Микросхема LM324 – счетверенный операционный усилитель
Если в схеме нужно использовать сразу несколько операционных усилителей, а особых требований например по частоте, выходному току и т.п. нету, то LM324 прекрасный кандидат: в 14 выводном корпусе размещены 4 операционных усилителя общего применения с общим питанием.
Операционные усилители серии LM324 выпускаются несколькими производителями и параметры микросхем от производителя к производителю могут отличаться. Так же разные производители выпускают модификации серии на разные температурные диапазоны и в разных корпусах:
Например все эти операционные усилители модификации LM324: LM324A, LM324E, LM124, LM224, LM2902, LM2902E, LM2902V, NCV2902.
↑ 3. Настройка
В качестве термодатчика был выбран терморезистор ММТ-4 номиналом 6,2 кОм. Во-первых, он был в наличии и не дефицитен, во-вторых, имеет герметичную конструкцию, в третьих, номинал в единицы кОм является оптимальным.
Далее пришлось снова брать спиртовой термометр, стакан с горячей водой, окунать в неё терморезистор и записывать зависимость сопротивления от температуры. Сразу выяснилось, что изоляция выводов резистора от воды совершенно необходима, иначе результаты будут непредсказуемы. Вот таблица с результатами моих измерений электрически изолированного от воды терморезистора.
Обратите внимание, что зависимость нелинейна, но с учетом узкого температурного диапазона, этой нелинейностью при изготовлении шкалы можно пренебречь
Отечественный или китайский терморегулятор для инкубатора – обзор
Инкубатор можно приобрести в готовом виде со всеми необходимыми опциями. Специально для тех, кому необходимы индивидуальные параметры, на рынке имеется широкий ассортимент универсальных или специализированных контроллеров, решающих одну узкую или целый спектр задач.
Ниже рассмотрим готовые предложение российских и китайских терморегуляторов для инкубаторов.
Отечественные / из стран СНГ
Контроллер «Мечта-1» . Производится компанией AKIP-DON (Украина). Чувствительность термоэлемента (погрешность) – до 0,1°C. Диапазон температур – 0-85°C. Работает в цепях с переменным напряжением 220В, с силой тока – до 16 А. помимо температуры, контроллер может управлять уровнем влажности (от 10 до 100%) и поворотом лотков с яйцами (за счет таймера работы и простоя).
Терморегулятор для инкубатора «Золушка». Устройство поставляется в комплекте готового инкубатора, хотя многие магазины предлагают приобрести термостат отдельно. Всего существует две модификации: для работы от сети 220В и комбинированные (как от 220 В, так и от постоянного тока 12 В). Подойдет такой регулятор температуры и к другим отечественным инкубаторам, таким как «Ястреб», «Золушка», «Наседка» и т.п. Погрешность измерения температуры – 0,2°C.
Терморегулятор ЦТР-1 С. Отличается невысокой ценой и простой настройкой. Выставляется только требуемая температура, порог отключения ниже на 0,2°C. Работает с активной нагрузкой, например, с тэнами или нагревателями мощностью до 1 кВт. Дополнительных опций кроме нагрева – нет.
Терморегулятор для инкубатора на Алиэкспресс
RINGDER RC-113M с PID-контроллером . Интересное устройство с приемлемой ценой за такой функционал. Работает от сети переменного тока 220В. В настройках можно выставить порог включения и отключения отдельно. Точность измерения внешним датчиком – до 0,1°C. Контроллер работает в соответствии с PID алгоритмом (плавное управление током).
KETOTEK F0004 DC 12 В . Терморегулятор с цифровым дисплеем и точностью измерения в 0,1°C. Работает только в цепи с питанием постоянным током с напряжением 12 В (требуется отдельный преобразователь при питании от сети переменного тока 220 В). В комплекте поставляется внешний термодатчик. Корпус устройства отсутствует (предоставляется в виде печатной платы со всеми необходимыми элементами и разъемами подключения), что и обусловливает низкую цену агрегата.
Как сделать простой терморегулятор для инкубатора своими руками по схеме
В сети Интернет можно встретить много различных схем сборки и подключения терморегулятора к инкубатору. Выбор требуемой конфигурации зависит от предполагаемого объема загрузки, типа яиц (их требовательности к температурному и влажностному режиму, и т.п.) и возможностей самого владельца.
Ниже приведем наиболее простую схему без использования микросхем и т.п.
Список всех элементов для простоты поиска по магазинам радиодеталей:
- R1 (резистор на 2кОм);
- R2 (терморезистор ММТ-13, ММТ-1, ММТ-9, КМТ-12 с сопротивлением от 1 до 10 кОм);
- R3 (переменный резистор на 6,8 кОм);
- R4 (резистор 560 Ом);R5 (резистор 36 кОм);
- V1 (биполярный транзистор КТ315Б);
- V2 (транзистор МП25Б);
- V3 (стабилитрон Д814В);
- V4 (выпрямительный диод Д226Б);
- C1 (конденсатор оксидный полярный 20 мкФ до 400 В);
- C2 (конденсатор оксидный полярный 10 мкФ до 30В);
- F1 (тугоплавкий предохранитель на 0,5 А);
- K1 (электромагнитное реле РЭС-15 — РС4.591.003).
Перед походом в радиолавку стоит уточнить аналоги всех обозначенных элементов.
ВИДЕО ИНСТРУКЦИЯ » alt=»»> Работа терморегулятора выполняется следующим образом:
ПРОДОЛЖЕНИЕ ВИДЕО » alt=»»> Ввиду того, что реле РЭС-15 может работать только с небольшим током коммутации (до 0,25 А), для использования с мощными нагревателями необходимо выполнить подключение промежуточного реле.
Как сделать терморегулятор оборотов кулера на 12В, инструкция:
Делать терморегулятор будем по этой схеме:
Терморегулятор оборотов кулера своими руками
Транзистор устанавливаем маркировкой вверх.
Терморегулятор оборотов кулера своими руками
К крайним выводам припаиваем подстроечный резистор, он будет регулировать температуру срабатывания терморегулятора. Третья ножка резистора просто загнута, она не используется.
Терморегулятор оборотов кулера своими руками
Припаиваем к левой ножке транзистора IRFZ44N терморезистор.
Терморегулятор оборотов кулера своими руками
Ко второму выводу терморезистора припаиваем плюсовой вывод кулера.
Терморегулятор оборотов кулера своими руками
Минусовой вывод кулера припаиваем к средней ножке транзистора.
Терморегулятор оборотов кулера своими руками
Теперь присоединяем провода питания для работы терморегулятора для кулера, плюс 12 В подаём на левую ножку транзистора, а минус на правую.
Терморегулятор оборотов кулера своими руками
Устройство готово к работе, теперь можно например, взяться пальцами за терморезистор и крутя подстроечный резистор добиваемся срабатывания терморегулятора, в это время начинает крутиться кулер.
Терморегулятор оборотов кулера своими руками
Терморегулятор оборотов кулера своими руками
Подстроечным резистором можно добиться срабатывания схемы при гораздо большем нагреве, всё подстраивается под свои нужды. При необходимости можно выставив необходимый режим выпаять подстроечный резистор, измерить его выставленное ранее сопротивление и впаять вместо него постоянный резистор близкого номинала к измеренному значению.
Источник
2 Простой электронный прибор
Для более точной работы автоматического регулятора температуры без электронных комплектующих не обойтись. Самые простые терморегуляторы работают по схеме на основе реле.
Основными элементами такого устройства являются:
- пороговая схема;
- индикаторное устройство;
- датчик температуры.
Схема самодельного термостата должна реагировать на повышение (понижение) температуры и включать исполнительное устройство или приостанавливать его работу. Для реализации самой простой схемы следует использовать биполярные транзисторы. Термореле сделано по типу триггера Шмидта. Терморезистор будет выполнять функцию датчика температуры. Он будет изменять сопротивление в зависимости от температуры, которая настраивается в общем блоке управления.
Но кроме терморезистора, термодатчиком могут выступать:
- термисторы;
- полупроводниковые элементы;
- термометры сопротивления;
- биметаллические реле;
- термопары.
Перед началом работ нужно определиться с температурным диапазоном устройства, а также его мощностью. Нужно учитывать, что для холодильника будут применяться одни комплектующие, а для отопительного оборудования — другие.
Необходимость установки
При установке важно подобрать правильное освещение, нужный состав почвы и рассчитать количество увлажнения. Чтобы растения и цветы выросли быстро, позаботьтесь о вентиляции
Нужный климат можно получить благодаря сочетанию многих факторов, но в случае неправильной установки температурного режима в помещении есть вероятность остаться совсем без урожая.
Думать о том, каким образом будут обогреваться теплицы, необходимо во время их планирования. В прошлом на это уходило много сил и времени, но для обеспечения тепла у новейших аппаратов есть регулировка температуры — термостат, который работает почти без человеческого вмешательства.
Вряд ли в век высоких технологий человек захочет самостоятельно устанавливать ширмы или шторы для затенения, подключать вентиляцию и обогреватели. Также больших хлопот стоит каждую ночь отслеживать уровень температуры в оранжерее.
Автоматический термостат — незаменимая вещь для дачников, которые установили теплицы в загородных домах и приезжают туда только по выходным. С помощью регулятора температуры для теплицы, который употребляет не так много электроэнергии, можно не переживать о том, что ваши растения замерзнут.
Во время сильных холодов бывает сложно сохранять необходимые условия. Без тепла ваши посадки просто погибнут в помещениях, покрытых обычной пленкой или полиэтиленом. Такие материалы не сохраняют нужный уровень тепла.
Стеклянная теплица может быть неустойчива к морозам, при контакте со снегом, льдом (толстый слой того или другого) стекло способно треснуть, разбиться. Но при нормальных условиях можно собрать огромное количество урожая.
При помощи регулировки аппарата настраивается средняя температура, которая будет оптимальной для растений в парнике. Наиболее подходящая температура составляет от +14 до +26°C.
Для почвы очень важно, чтобы ее температура была одна и та же в любое время суток. Поэтому так важно купить термостат или сделать его для теплицы своими руками
Очень важно расположить нагревательные приборы как можно ниже, чтобы в процессе прогревался пригрунтовый воздух.
Биотопливо лучше всего подходит для поддержания тепла в помещении, но для быстрого подъема температуры грунта может помочь теплая вода, нагретая до 30°C. В систему включают термостат, регулирующий эту величину. Благодаря этому корневая система будет развиваться.
Схема регулятора скорости вентилятора для уменьшения шума
В отличии от схемы, которая замедляет обороты вентилятора после старта (для уверенного запуска вентилятора), данная схема позволит увеличить эффективность работы вентилятора путем увеличения оборотов при повышении температуры датчика. Схема также позволяет уменьшить шум вентилятора и продлить его срок службы.
Необходимые для сборки детали:
- Биполярный транзистор (VT1) — КТ815А.
- Электролитический конденсатор (С1) — 200 мкФ/16В.
- Переменный резистор (R1) — Rt/5.
- Терморезистор (Rt) — 10–30 кОм.
- Резистор (R2) — 3–5 кОм (1 Вт).
Настройка производится до закрепления термодатчика на радиаторе. Вращая R1, добиваемся, чтобы вентилятор остановился. Затем, вращая в обратную сторону, заставляем его гарантированно запускаться при зажимании терморезистора между пальцами (36 градусов).
Если ваш вентилятор иногда не запускается даже при сильном нагреве (паяльник поднести), то нужно добавить цепочку С1, R2. Тогда R1 выставляем так, чтобы вентилятор гарантированно запускался при подаче напряжения на холодный блок питания. Через несколько секунд после заpяда конденсатора, обороты падали, но полностью вентилятор не останавливался. Теперь закрепляем датчик и проверяем, как все это будет крутится пpи реальной работе.
Rt — любой терморезистор с отрицательным ТКЕ, например, ММТ1 номиналом 10–30 кОм. Терморезистор крепится (приклеивается) через тонкую изолирующую прокладку (лучше слюдяную) к радиатору высоковольтных транзисторов (или к одному из них).
Видео о сборке регулятора оборотов вентилятора:
Источник
Lm2576t adj схема включения с дополнительным транзистором
Лабораторный блок питания на базе импульсного стабилизатора LM2576T-ADJ с регулировкой выходного напряжения 0-30В и тока 0-3А , с функцией ограничения выходного тока и индикацией режима ограничения при помощи светодиода.
Все мы очень давно знакомы с линейными стабилизаторами напряжения, особенно с трёхвыводными в корпусах TO-220 типа 7805, 7812, 7824 и LM317. Они недорогие и легко доступны. Их малошумящая и быстрая переходная характеристика делают их идеальными для многих применений. Но им присущ один недостаток — неэффективность (очень низкий КПД). Например, при подаче на стабилизатор 7805 напряжения 12В и при токе нагрузки 1А, на стабилизаторе будет рассеиваться мощность 7Вт при мощности нагрузки 5Вт. Поэтому требуется большой радиатор для охлаждения самого стабилизатора. Когда важна эффективность, например при работе от батареи, необходимо выбирать импульсный стабилизатор. Фактически, самое современное оборудование использует импульсные источники питания и импульсные регуляторы или стабилизаторы. Но много радиолюбители уклоняются от импульсных регуляторов, поскольку, например, использование популярной LM3524 требует большого количества внешних деталей и внешнего коммутационного транзистора. Кроме того строгие требования для катушки индуктивности. Как выбрать правильно, и где их взять? К счастью, более новый импульсный регулятор типа LM2576 от National Semiconductor’s позволяет собирать импульсный стабилизатор с высоким КПД так же легко, как и с помощью 7805 и т.п. Микросхема выпускается в пятивыводном привычном корпусе типа TO-220 и корпусе ТО-263 для поверхностного монтажа. Диапазон питающих напряжений 7-40В постоянного тока. КПД — до 80%. Выходной ток — до 3А и на несколько напряжений (3.3V, 5 V, 12V, 15V), а также и в версии регулируемого выходного напряжения, что представляет для нас особенный интерес. При проектировании с использованием импульсного стабилизатора получается малый размер платы, кроме того необходим радиатор с малой площадью поверхности, обычно не более 100 см. кв. Частота преобразования стабилизатора 52 кГц. Есть серия высоковольтных стабилизаторов с маркировкой HV с диапазоном входных напряжений 7-60В и возможностью регулировки выходного напряжения до 55В.
Приведенная на рисунка схема лабораторного блока питания на базе импульсного стабилизатора LM2576T-ADJ с регулировкой выходного напряжения в диапазоне 0-30В и возможностью ограничения тока нагрузки в диапазоне 0-3А найдена в сети Интернет и подробно рассмотрена здесь на форуме сайта http://vrtp.ru. Кстати, замечательный сайт, рекомендую к посещению Свечение светодиода указывает на включение режима ограничения выходного тока, что очень удобно при проверке и ремонте радиоэлектроных устройств.
Чтобы облегчить режим работы стабилизатора 7805 (в корпусе ТО-92) и для повышения верхнего предела напряжения Uвх, последовательно с U2 установлен стабилитрон VD1. Схема регулирования тока и напряжения собрана на сдвоенном компараторе LM393. На первой половинке U3.1 собран регулятор напряжения, а на второй половинке U3.2 собран регулятор тока. На транзисторном ключе Q1 собран узел индикации включения режима ограничения выходного тока. Номинальный ток дросселя необходимо выбирать не менее тока нагрузки. Возможно пиатние слаботочной части схемы от отдельного источника напряжения с подачей его непосредственно на вход U2, при этом стабилитрон VD1 не устанавливается. Хорошо работает с низкоомной нагрузкой. Без изменения схемы, в ней можно применять импульсные стабилизаторы LM2596T-ADJ с частотой преобразования 150 кГц и диапазоном питающих напряжений 4,5-40В. Выходной ток — до 3А. КПД — до 90%.
Размеры печатной платыы блока питания 72х52 мм, расстояние между осями переменных резисторов 30 мм.:
Видео работы стабилизатора (без слов) приведено ниже. Поскольку сборка и проверка устройства велась в г. Донецке в то время, когда за окном рвались снаряды, то не было никакой охоты ничего рассказывать. Да и собирать его не хотелось, но нужно было как-то отвлечься от действительности. Надеюсь Вы меня поймёте.
Стоимость печатной платы с маской и маркировкой: закончились
Стоимость набора деталей с печатной платой для сборки блока питания (без радиатора): временно нет в наличии
Стоимость собранной и проверенной платы блока питания (без радиатора): временно нет в наличии
Краткое описание, схема и перечень компонентов набора здесь >>>
Для покупки печатных плат, наборов для сборки и готовых собранных блоков обращайтесь сюда >>> или сюда >>>
Всем удачи, мирного неба, добра, 73!
Управление электрокалорифером
Управление нагревателем обычно осуществляется ступенчато, сначала включается первая ступень нагревателя, затем последовательно включаются/выключаются следующие ступени, так называемые опорные. Соотношение между временем включения и отключения зависит от необходимости в нагреве. Выходная мощность электрического нагревателя вычисляется по ПИ-закону, регулируемая величина — по датчику температуры приточного воздуха.
Сигнал управления устройством, непосредственно регулирующим мощность, в качестве которого могут применяться тиристорные регуляторы, твердотельные реле, обычные контакторы, может быть либо аналоговый с напряжением 0-10V, либо дискретный.
При включении нагрева, сначала включается первая ступень и за счет плавного изменения мощности, которое происходит благодаря управляющему сигналу 0-10V, обеспечивается точное поддержание требуемой температуры. Если мощности первой ступени не хватает, то включается вторая ступень, а производительность первой ступени сбрасывается и начинает регулирование заново. Если не хватает мощности двух ступеней, то включается третья ступень и т.д. При необходимости снижать температуру, основное регулирование осуществляется с помощью первой ступени, остальные ступени выключаются по мере надобности.
Для защиты от частого включения ступеней мощности, используется гистерезис, равный примерно 10 % мощности. То есть вторая ступень включится при значении выходной мощности 105 %, выключится при снижении до 95 % (205 % и 195 % для третьей ступени, соответственно).
Общий алгоритм работы системы
Запуск системы осуществляется следующим образом. В режиме ожидания зимой система выключена и перед запуском никаких предварительных действий не требуется. В этом, кстати, заключается еще одно отличие от систем водяного обогрева, где перед запуском необходимо прогревать калорифер до заданной температуры.
При переходе в режим Работа, включается ТЭН калорифера и начинается плавное увеличение мощности нагрева. Одновременно с включением калорифера, открывается воздушная заслонка. Затем, с некоторой задержкой, запускается вентилятор приточного воздуха. При этом уставка температуры начинает плавно снижаться до номинального значения.
Переход установки в дежурный режим должен сопровождаться продувкой электронагревателя. Во время продувки, питание с электронагревателя снимается, но вентилятор должен продолжать работать в течении некоторого времени, для охлаждения калорифера и только после этого выключаться. Иначе, если не соблюдать это правило, ТЭН нагревателя может просто выйти из строя.
Такой же алгоритм действий и при срабатывании защиты от перегрева — сначала должен выключаться нагрев, затем идет продувка калорифера вентилятором и только после этого отключение вентилятора.
Также должна быть предусмотрена блокировка работы электронагревателя при выключенном приточном вентиляторе. В случае резервирования вентиляторов, которое позволяет продолжать работу вентустановки, используя резервный вентилятор, в случае отказа основного, переключение происходит при поступлении сигнала аварии с работающего вентилятора (термоконтакт, авария ПЧ) либо по сигналу с прессостата. Если же и в случае резервного приходит сигнал об аварии, установка выключается.
Для вентиляторов должны быть предусмотрены следующие виды защит:
- Сигнал о перегрузки электродвигателя, по срабатыванию встроенного термоконтакта.
- Отказ преобразователя частоты, при этом контроль электрических параметров двигателя осуществляется встроенными функциями самого ПЧ.
- Обрыв ремня. Фиксируется по срабатыванию датчика перепада давления на вентиляторе.
При срабатывании защиты электродвигателя вентустановка переходит в дежурный режим и в журнал контроллера записывается событие «Перегрузка».
При поступлении сигнала «Отказ ПЧ» установка также переходит в дежурный режим, снимается сигнал подачи питания на преобразователь частоты, и в журнал записывается событие «Отказ ПЧ». В системах с резервированием вентиляторов вместо перехода в дежурный режим контроллер включает резервный вентилятор.
При поступлении сигнала с пожарного датчика, установка переходит в дежурный режим. При этом останов происходит сразу, без продувки электрокалорифера.
Работа остальных элементов вентустановки, в принципе, ничем не отличается от работы в установках с водяным калорифером, поэтому в данной статье их можно не рассматривать.
Самодельный терморегулятор
При изготовлении терморегулятора для погреба своими руками можно воспользоваться биметаллическим датчиком. Однако механическое прерывание работы нагревателя менее надежно, чем электронная коммутация. Собрать терморегулятор можно на обычной микросхеме.
В зависимости от фантазии создателя и объема задач будущего терморегулятора, потребуется разный набор компонентов. Однако можно выделить несколько основных.
Материалы для создания терморегулятора
При конструировании рабочего устройства обычно используют следующие элементы:
- стабилитрон – диод, односторонне пропускающий ток;
- термический резистор – сопротивление меняется в зависимости от колебаний температуры;
- переменный резистор – регулирует температуру.
Настройка прибора на температуру срабатывания вручную – сложный этап. Облегчить его можно покупкой готового сенсора. У такого датчика температуры воздуха для погреба цифровой сигнал будет подаваться на микроконтроллер.
Контроль температуры в помещении
Для поддержания оптимальной температуры при помощи самодельного или заводского прибора можно выбрать несколько способов:
- Включение либо отключение нагревателя. Способ простой и эффективный, но подходит не всегда. Из-за ошибок в регулировке могут возникнуть колебания температуры, опасные для хранящихся запасов.
- Контроль режима работы. Меняется либо степень нагрева элемента, либо скорость работы кулера (при использовании тепловентилятора).
Обычно используют первый метод – устройства с подобным принципом работы дешевле и надежнее.
Схема терморегулятора
Полностью понять принцип работы устройства либо собрать его самому поможет электрическая схема. Примеры можно найти в технических руководствах простейших терморегуляторов, например, LM335. Несмотря на то, что прибор был разработан довольно давно, схемы остаются рабочими. Достаточно взять их за основу и дополнять необходимыми узлами.
Схема работы устройства
Принципиальная электрическая схема – это базовая схема, скорее всего, при самостоятельном конструировании к ней добавятся другие элементы, например, устройства для индикации работы. При понимании работы узлов и достаточном знании радиомеханики можно модернизировать систему, например, установить термореле для включения нагревателя.
Печатная плата терморегулятора
Собрать прибор можно на печатной плате. Материал – односторонний стеклотекстолит. Плата помещается в любой подходящий корпус, терморезистор выносится наружу. Калибровку срабатывания реле производят при помощи сопротивлений R2 и R1, выбирая угол вращением ручки.
Схема печатной платы терморегулятора
Работа компаратора
На схеме терморегулятора можно заметить ключевой элемент LM311 – компаратор, имеющий прямой и инверсный входы, а также два выхода. Он действует следующим образом:
- Напряжение на прямом входе выше – на выходе устанавливается высокий уровень, транзистор или реле включает нагревательный элемент.
- Напряжение выше на инверсном – устанавливается низкий уровень, нагрев отключается.
Термодатчик подключается к инверсному входу, поэтому напряжение на нем будет повышаться по мере роста температуры.
Как соединить устройство с нагревателем
Подключать терморегулятор к нагревательному прибору нужно по схеме, указанной в технической документации. Обычно сложностей возникнуть не должно, так как учитываются все возможные варианты.
Если прибор самодельный, нужно лишний раз убедиться, что конструкция надежная и выполнена правильно. Элементы должны быть тщательно защищены от воздействия влаги, которой не избежать в подвале
Особое внимание стоит уделить качеству пайки и отсутствию замыкания дорожек
Правильный выбор или сборка терморегулятора позволит забыть о проблеме переохлаждения или слишком высокой температуры в погребе. Достаточно настроить контрольные значения и следить за состоянием устройства, все остальное сделает прибор.