабилизатора, имеющего выход с напряжением 3,3 В.
Подача опорного напряжения на ОУ, ИУ и АЦП
На рис. 7 приведена схема с однополярным питанием, в которой напряжение на несимметричный вход аналого-цифрового преобразователя (АЦП) подается с инструментального усилителя. Опорное напряжение усилителя обеспечивает напряжение смещения, соответствующее нулевому дифференциальному входному напряжению, а опорное напряжение АЦП обеспечивает коэффициент масштабирования. Для снижения внеполосного шума между выходом ИУ и входом АЦП часто применяется простой сглаживающий RC-фильтр нижних частот. Разработчики часто соблазняются простыми решениями — например, для подачи опорного напряжения на ИУ и АЦП применяют резистивные делители вместо низкоомного источника. Для некоторых ИУ это может послужить причиной появления погрешности.
Рис. 7. Типичная схема подачи сигнала с ИУ на АЦП с однополярным питанием
Датчики переменного тока
Чтобы получить более дешевые комплектующие, различными предприятиями разрабатывались и серийно изготавливаются приборы, могущие измерять только переменный ток, частота которого составляет 50 Гц. Они состоят только из электронной платы, обрабатывающей сигналы, и трансформатора тока. Такие датчики делятся на три вида, каждый из них отличается формой своего выходного сигнала:
- 1-й тип. Сюда относят те из них, где напряжение является пропорциональным измеряемому току.
- 2-й тип. Сюда относят приборы, которые на выходе дают напряжение, являющееся пропорциональным действующему значению замеряемого тока.
- 3-й тип. Сюда относят стандартный выход 4/20 мА, который является пропорциональным относительно действующего значения измеряемого типа.
ДТ на эффекте Холла: общий взгляд
Что такое эффект Холла? Как известно, это явление основано на том, что если поместить в магнитное поле какой-либо полупроводник прямоугольного типа, и пропустить сквозь него напряжение, то на краях материала обязательно возникнет электрическая сила, направленная перпендикулярно магнитному полю.
Именно по этой причине магнитный датчик принято называть ДХ в честь ученого Холла, которому удалось первым раскрыть этот самый эффект.
Что дает этот самый эффект в автомобильной электрике? Все просто. Когда к ДХ подносится напряжение, то на краях пластины (она бывает расположена внутри ДХ) возникает разность потенциалов, и дается значение, пропорциональное СМП (силе магнитного поля).
Таким образом, в автомобильной сфере удалось использовать бесконтактные элементы, значительно лучше показавшие себя на практике, чем детали, оснащенные контактными группами. Последние приходилось регулярно чистить, ремонтировать, менять.
Бесконтактные ДХ успешно контролируют, например, скорость вращения валов, широко используются в системах зажигания, применимы в тахометрах и АБС.
Для измерений силы тока в различных электрических цепях с помощью микросхемы АС712 это удается сделать. Эффект Холла в данном случае оказывает неоспоримую помощь. Таким образом, удается изготавливать датчик или регулятор электрического тока на ДХ.
Подобные датчики позволят измерять силу не только постоянного, но и переменного тока, получать значения в млА.
Как правило, модуль с микросхемой АС712 функционирует строго от 5В, зато позволяет измерять максимальный уровень тока до 5 А. При этом напряжение должно быть выставлено в пределах значений от 2 квт.
Вообще, ДТ применяются повсеместно в электротехнике для создания коммуникаций обратной связи. В зависимости от конкретного места функционирования, ДТ классифицируются на несколько видов. Известны резистивные ДТ, токово-трансформаторные, ну и конечно, ДТ на эффекте Холла.
Нас интересуют ДТ на эффекте Холла. Они еще называются открытыми регуляторами или приборами с выходным сигналом по напряжению. Предназначение их: бесконтактным способом измерять переменный, постоянный и импульсный ток в диапазонах от плюс/минус 57 до плюс/минус 950 Ампер при в.о. 3 млс.
Настройка прибора
Для настройки данного амперметра нам потребуется контрольный амперметр действующих значений переменного тока или мультиметр, имеющий амперметр переменного тока с функцией RMS. Я пользуюсь UT71D. И так, включаем контрольный амперметр и наш амперметр, например, в цепь чайника скоропостижного разогрева. У них мощность до двух киловатт, для настройки как раз подойдет. Так, сперва прикинем, что у нас будет с уровнями сигнала. С чайником в 2 кВт в цепи протечет ток = 2000Вт/220В ≈ 9А. На выходе ACS712 мы будем иметь = 66мВ/А х 9А = 0,6В. После делителя, на входе DA3, у нас должно быть переменное действующее (RMS)напряжение 0,06В . На выходе DA3 должно быть постоянное напряжение такого же значения – 0,06В. Это входное напряжение для масштабирующего усилителя DA4. На выходе этого усилителя мы должны иметь уже 0,9В. Это будет соответствовать девяти делениям нашей шкалы. Таким образом, коэффициент усиления ОУ должен быть равен 0,9/0,06 = 15. Таким образом, резистор R3 должен иметь значение в районе = 100кОм /15 = 6,66кОм. По уровням у нас все сошлось, теперь резистором R3 точно выставляем значение измеряемого тока в соответствии с показаниями контрольного амперметра.
Вместо модуля с микросхемой ACS712ELCTR-30A-T можно применить другие модули с микросхемами, рассчитанными на тока 5 и 20А при неизменной принципиальной схеме. Соответствующие коэффициенты преобразования для этих микросхем составляют 185 мВ/А, 100 мА/A. Все уровни и соотношения вы уже знаете, поэтому, я думаю, ни каких сложностей возникнуть не должно.
В качестве блока питания можно использовать любой маломощный БП. Можно использовать зарядное от телефона с выходным напряжение не менее 7,5 вольт. Так как измеряемая цепь имеет гальваническую развязку с измерительной частью амперметра, то можно применить и бестрансформаторный блок питания.
Успехов, удачи. К.В.Ю.
Инвертирующий усилитель с однополярным питанием
В некоторых случаях нам даже иногда нужно переместить нулевой уровень на более высокий «пьедестал», чтобы мы могли полностью усиливать сигнал, если дело касается однополярного питания. Работать с однополярным питанием всегда проще и удобнее, чем с двухполярным. Поэтому, в этом случае надо поднять нулевой уровень на некоторый пьедестал, чтобы полностью усиливать переменный сигнал. То есть добавить постоянную составляющую в сигнал. В этом случае схема примет чуть-чуть другой вид:
Как можно увидеть, сейчас мы питаем наш ОУ однополярным питанием. Что будет, если мы НЕинвертирующий выход посадим на землю?
То есть мы получили базовую схему инвертирующего усилителя, но только с однополярным питанием. Давайте ппросимулируем такую схему. Коэффициент усиления в данном случае будет равен-10, так как мы взяли соотношение резисторов 10 килоом и 1 килоом. Загоняю на вход сигнал амплитудой в 1 В.
Что имеем в итоге на виртуальном осциллографе?
Как вы видите, в этом случае усиленная полуволна сигнала вырезается полностью. Оно и понятно, так как напряжение питания у нас однополярное и проломить «пол» нулевого потенциала невозможно. Но можно сделать одну хитрость: поднять «уровень пола» и дать сигналу место для размаха.
В этом случае нам надо добавить Uсм , для того, чтобы поднять сигнал над уровнем «пола». Но не все так просто, дорогие друзья!
Здесь уже будет использоваться более хитрая формула, а не просто вольтдобавка. Приблизительная формула выглядит вот так:
Итак, мы хотим усилить наш сигнал полностью без среза. Какое же должно быть значение Uвых ? Оно должно иметь значение половины Uпит , чтобы сигнал ходил туда-сюда без срезов. Но также надо учитывать и коэффициент усиления, иначе получится насыщение выхода, о чем мы писали выше.
В нашем случае мы хотим увеличить сигнал амплитудой в 1 В в 10 раз. То есть Uпит должно быть как минимум 20 Вольт. Так как ОУ поддерживают однополярное питание до 32 В, то давайте для красоты выставим Uпит = 30 В. Рассчитываем Uсм :
Проверяем симуляцию, все ок!
Как здесь можно увидеть, желтый выходной сигнал поднялся над нулевым уровнем и усилился без искажений. В данном случае желтый сигнал — это сумма постоянного напряжения и переменного синусоидального сигнала.
То есть получилось что-то типа вот этого:
Хорошо это или плохо, когда в переменном сигнале есть постоянная составляющая, то есть постоянное напряжение? В некоторых случаях это плохо, потому как такой сигнал трудно использовать, и поэтому чаще всего его прогоняют через конденсатор, так как он пропускает через себя только переменный ток и блокирует прохождение постоянного тока. А еще лучше поставить фильтр из , с помощью которого можно отсекать лишние частоты.
Подключение ACS712 к Arduino (схема)
Измерение напряжения (постоянного напряжения) с помощью Arduino очень просто. Если ваше требование состоит в том, чтобы измерять напряжение меньше или равное 5 В, то вы можете напрямую измерять с помощью аналоговых выводов Arduino. Если вам нужно измерить более 5 В, то вы можете использовать простую сеть делителя напряжения или модуль датчика напряжения.
Когда дело доходит до измерения тока, Arduino (или любой другой микроконтроллер) нуждается в помощи в виде специального датчика тока. Итак, сопряжение датчика тока ACS712 с Arduino помогает нам измерять ток с помощью Arduino. Поскольку ASC712 может использоваться для измерения переменного или постоянного тока, проект с Arduino может быть реализован для измерения того же.
Принципиальная схема подключения датчика тока ACS712 к Arduino показана на следующем рисунке.
Пример использования
Датчик тока подключается к нагрузке в разрыв цепи через колодки под винт. Для работы с датчиком мы можно использовать библиотеку TroykaCurrent, которая переводит значения аналогового выхода датчика в миллиамперы. В листинге 1 представлен скетч для измерения постоянного тока. Листинг 1
// пин подключения контакта OUT #define PIN_OUT A0 // подключение библиотеки #include // создание объекта ACS712 dataI(PIN_OUT); void setup() { // запуск последовательного порта Serial.begin(9600); } void loop() { // вывод показаний в последовательный порт Serial.print(«i = «); Serial.print(dataI.readCurrentDC()); Serial.println(» A»); delay(1000); } Загружаем скетч на плату Arduino, подключаем нагрузку к источнику питания 12В и смотрим значение тока при подключении хоппера выдачи монет (рис. 4) и двигателя для вендингового аппарата (рис. 6).
Классификация датчиков
По своей сути каждый датчик является составной частью регулирующих, сигнальных, измерительных и управляющих приборов. С его помощью преобразуется та или иная контролируемая величина в определенный тип сигнала, позволяющий измерять, обрабатывать, регистрировать, передавать и хранить полученную информацию. В некоторых случаях датчик может оказывать воздействие на подконтрольные процессы. Всеми этими качествами в полной мере обладает датчик тока, используемый во многих устройства и микросхемах. Он преобразует воздействие электрического тока в сигналы, удобные для дальнейшего использования.
Датчики, применяемые в различных устройствах, классифицируются в соответствии с определенными признаками. По возможности измерений входных величин, они могут быть: электрическими, пневматическими, датчиками скорости, механических перемещений, давления, ускорения, усилия, температур и других параметров. Среди них измерение электрических и магнитных величин занимает примерно 4%.
Каждый датчик преобразует входную величину в какой-либо выходной параметр. В зависимости от этого, контрольные устройства могут быть неэлектрическими и электрическими.
Среди последних чаще всего встречаются:
- Датчики постоянного тока
- Датчики амплитуды переменного тока
- Датчики сопротивления и другие аналогичные приборы.
Основным достоинством электрических датчиков является возможность передачи информации на определенные расстояния с высокой скоростью. Применение цифрового кода обеспечивает высокую точность, быстродействие и повышенную чувствительность измерительных приборов.
Проверенный «бюджетный» вариант
Вот, что надо предпринять для изготовления такого варианта:
- в ферритовом кольце пропилить канавку по толщине корпуса;
- на эпоксидный клей посадить МС;
- сделать определенное количество витков на кольце (кол-во витков будет зависеть от конкретного напряжения);
- в итоге получится бесконтактный вариант реле, функционирующий на электромагнитной основе.
Ферритовое кольцо в роли датчика
Точность срабатывания такого ДТ и регулярность достаточно высокая. Единственным недостатком схемы можно назвать кол-во витков, определяемых чисто эмпирически. На самом деле расчетов конкретного типа нигде и нет. Приходится определять число витков для конкретного сердечника.
Преимущества датчиков тока в современных схемах
Микросхемы на основе датчиков тока играют большую роль в сохранении энергии. Этому способствует низкое питание и энергопотребление. В интегральных схемах происходит объединение всех необходимых электронных компонентов. Характеристики приборов значительно улучшаются, благодаря совместной работе сенсоров магнитного поля и всей остальной активной электроники.
Современные датчики тока способствуют дальнейшему уменьшению размеров, поскольку вся электроника интегрирована в единственный общий чип. Это привело к новым инновационным компактным дизайнерским решениям, в том числе касающимся и первичной шины. Каждый новый датчик тока обладает повышенной изоляцией и успешно взаимодействует с другими видами электронных компонентов.
Новейшие конструкции датчиков позволяют монтировать их в существующие установки без отключения первичного проводника. Они состоят из двух частей и являются разъемными, что позволяет легко устанавливать эти детали на первичный проводник без каких-либо отключений.
На каждый датчик имеется техническая документация, где отражается вся необходимая информация, позволяющая произвести предварительные расчеты и определить место наиболее оптимального использования.
https://youtube.com/watch?v=1DNxTmp2-NE
Устройство датчика Холла
Индуктивный датчик
Схема датчика температуры
Как настроить датчик приближения на Xiaomi
Настройка датчика движения для освещения
Схемы подключения и настройка датчика движения для включения освещения
Описание конструкции самодельных токовых клещей
Для сборки устройства понадобится чувствительный датчик Холла, к примеру, UGN3503. На рисунке 1 изображено устройство самодельной клещи. Необходим, как уже сказано, датчик Холла, а так же, кольцо ферритовое диаметром от 20 до 25 мм и крупный «крокодил», к примеру, подобный как на проводах для запуска (прикуривания) автомобиля.
Ферритовое кольцо необходимо точно и аккуратно распилить либо разломить на 2-е половинки. Для этого ферритовое кольцо необходимо сначала подпилить алмазным надфилем или пилкой для ампул. Далее, поверхности разлома ошкурить мелкой шкуркой.
С одной стороны на первую половинку ферритового кольца приклеить прокладку из чертежного ватман. С другой стороны на другую половинку кольца наклеить датчик Холла. Приклеивать лучше всего эпоксидным клеем, только нужно проследить, чтобы датчик Холла хорошо прилегал к зоне разлома кольца.
Следующий шаг – соединяем обе половинки кольца и обхватываем его «крокодилом» и приклеиваем. Теперь при нажатии на ручки «крокодила» ферритовое кольцо будет расходиться.
Активный датчик тока
Чтобы повысить чувствительность, можно использовать активный датчик тока, например, применив ОУ. Схема такого варианта показана на рис. 4 На двух ОУ DA1.1 и DA1.2 собран двухполупериодный выпрямитель .
Рис. 4. Схема активного датчика тока на LM358AM.
Принцип работы такого выпрямителя основан на использовании ОУ с однополярным питанием. При подаче на неинвертирующий вход ОУ он будет усиливать сигнал положительной полуволны переменного напряжения и ограничивать сигнал отрицательной полуволны.
На ОУ DA 1.1 собран неинвертирующий усилитель с малым коэффициентом усиления (около 2), а на ОУ DA1.2 — усилитель с коэффициентом усиления около 10.
Конденсатор С1 подавляет импульсные и высокочастотные помехи. резистор R1 обеспечивает номинальный коэффициент трансформации трансформатора тока Т1. Резистор R2 и диод VD1 ограничивают минусовое напряжение на неинвертирующем входе ОУ DA 1.1, исключая перегрузку входа ОУ по напряжению.
Положительную полуволну усиливает сначала ОУ DA1.1, затем — ОУ DA1.2, и усиленный в десять раз сигнал появляется на его выходе. Отрицательную полуволну инвертирует и усиливает ОУ DA1.2. поэтому на его выходе формируется полуволна плюсового напряжения. В результате обеспечиваются двухполупериодное выпрямление и одновременно усиление переменного напряжения.
Подборкой резисторов R3-R6 можно подобрать желаемый коэффициент передачи устройства К = R6/R4. при этом соотношение сопротивления резисторов R3 и R5 находят из равенства R5/R3 = (К-1)/(К+1).
Выходной сигнал ОУ DA 1.2 поступает на интегрирующую RC-цепь R7C3, и на конденсаторе C3 формируется постоянное напряжение, пропорциональное среднему значению тока нагрузки.
Рис. 6. Расположение деталей на печатной плате.
Рис. 7. Внешний вид собранного датчика.
Все детали установлены на печатной плате из фольгированного с двух сторон стеклотекстолита, чертёж которой показан на рис. 5, а расположение элементов — на рис. 6.
Одна сторона платы (противоположная установке деталей) оставлена металлизированной, на ней лишь раззенкованы отверстия под крайние выводы разъёма ХР1.
В отверстия в левом нижнем и правом верхнем углах необходимо вставить и с обеих сторон платы пропаять отрезки лужёного провода. Плату можно изготовить из фольгированного с одной стороны стеклотекстолита.
В этом случае вышеупомянутые отверстия в углах платы соединяют отрезком провода со стороны. противоположной расположению деталей. Внешний вид варианта смонтированной платы показан на рис. 7.
В этих конструкциях применены элементы для поверхностного монтажа. Резисторы — типоразмеров 0805, 1206. оксидные конденсаторы — танталовые типоразмеров С, D. неполярные — К10-17в. Вилка ХР1 — три контакта от однорядной угловой вилки серии PLD-10R.
Трансформатор тока Т1 был снят с платы источника бесперебойного питания. Маркировка на трансформаторе — FALCO 9418. К сожалению, в Интернете никаких конкретных данных найти не удалось, но по своим параметрам (индуктивность и сопротивление обмотки) он близок к трансформаторам тока AS-103 или AS-104 фирмы Talema.
Принцип работы
Принцип распределения нагрузки между потребителями Работа прибора основана на принципе самовозврата. Если возникает аварийная ситуация, оборудование отключается. Когда на реле поступает трехфазное напряжение, оно проверяет все параметры. Если все в норме, включается встроенное электромагнитное приспособление.
При наличии неисправностей реле выключается, а после возвращения параметров в норму включается без задержек.
В течение всего срока эксплуатации прибор ведет контроль уровня напряжения и выключает нагрузку в случае:
- пропадания любой фазы;
- перекоса фазы;
- нарушения чередования фаз.
Дифференциальный образец
Технология базируется на принципе сравнения объемов электроэнергии до и после взаимодействия с потребляющей техникой. Объем электричества будет одинаковым на всем участке цепи при нормальном режиме работы. При замыкании в трансформаторе уровень мощности будет меняться. Команда на отключение проблемного участка цепи подается методом замыкания контактов.
Схема реле максимального тока
Дифференциальные реле максимального тока или агрегаты на 24 вольта часто используются в быту и на производстве. Они могут быть установлены в качестве средств защитного отключения и упреждать утечки энергии в потребляющей технике и проводниках. Во время прямого контакта человека с корпусом электроприбора удар электричеством может быть предотвращен.
Схема подключения токового реле
Реле тока, которое отключает неприоритетные цепи, если допустимый порог электропотребления превышен, применяют, когда сеть питает минимум двух потребителей, работающих автономно. Когда они подключатся одновременно, используя полный ресурс, реле отключит второстепенную линию, а приоритетная цепь останется в рабочем состоянии.
Краткая инструкция по подключению реле тока этого типа:
- Напряжение подключают к нулевому зажиму и к фазе.
- Неприоритетную цепь подсоединяют к соответствующему зажиму и нулю.
- Приоритетную линию подключают к контакту и нулевому проводу.
Для исключения ложных срабатываний при кратковременном росте величины тока, в тандеме с токовым реле применяют реле времени. Оно задерживает отключение цепи.
Корректная подача опорного напряжения в ИУ
Часто полагают, что вход для подачи опорного напряжения высокоомный (поскольку это вход). Так, разработчики могут соблазниться подключить высокоомный источник, например резистивный делитель, к выводу ИУ для опорного напряжения. С некоторыми типами инструментальных усилителей это может привести к значительным погрешностям (рис. 8).
Рис. 8. Неправильное использование простого делителя напряжения для непосредственной подачи опорного напряжения в инструментальный усилитель из трех ОУ
Например, в конструкции популярного ИУ применено три ОУ, соединенных, как показано выше. Общий коэффициент усиления равен:
где R2/R1 = R4/R3.
Коэффициент передачи для входа опорного напряжения равен единице (при подаче напряжения от источника с низким импедансом). Однако в рассматриваемом случае вывод опорного напряжения ИУ подключен к простому делителю напряжения на резисторах. Это приводит к разбалансу схемы вычитания и нарушает коэффициент деления делителя напряжения. В свою очередь, это снижает коэффициент подавления синфазного сигнала в ИУ и точность его коэффициента усиления. Однако если бы внутренний резистор R4 был нам доступен, то при снижении его сопротивления на величину, равную параллельному соединению двух резисторов делителя напряжения (здесь 50 кОм), схема вела бы себя так, будто к изначальному сопротивлению резистора R4 подключен низкоомный источник, равный (в данном примере) половине напряжения питания, и точность схемы вычитания была бы сохранена.
Этот подход невозможен, если ИУ — интегральная схема в закрытом корпусе. Еще одна проблема заключается в том, что температурные коэффициенты сопротивления (ТКС) внешних резисторов делителя отличаются от ТКС резистора R4 и других резисторов схемы вычитания. И, наконец, такой подход не позволяет регулировать значение опорного напряжения. Если, с другой стороны, попытаться использовать в делителе напряжения низкоомные резисторы, чтобы влияние их добавленного сопротивления было бы пренебрежимо малым, то ток потребления от источника питания и рассеиваемая мощность схемы увеличатся. В любом случае, такой метод «грубой силы» не приносит успеха.
На рис. 9 показано лучшее решение — применение буфера на ОУ с малым потреблением энергии между делителем напряжения и входом опорного напряжения ИУ. Это ликвидирует необходимость подбора сопротивления и проблему резисторов с разными ТКС, а также дает возможность легко регулировать опорное напряжение.
Рис. 9. Подача опорного напряжения на ИУ с низкоимпедансного выхода ОУ