Схема с импульсным реле
Включение освещения с двух мест и более, может быть организовано при помощи так называемого импульсного реле. Такой вариант еще более прост в реализации.
Принцип работы импульсного реле
Прежде чем разбираться со схемой подключения такого реле, давайте разберемся, а как это, собственно говоря, работает.
Понимание процесса работы значительно облегчит подключение, и исключит вероятность ошибки:
Обычное реле имеет катушку и разомкнутый магнитопровод. При подаче напряжения на катушку, магнитопровод подтягивается и становится единым целым. К магнитопроводу жестко прикреплены контакты, которые при подтягивании магнитопровода тоже подтягиваются и замыкаются с неподвижными контактами. Если бы к этим контактам была бы подключена лампа, то она загорелась бы.
Упрощенная схема работы обычного реле
Но в обычном реле, как только исчезает напряжение на катушке, магнитопровод, а соответственно и контакты, возвращаются в исходное положение – отпадают. Соответственно наша лампа погаснет.
Импульсное реле
- В импульсном реле все немного не так. При подаче напряжения на катушку, магнитопровод подтягивается и замыкает контакты. При этом контакты фиксируются в данном положении. Поэтому даже при исчезновении напряжения на катушке, они остаются в таком положении.
- Для изменения положения контактов, необходимо вновь подать напряжение на катушку. Тогда контакты разомкнутся и зафиксируются в разомкнутом положении.
Кнопка для управления реле РИО-1
Кнопка для управления РИО-1 тыльная сторона
Но от кнопок питается только реле. Для подачи напряжения на лампы используется силовой контакт реле. Поэтому к нему необходимо подвести собственный фазный провод, который при замыкании контактов подаст напряжение на светильники.
Схема подключения импульсного реле
Для импульсного реле, схема управления освещением с двух мест или большего их числа, практически не отличается. Поэтому, если вам необходимо управлять освещением из трех, пяти или десяти мест, просто добавляете количество кнопок в схему.
Итак:
- Прежде всего давайте разберемся с подключением самого реле. Обычно оно имеет аж шесть контактов. Их название у разных производителей отличается. Поэтому мы будем вести рассказ на примере одного из наиболее распространенных реле – РИО-1.
- Сначала давайте соберем его силовую часть. Для этого, от группового фазного провода в распределительной коробке, монтируем провод к контакту «11». При срабатывании реле контакт «11» замкнется с контактом «14». Поэтому, от последнего монтируем провод к нашим светильникам.
Схема подключения импульсного реле РИО-1
- Для подключения светильников нам еще потребуется подключение нулевого и защитного провода. Их мы берем в распределительной коробке, и минуя любые коммутационные аппараты, подключаем к соответствующим контактам светильника. Подключение силовой части окончено.
- Теперь подключаем управление реле РИО-1. В нашем случае для этого нам потребуется две кнопки. От группового фазного провода в распределительной коробке, монтируем провод к контакту номер один первой кнопки. От нее — к контакту номер 1 второй кнопки.
- От контактов номер два второй кнопки, монтируем провод к контакту номер два первой кнопки. От этого контакта прокладываем провод к реле. Здесь подключаем его к контакту «Y» как на видео.
Схема импульсного реле
Но для создания цепи на катушке нам еще необходимо подключить ее к нулевому проводу. Поэтому, от группового нулевого провода в распределительной коробке, монтируем провод к контакту «N» реле РИО-1. На этом подключение окончено, и после подачи напряжения схема готова к эксплуатации. Согласитесь, в этом нет ничего сложного.
Развитие транзисторных технологий
Несмотря на миниатюрность и экономичность, первые транзисторы отличались высоким уровнем шумов, маленькой мощностью, нестабильностью характеристик во времени и сильной зависимостью параметров от температуры. Точечный транзистор, не являясь монолитной конструкцией, был чувствителен к ударам и вибрациям. Фирма-создатель Bell Telephone Laboratories не оценила перспективы нового прибора, выгодных военных заказов не ожидалось, поэтому лицензия на изобретение вскоре начала продаваться всем желающим за 25 тыс. долларов. В 1951 году был создан плоскостной транзистор, конструктивно представляющий собой монолитный кристалл полупроводника, и примерно в это же время появились первые транзисторы на основе кремния. Характеристики транзисторов быстро улучшались, и вскоре они стали активно конкурировать с электронными радиолампами.
За 30 лет развития, транзисторы почти полностью вытеснили электронные лампы и стали основой полупроводниковых интегральных схем, благодаря этому, электронная техника стала более экономичной, функциональной и миниатюрной. Транзисторы и интегральные схемы на их основе вызвали бурное развитие компьютерной техники. В начале 21-го века транзистор стал одним из самых массовых изделий, производимых человечеством. В 2013 году на каждого жителя Земли было выпущено около 15 миллиардов транзисторов (большинство из них — в составе интегральных схем).
С появлением интегральных микросхем началась борьба за уменьшение размера элементарного транзистора. В 2012 году самые маленькие транзисторы содержали считанные атомы вещества. Транзисторы стали основной частью компьютеров и других цифровых устройств. В некоторых конструкциях процессоров их количество превышало миллиард штук.
Последовательное подключение
При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:
В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.
Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.
После несложных расчетов, мы видим, что не сможем включить в схему параллельного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).
Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.
Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных светодиодных гирляндах применяют смешанное подключение. Что за недостаток, разберем ниже.
Недостатки последовательного подключения
- При выходе из строя хотя бы одного элемента, не рабочей становится вся схема;
- Для питания большого количества led нужен источник с высоким напряжением.
Импульсные реле или проходные выключатели
В длинных коридорах, на лестницах при подъеме с первого на второй этаж, в спальнях, очень удобно включать свет при входе, а выключать его совсем в другом месте (на выходе или возле кровати).
Везде в таких случаях электрики рекомендуют устанавливать проходные (маршевые) и перекрестные выключатели.
В чем же существенная разница между ними и импульсными реле? И почему все отказываются от выключателей?
Как выглядит схема подключения на проходных? Как правило, питание первых делом подводится к ответвительной коробке под потолком, а далее от нее к самим выключателям. Для монтажа применяется трехжильный кабель ВВГнг-Ls 3*1.5мм2.
Чем больше переключателей вы будете ставить, тем больше проводов вам потребуется.
При монтаже проходных двухклавишников, у вас уже появляется 6 контактов, к каждому из которых нужно подвести провода.
А попробуйте такой пучок грамотно соединить в распредкоробке? Не всякий электрик сразу разберется с такой схемой подключения.
При этом каждый из выключателей пропускает непосредственно через себя весь ток нагрузки. А значит при коммутациях или коротком замыкании, вполне возможно выгорание контактов.
Еще одной особенностью проходных является отсутствие фиксированного положения клавиши. Вы не можете по ее состоянию понять, включен выключатель или отключен, как это делается на одноклавишнике.
Это будет напрямую зависеть от других “собратьев”, собранных в одну цепочку. Что не всегда удобно и требует привыкания.
Схема ускоренного включения
Как уже было сказано, если напряжение на затворе относительно истока
превышает пороговое напряжение, то транзистор открывается и
сопротивление сток — исток мало. Однако, напряжение при включении не
может резко скакнуть до порогового. А при меньших значениях транзистор
работает как сопротивление, рассеивая тепло. Если нагрузку приходится
включать часто (например, в ШИМ-контроллере), то желательно как можно
быстрее переводить транзистор из закрытого состояния в открытое и
обратно.
Относительная медленность переключения транзистора связана опять же с
паразитной ёмкостью затвора. Чтобы паразитный конденсатор зарядился
как можно быстрее, нужно направить в него как можно больший ток. А так
как у микроконтроллера есть ограничение на максимальный ток выходов,
то направить этот ток можно с помощью вспомогательного биполярного
транзистора.
Кроме заряда, паразитный конденсатор нужно ещё и разряжать. Поэтому
оптимальной представляется двухтактная схема на комплементарных
биполярных транзисторах (можно взять, например, КТ3102 и КТ3107).
Ещё раз обратите внимание на расположение нагрузки для n-канального
транзистора — она расположена «сверху». Если расположить её между
транзистором и землёй, из-за падения напряжения на нагрузке напряжение
затвор — исток может оказаться меньше порогового, транзистор откроется
не полностью и может перегреться и выйти из строя
Ещё раз о трёх важных моментах
Прямой номинальный ток – главный параметр любого светодиода. Занижая его, мы теряем в яркости, а завышая – резко сокращаем срок службы. Поэтому лучшим источником питания является светодиодный драйвер, при подключении к которому через светодиод всегда будет протекать постоянный ток нужной величины.
Напряжение, приведенное в datasheet к светодиоду, не является определяющим и лишь указывает на то, сколько вольт упадёт на p-n-переходе при протекании номинального тока
Его значение необходимо знать для того, чтобы правильно вычислить сопротивление резистора, если светодиод будет работать от обычного БП.
Для подключения мощных светодиодов важно не только надёжное электропитание, но и качественная система охлаждения. Установка на радиатор светодиодов с мощностью потребления более 0,5 Вт станет залогом их стабильной и продолжительной работы.
Применения
До появления устройств VLSI , интегральные схемы TTL были стандартным методом построения процессоров миникомпьютеров и мэйнфреймов ; например, DEC VAX и Data General Eclipse , а также для такого оборудования, как числовое программное управление станков, принтеров и видеотерминалов. По мере того, как микропроцессоры становились более функциональными, устройства TTL стали важными для приложений «связующей логики», таких как драйверы быстрой шины на материнской плате, которые связывают вместе функциональные блоки, реализованные в элементах СБИС.
Аналоговые применения
Первоначально разработанный для обработки цифровых сигналов логического уровня, инвертор TTL может использоваться как аналоговый усилитель. Подключение резистора между выходом и входом смещает элемент TTL как усилитель с отрицательной обратной связью . Такие усилители могут быть полезны для преобразования аналоговых сигналов в цифровую область, но обычно не будут использоваться там, где аналоговое усиление является основной целью. Инверторы TTL также могут использоваться в кварцевых генераторах, где их аналоговая способность усиления является значительной.
Технические характеристики и принцип работы
При прокладке проводов и установке систем освещения, куда будут встраиваться импульсные реле, нужно учесть ключевые параметры данного устройства. Если прибор не рассчитан на подключаемую нагрузку или сетевое напряжение, то он быстро выйдет из строя. В технической документации к импульсному реле изготовитель указывает особо важные сведения. Среди них:
Выходной ток.
Предельная величина силы тока, которая возникает в катушке во время перемещения якоря. Это относится к электромеханическим приборам.
Норма срабатывания.
Показывается значение, при котором происходит автоматическое срабатывание реле.
Ток при втягивании.
Самая низкая величина силы тока, при котором может возникнуть срабатывание реле.
Возвратный коэффициент.
Это соотношение тока, которое фиксируется на выходе якоря, к токовому значению при втягивании.
При подборе и применении реле надо учитывать максимальную величину установленного производителем расчетного напряжения. То же самое касается и значения силы тока, на которое рассчитано импульсное реле.
В техническом паспорте прибора обычно указывается время срабатывания. Различные реле быстрого типа включаются моментально – за 0.001 – 0.05 сек. Приборы, имеющие относительно долгую задержку – запускаются за одну секунду.
Логические схемы «И» на диодах
Схема И может быть собрана на диодах (рис. 2, б, в). Принцип построения схемы основан на том, что при наличии сигнала 0 хотя бы на одном входе сигнал 0 передается со входа на выход через открытый диод и обеспечивает запирание диодов, на входах которых действуют сигналы 1.
Рис. 2. Схема И на диодах
На рис. 2, б приведена схема для положительной логики. Сигнал 0 (ен) по абсолютной величине больше сигнала 1 (ев). Если на вход В подается сигнал 0, например 10 В, а на входах А и С действуют сигналы 1, например 2, то открытым окажется диод с наиболее низким потенциалом катода, т.е. диод, присоединенный ко входу В, а два других диода будут закрыты. Напряжение сигнала 0 (10 В) выделяется на резисторе Rн, с которого снимается сигнал выхода.
На рис. 2, в приведена схема И для отрицательной логики. Здесь сигнал 0 также по абсолютному значению больше сигнала 1, однако сигналы — положительные, поэтому полярность напряжения сигналов на входах изменена. При наличии сигнала 0 на входе В и сигналов 1 на остальных входах открыт диод, присоединенный ко входу В. Два других диода закрыты высоким положительным потенциалом на катодах. На выходе возникает сигнал — 0. При наличии сигналов 1 на всех входах все диоды открыты и на выходе — сигнал 1.
Расчёт ограничительного резистора
Взглянув на вольт-амперную характеристику светодиода, становится понятно: насколько важно не ошибиться при расчёте ограничительного резистора
- U – напряжение питания, В;
- ULED – прямое падение напряжения на светодиоде (паспортное значение), В;
- I – номинальный ток (паспортное значение), А.
Полученный результат следует округлить до ближайшего номинала из ряда Е24 в большую сторону, а затем рассчитать мощность, которую должен будет рассеивать резистор:
R – сопротивление резистора, принятого к установке, Ом.
Более подробную информацию о расчётах с практическими примерами можно получить в статье о расчете резистора для светодиода. А тот, кто не желает погружаться в нюансы, может быстро рассчитать параметры резистора с помощью онлайн-калькулятора.
Схема подключения для трех источников света при автоматическом управлении освещением, не требующая фиксации выключателей
Провод оранжевого цвета отвечает за фазу коммутации и должен подсоединяться к выходу, обозначенному Y, а затем идти через 14 клемму на лампы. Для соединения нулевой фазы провод ведут на клемму N, а потом — на светильник. Для выключения света нужно нажать на любой выключатель, чтобы осуществить кратковременную коммутацию провода фазы, выходящего на клемму Y. После этого произойдет размыкание контактов 11-14. При последующем нажатии схема действия будет такой же, но разомкнутые контакты поменяют свое положение, что приведет к включению света.
Недостатком такого подключения является то, что при коротком замыкании сложно будет найти повреждение. Сделать это легче при использовании второго варианта подключения импульсного реле.
Какие бывают
Импульсные реле бывают двух типов — электронные и электромагнитные.
В основе первых лежит специальная плата с микроконтроллером и симистором, а вторых — катушка, работающая на электромагнитном принципе, и имеющая классический переключающий механизм. Рассмотрим каждый из них отдельно.
Электромеханические
Особенность импульсных электромеханических реле состоит в потреблении электричества только в момент срабатывания контактной группы. Благодаря блокирующему механизму, повышается надежность прибора, и снижается потребление электроэнергии.
Такая система надежно защищает от бросков напряжения, которые могут привести к ошибочным срабатываниям оборудования.
Конструктивно импульсные реле, работающие на электромеханическом принципе, состоят из следующих элементов:
- катушка;
- контактная группа;
- кнопки включения / выключения.
Электромагнитные реле отличаются большей надежностью и удобством применения. Им не страшны помехи в сети, и отсутствуют строгие требования к месту монтажа.
Электронные (цифровые)
В основе таких импульсных реле лежит электрическая схема на базе микроконтроллеров. Такое конструктивное решение позволяет «прошить» больший функционал (например, таймер отключения).
Наличие дополнительных опций позволяет использовать реле при организации сложных осветительных систем.
Конструктивно состоят из следующих элементов:
- Микроконтроллеры.
- Катушка-электромагнит.
- Полупроводники.
Преимуществом электронных реле является большей выбор, многофункциональность. Они могут использоваться для сетей с разным напряжением, а именно 12, 24, 130 или 220 В.
Выпускаются с разным типом крепления: DIN для электрических щитков или для классического монтажа.
Из недостатков — меньшая надежность и более высокие требования к проводке. В процессе монтажа рекомендовано использовать экранированный кабель для защиты от помех.
Видео
Ошибки подключения могут повлечь за собой неприятные последствия, от банальной поломки светодиодов, до нанесения себе повреждений. Поэтому, настоятельно рекомендуем посмотреть видео, где разбирают часто встречающиеся ошибки.
Заключение
Прочитав статью можно сделать вывод, что все светодиоды, вне зависимости от рабочего напряжения, всегда подключаются параллельно или последовательно — школьный курс физики. Еще стоит помнить, что никакой светодиод не подключается напрямую в сеть 220В, всегда нужно использовать защитные элементы в схеме подключения. Тип применяемых защитных элементов зависит от вида подключаемого светоизлучающего диода.
Инфpaкрасное и радиоволновое управление светом с пульта
Инфpaкрасное управление с ПДУ используется реже, чем системы, работающие по радиоканалу. ИК пульты доступны и просты в использовании, но у них есть ограничение по видимости. Прибор будет работать только на расстоянии 10 м в зависимости от мощности передатчика сигнала.
Система, работающая по радиоканалу, состоит из аккумулятора, контроллера ДУ и пульта автоматического управления. Пульт подает на сенсор импульс, от которого свет включается или выключается. Контроллер устанавливается в стену, осветительный прибор или под натяжным потолком. Спектр действия таких устройств широк, можно управлять даже из другой комнаты.
Выбор инфpaкрасных датчиков движения
В инфpaкрасном датчике находятся микросхемы, позволяющие устройству реагировать на инородные объекты. Сенсор очень чувствителен, и быстро откликается на новое движение. В системе используется несколько линз, от 20 до 60 штук. Чем их больше, тем выше чувствительность. Обычно у таких приборов зона охвата выше.
Подключение инфpaкрасного датчика движения
Для управления светильниками дистанционный блок управления осветительным прибором включается в разрыв цепи. С помощью этого блока производится включение и выключение лампы при помощи обычного ПДУ от телевизора.
Управление освещением без выключателя состоит из нескольких частей – самого светильника и инфpaкрасного детектора. Сон присоединяется к блоку питания – схема его подключения указывается в инструкции. На длинных участках (например, вдоль дороги во дворе и на улице) может использоваться несколько инфpaкрасных датчиков, подключенных параллельно.
Вопросы и практические советы
Имеет ли значение, какой терминал (A1) или (A2) будет подключать провод фазы управления?
Не имеет значения. Для катушки реле разница в потенциале важна на уровне 220 В, если один провод (который нейтраль) прикрутить к одному терминалу, а фазовый провод (на котором есть потенциал) к другому — между ними будет нормальное напряжение и реле заработает.
Может ли отличаться напряжение на клеммах управления (A1, A2) и на контактных клеммах (1, 2)?
Да. Каждое реле предназначено для определенного управляющего напряжения. В нашем случае это 220 В ( A1, A2 ). Контакт, соединяющий клеммы ( 1, 2 ), является так называемым беспотенциальным. Любой потенциальный уровень задается на терминале ( 1 ), он будет передан на терминал ( 2 ), когда контакт закроется. Благодаря этому мы можем, например, управлять цепью питания 12 В с кнопками, которые передают управляющий сигнал 220 В.
Каждое бистабильное реле подключается так же?
Да, но всегда проверяйте схему подключения и руководство по эксплуатации, прежде чем приступать к сборке. Не каждый производитель использует ту же методологию, количество соединений и стандарт описания. Однако обозначение терминалов ( A1 ) и ( A2 ) популярно практически для всех реле.
В общем управление светом с помощью бистабильного реле, безусловно, стоит рассмотреть. С точки зрения управления из большего числа мест, это более простое решение, чем классическое (клавишными переключателями). К тому же оно имеет большие возможности по беспроводному контролю.
Сравнение с электронными лампами
До разработки транзисторов вакуумные (электронные) лампы (или просто «лампы») были основными активными компонентами электронного оборудования. По принципу управления наиболее родственен электронной лампе полевой транзистор, многие соотношения, описывающие работу ламп, пригодны и для описания работы полевых транзисторов.
Радиолампа 6Ф12П
Многие схемы, разработанные для ламп, стали применяться для транзисторов и получили развитие, поскольку электронные лампы имеют только один тип проводимости — электронный, а транзисторы могут иметь как электронный, так и дырочный тип проводимости. Так называемый эквивалент воображаемой «позитронной лампы». Это привело к широкому использованию комплементарных схем (КМОП).
Преимущества
Основные преимущества, которые позволили транзисторам заменить своих предшественников (вакуумные лампы) в большинстве электронных устройств:
- малые размеры и небольшой вес, что способствует развитию миниатюризации электронных устройств;
- высокая степень автоматизации и групповой характер операций на многих этапах технологического процесса изготовления, что ведёт к постоянному снижению удельной стоимости при массовом производстве;
- низкие рабочие напряжения, что позволяет использовать транзисторы в небольших по габаритам и энерговооружённости электронных устройствах с питанием от малогабаритных электрохимических источников тока;
- не требуется дополнительного времени на разогрев катода после включения, что позволяет достичь почти мгновенной готовности к работе транзисторных устройств, сразу после подачи питания;
- малая, по сравнению с лампами, рассеиваемая мощность, в том числе из-за отсутствия разогрева катода, что способствует повышению энергоэффективности, облегчает отвод избыточного тепла и позволяет повышать компактность устройств;
- высокая надёжность и большая физическая прочность, стойкость к механическим ударам и вибрации, что позволяет избежать проблем при использовании устройств в условиях любых ударных и вибрационных нагрузок;
- очень продолжительный срок службы — некоторые транзисторные устройства находились в эксплуатации более 50 лет и при этом не потеряли своей работоспособности;
- возможность объединения множества элементов в едином миниатюрном конструктивном модуле позволяет значительно повысить степень интеграции и облегчает разработку комбинированных схем высокой сложности, что не представляется возможным с вакуумными лампами.
Уменьшение размеров радиоэлементов
Недостатки
- Обычные кремниевые транзисторы не работают при напряжениях выше 1 кВ, вакуумные лампы могут работать с напряжениями на несколько порядков выше 1 кВ. Для коммутации цепей с напряжением свыше 1 кВ разработаны IGBT транзисторы.
- Применение транзисторов в мощных радиовещательных и СВЧ передатчиках нередко, оказывается, технически и экономически нецелесообразным: требуется параллельное включение и согласование многих сравнительно маломощных усилителей. Мощные и сверхмощные генераторные лампы с воздушным или водяным охлаждением анода, а также магнетроны, клистроны, лампы бегущей волны(ЛБВ) обеспечивают лучшее соотношение частотных характеристик, мощностей и приемлемой стоимости.
- Транзисторы значительно более уязвимы, чем вакуумные лампы, к действию сильных электромагнитных импульсов, которые, в том числе, являются одним из поражающих факторов ядерного взрыва;
- Чувствительность к радиации и воздействию космических излучений. Для работы в космосе созданы специальные радиационно-стойкие микросхемы для электронных устройств космических аппаратов.
Достоинства и недостатки
Основные типы реле обладают множеством достоинств над полупроводниковыми ключами, такими как:
- относительно низкая стоимость (благодаря недорогим составляющим);
- присутствует мощная изоляция между катушкой и контактной группой;
- не подвержены вредному влиянию перенапряжения, помехам молний, коммутации мощных электрических установок;
- есть управление линиями с нагрузкой до 0,4 кВ (при малом объеме устройства).
Недостатки импульсного реле:
- износ, а также проблемы коммутации индуктивных нагрузок и высоких напряжений (если ток постоянный);
- при включении и выключении цепи происходят радиопомехи, поэтому требуется экранирование;
- относительно долгий период времени срабатывания.
Серьезным минусом можно считать непрерывный износ при коммутации (деформация пружин, окисление контактов, например).
Однако стоит уточнить, что при использовании именно электронных реле, есть такие плюсы как: безопасность, хорошая скорость подключения, доступность на рынке, бесшумная работа, расширенный функционал. А среди минусов: перегрев при коммутации больших токов, нарушение работы при сбоях в электросети, сопротивление в закрытом положении и др.
Тем не менее, электронные реле развиваются достаточно стабильно и быстро. Они популярны благодаря своему функционалу, который можно относительно легко расширить.
Какие недостатки есть у импульсных реле? Некоторые модели отдельных производителей чувствительны к перепадам напряжения.
Еще многих раздражает постоянное клацанье и щелчки при работе реле. Особенно этим грешат эл.механические разновидности. Они состоят из рычажной и контактной системы, катушки, плюс пружины.
Отличить их можно по рычагу с лицевой стороны. С его помощью реле вручную переводится из одного положения в другое.
В электронные встроена плата с микроконтроллером. В них клацать особо нечему, и они менее шумны.
Чтобы было меньше проблем, выбирайте реле от известных и давно зарекомендовавших себя брендов. Таких как — ABB (E-290), Schneider Electric (Acti 9iTL), F{amp}amp;F (Biss) или отечественный Меандр (РИО-1 и РИО-2).
У ABB очень большой выбор по добавлению к основной модели E290 всяких накладок и дополнительных «плюшек».
Для этого данную релюшку нужно перевести в режим №2 и к каждому из входов Y, Y1 и Y2 подключить свой выключатель света (всего 3шт).
В итоге вы получите режим работы перекрестных выключателей на основе обычных одноклавишников. При нажатии любого из них (вкл или выкл), будет изменяться выход и переключаться контакты на самом реле, зажигая или гася лампочку.
Защита от помех DC
Раздельное питание
Один из лучших способов защититься от помех по питанию – питать силовую и логическую части от отдельных источников питания: хороший малошумящий источник питания на микроконтроллер и модули/сенсоры, и отдельный на силовую часть. В автономных устройствах иногда ставят отдельный аккумулятор на питание логики, и отдельный мощный – на силовую часть, потому что стабильность и надёжность работы очень важна.
Искрогасящие цепи DC
При размыкании контактов в цепи питания индуктивной нагрузки происходит так называемый индуктивный выброс, который резко подбрасывает напряжение в цепи вплоть до того, что между контактами реле или выключателя может проскочить электрическая дуга (искра). В дуге нет ничего хорошего – она выжигает частички металла контактов, из за чего они изнашиваются и со временем приходят в негодность. Также такой скачок в цепи провоцирует электромагнитный выброс, который может навести в электронном устройстве сильные помехи и привести к сбоям или даже поломке! Самое опасное, что индуктивной нагрузкой может являться сам провод: вы наверняка видели, как искрит обычный выключатель света в комнате. Лампочка – не индуктивная нагрузка, но идущий к ней провод имеет индуктивность. Для защиты от выбросов ЭДС самоиндукции в цепи постоянного тока используют обыкновенный диод, установленный встречно-параллельно нагрузке и максимально близко к ней. Диод просто закоротит на себя выброс, и все дела:
Где VD – защитный диод, U1 – выключатель (транзистор, реле), а R и L схематично олицетворяют индуктивную нагрузку. Диод нужно ОБЯЗАТЕЛЬНО ставить при управлении индуктивной нагрузкой (электромотор, соленоид, клапан, электромагнит, катушка реле) при помощи транзистора, то есть вот так:
При управлении ШИМ сигналом рекомендуется ставить быстродействующие диоды (например серии 1N49xx) или диоды Шоттки (например серии 1N58xx), максимальный ток диода должен быть больше или равен максимальному току нагрузки.
Фильтры
Если силовая часть питается от одного источника с микроконтроллером, то помехи по питанию неизбежны. Простейший способ защитить МК от таких помех – конденсаторы по питанию как можно ближе к МК: электролит 6.3V 470 uF (мкФ) и керамический на 0.1-1 мкФ, они сгладят короткие просадки напряжения. Кстати, электролит с низким ESR справится с такой задачей максимально качественно.
Ещё лучше с фильтрацией помех справится LC фильтр, состоящий из индуктивности и конденсатора. Индуктивность нужно брать с номиналом в районе 100-300 мкГн и с током насыщения больше, чем ток нагрузки после фильтра. Конденсатор – электролит с ёмкостью 100-1000 uF в зависимости опять же от тока потребления нагрузки после фильтра. Подключается вот так, чем ближе к нагрузке – тем лучше:
Подробнее о расчёте фильтров можно почитать здесь.
Применение
Без использования развязки предельный ток, протекающий между цепями, ограничен только электрическими сопротивлениями, которые обычно относительно малы. В результате возможно протекание выравнивающих токов и других токов, способных повреждать компоненты цепи или поражать людей, прикасающихся к оборудованию, имеющему электрический контакт с цепью. Прибор, обеспечивающий развязку, искусственно ограничивает передачу энергии из одной цепи в другую. В качестве такого прибора может использоваться разделительный трансформатор или оптрон. В обоих случаях цепи оказываются электрически разделёнными, но между ними возможна передача энергии или сигналов.
Освещение с трехсторонним управлением
Добавив промежуточный переключатель к описанной выше цепи, можно управлять светильником из трех мест. Этот переключатель ставится в разрыв соединительных проводов между двумя другими переключателями.
В одном положении клавиши промежуточного переключателя клемма L1 замыкается с клеммой 3, клемма L2 — с клеммой 4, в другом положении клавиши: L1 — с клеммой 4, а L2 — с клеммой 3. Фазные клеммы L1 и L2 соединяются с клеммами 1 и 2 первого переключателя на два направления, а выходные клеммы — с клеммами 1 и 2 второго переключателя на два направления.
При необходимости можно увеличить количество точек управления, добавляя в схему промежуточные переключатели.
Трехстороннее управление освещением
1. Щиток
2. Светильник
3. Кабель осветительной цепи
4. Кабель выключателя
5. Выключатель
6. Промежуточный выключатель
7. Соединительный кабель
8. Ответвительная коробка
Схема управления освещением из трех мест
1. Цепь питания светильника разомкнута. Нажатие на клавишу любого переключателя включит светильник
2. Нажата клавиша промежуточного (среднего) переключателя, цепь замкнута, светильник включен. Красной штриховой линией показано протекание электрического тока. Нажатие на клавишу любого переключателя выключит светильник
Подтипы
Последовательные поколения технологий производили совместимые детали с улучшенным энергопотреблением или скоростью переключения, или и тем, и другим. Хотя поставщики единообразно продавали эти различные линейки продуктов как TTL с диодами Шоттки , некоторые из базовых схем, например, используемые в семействе LS, скорее можно было бы рассматривать как DTL .
Варианты и преемники основного семейства TTL, которое имеет типичную задержку распространения затвора 10 нс и рассеиваемую мощность 10 мВт на затвор, для продукта задержки мощности (PDP) или энергии переключения около 100 пДж , включают:
- Маломощный TTL (L), в котором скорость переключения (33 нс) заменяется снижением энергопотребления (1 мВт) (теперь по существу заменено на логику CMOS )
- Высокоскоростной TTL (H), с более быстрым переключением, чем стандартный TTL (6 нс), но значительно более высоким рассеиваемой мощностью (22 мВт)
- Шоттки TTL (S), представленный в 1969 году, в котором использовались диодные зажимы Шоттки на входах затвора для предотвращения накопления заряда и сокращения времени переключения. Эти ворота работали быстрее (3 нс), но имели более высокую рассеиваемую мощность (19 мВт).
- Маломощный TTL Шоттки (LS) — использует более высокие значения сопротивления маломощного TTL и диодов Шоттки, чтобы обеспечить хорошее сочетание скорости (9,5 нс) и пониженного энергопотребления (2 мВт), а также PDP около 20 пДж. Вероятно, наиболее распространенный тип TTL, они использовались в качестве связующей логики в микрокомпьютерах, по существу заменяя бывшие подсемейства H, L и S.
- Варианты LS Fast (F) и Advanced-Schottky (AS) от Fairchild и TI, соответственно, около 1985 г., со схемами « Миллер- убийца» для ускорения перехода от низкого к высокому. Эти семейства достигли PDP 10 пДж и 4 пДж соответственно, что является самым низким из всех семейств TTL.
- Низковольтный TTL (LVTTL) для 3,3-вольтовых источников питания и интерфейса памяти.
Большинство производителей предлагают коммерческие и расширенные диапазоны температур: например, детали серии 7400 от Texas Instruments рассчитаны на диапазон от 0 до 70 ° C, а устройства серии 5400 — в температурном диапазоне военных спецификаций от -55 до +125 ° C.
Доступны специальные уровни качества и высоконадежные детали для военного и аэрокосмического применения.
Для космического применения предлагаются радиационно-стойкие устройства (например, из серии SNJ54).