Компаратор напряжения операционного усилителя
Простой компаратор операционного усилителя
Операционный усилитель (ОУ) имеет хорошо сбалансированный разностный вход и очень высокий коэффициент усиления . Это соответствует характеристикам компараторов и может быть заменено в приложениях с низкими требованиями к производительности.
Схема компаратора сравнивает два напряжения и выдает либо 1 (напряжение на положительной стороне), либо 0 (напряжение на отрицательной стороне), чтобы указать, какое из них больше. Компараторы часто используются, например, для проверки того, достиг ли вход некоторого заранее определенного значения. В большинстве случаев компаратор реализован с использованием специальной ИС компаратора, но в качестве альтернативы можно использовать операционные усилители. На схемах компараторов и схемах операционных усилителей используются одни и те же символы.
На рисунке 1 выше показана схема компаратора
Прежде всего обратите внимание, что схема не использует обратную связь. Схема усиливает разницу напряжений между Vin и VREF, и выводит результат на Vout. Если Vin больше VREF, тогда напряжение на Vout повысится до положительного уровня насыщения; то есть к напряжению на положительной стороне
Если Vin ниже VREF, то Vout упадет до своего отрицательного уровня насыщения, равного напряжению на отрицательной стороне.
Если Vin больше VREF, тогда напряжение на Vout повысится до положительного уровня насыщения; то есть к напряжению на положительной стороне. Если Vin ниже VREF, то Vout упадет до своего отрицательного уровня насыщения, равного напряжению на отрицательной стороне.
На практике эту схему можно улучшить, включив диапазон напряжения гистерезиса, чтобы снизить ее чувствительность к шуму. Например, схема, показанная на Рисунке 1, будет обеспечивать стабильную работу, даже если сигнал Vin несколько зашумлен.
Это происходит из-за разницы в характеристиках операционного усилителя и компаратора, использование операционного усилителя в качестве компаратора имеет ряд недостатков по сравнению с использованием специального компаратора:
- Операционные усилители предназначены для работы в линейном режиме с отрицательной обратной связью. Следовательно, операционный усилитель обычно имеет длительное время восстановления после насыщения. Почти все операционные усилители имеют внутренний компенсационный конденсатор, который накладывает ограничения на скорость нарастания для высокочастотных сигналов. Следовательно, операционный усилитель создает неаккуратный компаратор с задержками распространения, которые могут достигать десятков микросекунд.
- Поскольку операционные усилители не имеют внутреннего гистерезиса, для медленных входных сигналов всегда необходима внешняя сеть гистерезиса.
- Характеристики тока покоя операционного усилителя действительны только при активной обратной связи. Некоторые операционные усилители показывают повышенный ток покоя, когда входы не равны.
- Компаратор предназначен для создания хорошо ограниченных выходных напряжений, которые легко взаимодействуют с цифровой логикой. Совместимость с цифровой логикой должна быть проверена при использовании операционного усилителя в качестве компаратора.
- Некоторые многосекционные операционные усилители могут демонстрировать экстремальное взаимодействие канал-канал при использовании в качестве компараторов.
- Многие операционные усилители имеют встречные диоды между входами. Входы операционных усилителей обычно следуют друг за другом, так что это нормально. Но входы компаратора обычно не совпадают. Диоды могут вызвать неожиданный ток через входы.
Основная схема компенсационного стабилизатора напряжения
Большинство современной силовой электроники представлено импульсными источниками питания, которые обладают высоким КПД и небольшими габаритными размерами. Однако линейные стабилизаторы напряжения также находят своё применение, прежде всего в устройствах небольшой мощности, а также в схемах, где не желательны импульсные помехи.
Как известно линейные источники питания разделяются на последовательные и параллельные в зависимости от схемы подсоединения регулирующего элемента относительно выхода. Наибольшее распространение получили последовательные стабилизаторы, так как могут обеспечить КПД и стабилизацию больше чем параллельные, из основных достоинств которых является возможность перегрузки по току и способность выдерживать короткое замыкание.
Кроме схемы подключения регулирующего элемента, стабилизаторы напряжения классифицируются по способу регулирования выходного напряжения: параметрические и компенсационные. Работа параметрических стабилизаторов основана на нелинейных свойствах регулирующих элементах, то есть при значительном изменении тока протекающего через него падение напряжения на регулирующем элементе мало изменяется. Такие стабилизаторы применяются в схемах небольшой мощности до нескольких ватт. Наибольшее распространение получили схемы последовательных стабилизаторов компенсационного типа, структурная схема, которого представлена ниже
Структурная схема компенсационного стабилизатора последовательного типа.
В одной из статей я рассказывал о компенсационных стабилизаторах напряжения, выполненных на транзисторах, поэтому напомню принцип его работы. Схема состоит из чётырёх основных частей: источник образцового напряжения И, элемента сравнения ЭС, усилительного элемента У и регулирующего элемента Р. Элемент сравнения сравнивает выходное напряжение U1 с напряжение вырабатываемым источником образцового напряжения и выдаёт ошибку сравнения на усилительный элемент, где происходит усиление ошибки сравнения и вырабатывается управляющий сигнал для регулирующего элемента.
Довольно часто в простых схемах происходит объединение элемента сравнения и усилителя (а иногда и регулирующего элемента в слаботочных схемах) в одно устройство. В современных схемах функции элемента сравнения и усилителя выполняют на ОУ.
Что будет на выходе ОУ, если на обоих входах будет ноль вольт?
Итак, мы рассмотрели случай, когда напряжение на входах может различаться. Но что будет, если они будут равны? Что нам покажет Proteus в этом случае? Хм, показал +Uпит.
А что покажет Falstad? Ноль Вольт.
Кому верить? Никому! В реале, такое сделать невозможно, чтобы на два входа загнать абсолютно равные напряжения. Поэтому такое состояние ОУ будет неустойчивым и значения на выходе могут принимать значения или -E Вольт, или +E Вольт.
Давайте подадим синусоидальный сигнал амплитудой в 1 Вольт и частотой в 1 килоГерц на НЕинвертирующий вход, а инвертирующий посадим на землю, то есть на ноль.
Смотрим, что имеем на виртуальном осциллографе:
Что можно сказать в этом случае? Когда синусоидальный сигнал находится в отрицательной области, на выходе ОУ у нас -Uпит, а когда синусоидальный сигнал находится в положительной области, то и на выходе имеем +Uпит.
Фильтры 2-го порядка на ОУ
В основе построения фильтра 2-го порядка широко используются свойства ОУ, которые позволяют рассматривать его как:
q ИНУН – источник напряжения управляемый напряжением. В простейшем случае – не инвертирующий усилитель, у которого
Rвх Þ ¥
Rвых Þ 0
Uвых = kUвх
q ИТУН – источник тока, управляемый напряжением. Это источник тока на ОУ.
q ИНУТ – источник напряжения, управляемый током. Это инвертирующий усилитель.
q ИТУТ – источник тока, управляемый током. Это источник тока на ОУ в не инвертирующем включении.
Наиболее простая – ИНУН.
Фильтры на этих усилителях называют фильтрами Саллена и КИ или фильтры на основе ИНУН.
ФНЧ
ФВЧ
Используется не инвертирующее включение ОУ, в результате ОУ не нагружает фильтр. Включение С1 и R1 (для ФВЧ) в ОС обеспечивает необходимую крутизну передаточной функции фильтров. Т. к. это связь положительная, то необходимо, чтобы кb < 1 (для ПОС), в противном случае такая схема возбуждается и становится просто генератором. Поэтому существуют ограничения на выбор R3 и R4, т. к.
Ku = 1 + R3/R4, то
R3/R4 = 2 — a, где a — коэффициент затухания фильтра и определяет тип фильтра.
Фильтры 2-го порядка в зависимости от вида передаточной функции делятся на следующие типы:
I. Фильтры Баттерворта
v a = 1,414
v наклон характеристики = 40 дб/дек
v в пределах полосы пропускания характеристика гладкая
v фазовая характеристика нелинейная
Т. к. имеет место в схеме ПОС, то крутизна переходной характеристики может быть как больше, так и меньше 40 дб/дек.
II. Фильтр Чебышева
v a = 1,578¸0,766
Фильтр Чебышева имеет колебания в пределах полосы пропускания, но более крутую характеристику в переходной полосе. Чем круче переходная полоса, тем больше выбросы. Имеет более нелинейную ФЧХ, чем фильтр Баттерворта. Нелинейность ФЧХ для этих фильтров приводит к тому, что при прохождении импульсных сигналов появляются выбросы на них.
III. Фильтр Бесселя
v a = 1,732
Гладкая спадающая характеристика в пределах полосы пропускания и плавная в пределах переходной области, но скорость спада < 40 дб.
«+» линейная ФЧХ, т. е. Dj = 1/кw (кw)
Это эквивалентно тому, что все сигналы задерживаются линейно в полосе пропускания. Эти фильтры не искажают импульсные сигналы.
Фильтры используются для выравнивания и компенсации задержек, возникающих в линиях связи.
Также используются эллиптические фильтры, которые имеют неравномерную характеристику, как в полосе пропускания, так и в полосе заграждения, и более крутую характеристику в переходной области, чем фильтр Чебышева.
Пример работы инвертирующего усилителя
Давайте посмотрим, как работает наш усилитель в программе-симуляторе электронных схем Proteus. Здесь мы собираем базовую схему с двухполярным питанием
В Proteus она будет выглядеть вот так:
Здесь мы взяли значение резисторов R2=10 кОм и R1=1 кОм, следовательно, коэффициент усиления такой схемы будет равен -10. Знак «минус» в данном случае просто инвертирует усиленный сигнал, что мы и видим на осциллограмме ниже. Входной сигнал — это розовая осциллограмма, а выходной — это желтая осциллограмма. Выходной сигнал находится в противофазе относительно входного, то есть инвертирует его. Отсюда и название «инвертирующий усилитель».
Корректная подача опорного напряжения в ИУ
Часто полагают, что вход для подачи опорного напряжения высокоомный (поскольку это вход). Так, разработчики могут соблазниться подключить высокоомный источник, например резистивный делитель, к выводу ИУ для опорного напряжения. С некоторыми типами инструментальных усилителей это может привести к значительным погрешностям (рис. 8).
Рис. 8. Неправильное использование простого делителя напряжения для непосредственной подачи опорного напряжения в инструментальный усилитель из трех ОУ
Например, в конструкции популярного ИУ применено три ОУ, соединенных, как показано выше. Общий коэффициент усиления равен:
где R2/R1 = R4/R3.
Коэффициент передачи для входа опорного напряжения равен единице (при подаче напряжения от источника с низким импедансом). Однако в рассматриваемом случае вывод опорного напряжения ИУ подключен к простому делителю напряжения на резисторах. Это приводит к разбалансу схемы вычитания и нарушает коэффициент деления делителя напряжения. В свою очередь, это снижает коэффициент подавления синфазного сигнала в ИУ и точность его коэффициента усиления. Однако если бы внутренний резистор R4 был нам доступен, то при снижении его сопротивления на величину, равную параллельному соединению двух резисторов делителя напряжения (здесь 50 кОм), схема вела бы себя так, будто к изначальному сопротивлению резистора R4 подключен низкоомный источник, равный (в данном примере) половине напряжения питания, и точность схемы вычитания была бы сохранена.
Этот подход невозможен, если ИУ — интегральная схема в закрытом корпусе. Еще одна проблема заключается в том, что температурные коэффициенты сопротивления (ТКС) внешних резисторов делителя отличаются от ТКС резистора R4 и других резисторов схемы вычитания. И, наконец, такой подход не позволяет регулировать значение опорного напряжения. Если, с другой стороны, попытаться использовать в делителе напряжения низкоомные резисторы, чтобы влияние их добавленного сопротивления было бы пренебрежимо малым, то ток потребления от источника питания и рассеиваемая мощность схемы увеличатся. В любом случае, такой метод «грубой силы» не приносит успеха.
На рис. 9 показано лучшее решение — применение буфера на ОУ с малым потреблением энергии между делителем напряжения и входом опорного напряжения ИУ. Это ликвидирует необходимость подбора сопротивления и проблему резисторов с разными ТКС, а также дает возможность легко регулировать опорное напряжение.
Рис. 9. Подача опорного напряжения на ИУ с низкоимпедансного выхода ОУ
Развязывание напряжения питания схем на ОУ с однополярным питанием
Чтобы работать с положительными и отрицательными полуволнами переменного сигнала, схемам на ОУ с однополярным питанием требуется синфазное смещение входа. При использовании для реализации такого смещения шины питания, для сохранения значения КОНИП требуется соответствующее развязывание.
Обычной и неправильной практикой для смещения неинвертирующего входа на уровень VS/2 является применение резистивного делителя 100/100 кОм с развязывающим конденсатором емкостью 0,1 мкФ. При таких номиналах элементов развязывание напряжения источника питания недостаточно, так как частота полюса составляет всего 32 Гц. Часто возникает нестабильность схемы (низкочастотная генерация типа «шум мотора»), особенно при работе на индуктивную нагрузку.
Рис. 12. Неинвертирующий усилитель с однополярным питанием с правильным развязыванием источника питания. Коэффициент усиления на средних частотах равен 1+R2/R1
На рис. 12 (неинвертирующая схема) и рис. 13 (инвертирующая схема) показаны улучшенные схемы для получения развязанного напряжения смещения VS/2. В обеих схемах смещение подведено к неинвертирующему входу, обратная связь приводит инвертирующий вход к той же величине смещения, и единичный коэффициент усиления на постоянном токе смещает оба входа на одинаковое напряжение. Развязывающий конденсатор C1 понижает коэффициент усиления ниже частоты BW3 до единицы.
Рис. 13. Инвертирующий усилитель с однополярным питанием с правильным развязыванием источника питания. Коэффициент усиления на средних частотах равен – R2/R1
Подача опорного напряжения на ОУ, ИУ и АЦП
На рис. 7 приведена схема с однополярным питанием, в которой напряжение на несимметричный вход аналого-цифрового преобразователя (АЦП) подается с инструментального усилителя. Опорное напряжение усилителя обеспечивает напряжение смещения, соответствующее нулевому дифференциальному входному напряжению, а опорное напряжение АЦП обеспечивает коэффициент масштабирования. Для снижения внеполосного шума между выходом ИУ и входом АЦП часто применяется простой сглаживающий RC-фильтр нижних частот. Разработчики часто соблазняются простыми решениями — например, для подачи опорного напряжения на ИУ и АЦП применяют резистивные делители вместо низкоомного источника. Для некоторых ИУ это может послужить причиной появления погрешности.
Рис. 7. Типичная схема подачи сигнала с ИУ на АЦП с однополярным питанием
Инвертирующий усилитель с однополярным питанием
В некоторых случаях нам даже иногда нужно переместить нулевой уровень на более высокий “пьедестал”, чтобы мы могли полностью усиливать сигнал, если дело касается однополярного питания. Работать с однополярным питанием всегда проще и удобнее, чем с двухполярным. Поэтому, в этом случае надо поднять нулевой уровень на некоторый пьедестал, чтобы полностью усиливать переменный сигнал. То есть добавить постоянную составляющую в сигнал. В этом случае схема примет чуть-чуть другой вид:
Как можно увидеть, сейчас мы питаем наш ОУ однополярным питанием. Что будет, если мы НЕинвертирующий выход посадим на землю?
То есть мы получили базовую схему инвертирующего усилителя, но только с однополярным питанием. Давайте ппросимулируем такую схему. Коэффициент усиления в данном случае будет равен-10, так как мы взяли соотношение резисторов 10 килоом и 1 килоом. Загоняю на вход сигнал амплитудой в 1 В.
Что имеем в итоге на виртуальном осциллографе?
Как вы видите, в этом случае усиленная полуволна сигнала вырезается полностью. Оно и понятно, так как напряжение питания у нас однополярное и проломить “пол” нулевого потенциала невозможно. Но можно сделать одну хитрость: поднять “уровень пола” и дать сигналу место для размаха.
В этом случае нам надо добавить Uсм , для того, чтобы поднять сигнал над уровнем “пола”. Но не все так просто, дорогие друзья!
Здесь уже будет использоваться более хитрая формула, а не просто вольтдобавка. Приблизительная формула выглядит вот так:
Итак, мы хотим усилить наш сигнал полностью без среза. Какое же должно быть значение Uвых ? Оно должно иметь значение половины Uпит , чтобы сигнал ходил туда-сюда без срезов. Но также надо учитывать и коэффициент усиления, иначе получится насыщение выхода, о чем мы писали выше.
В нашем случае мы хотим увеличить сигнал амплитудой в 1 В в 10 раз. То есть Uпит должно быть как минимум 20 Вольт. Так как ОУ поддерживают однополярное питание до 32 В, то давайте для красоты выставим Uпит = 30 В. Рассчитываем Uсм :
Проверяем симуляцию, все ок!
Как здесь можно увидеть, желтый выходной сигнал поднялся над нулевым уровнем и усилился без искажений. В данном случае желтый сигнал – это сумма постоянного напряжения и переменного синусоидального сигнала.
То есть получилось что-то типа вот этого:
Хорошо это или плохо, когда в переменном сигнале есть постоянная составляющая, то есть постоянное напряжение? В некоторых случаях это плохо, потому как такой сигнал трудно использовать, и поэтому чаще всего его прогоняют через конденсатор, так как он пропускает через себя только переменный ток и блокирует прохождение постоянного тока. А еще лучше поставить фильтр из дифференцирующей цепи, с помощью которого можно отсекать лишние частоты.
Принцип работы источника тока на ОУ
Принцип работы аналогового источника тока: когда нагрузка постоянного тока находится под напряжением, на силовом резисторе 1 Ом (R4) создается небольшое напряжение, которое подается на инвертирующий вход (контакт 2) IC1. Это положительное напряжение инвертируется IC1, уменьшая напряжение на выходе (вывод 1), что дополнительно снижает напряжение на R4 через T1. Это стабилизирует выходное напряжение до значения, которое окажется на его неинвертирующем входе (вывод 3). Любое изменение тока через R4 вызывает изменение напряжения на выводе 2, которое точно компенсируется отрицательной обратной связью. В результате через силовой резистор и подключенную нагрузку протекает постоянный ток.
Опорное напряжение составляет около 2,5 В, использовалась TL431A (VR1) в качестве источника опорного напряжения, потому что микросхема была под рукой. Также можно попробовать другие, более дешевые идеи создания постоянного опорного напряжения. Потенциометр 10K (TM1) предназначен для точной настройки тока, и, следовательно, 10-оборотный точный многооборотный подстроечный резистор был бы лучше, чем обычный, который использовался в данном случае.
Далее была сделана быстрая тестовая версия на макетной плате
Стоит обратить внимание на то, что эту схему довольно легко заставить возбуждаться, а это нежелательно и может затруднить точную регулировку тока нагрузки. Более того, силовой резистор 1 Ом должен рассеивать довольно много энергии, да и силовой полевой транзистор должен использоваться с подходящим радиатором
Скорость нарастания выходного напряжения
Также обратите внимание на то, что напряжение на выходе ОУ не может резко менять свое значение. Поэтому, в ОУ есть такой параметр, как скорость нарастания выходного напряжения VUвых
Этот параметр показывает насколько быстро может измениться выходное напряжение ОУ при работе в импульсных схемах. Измеряется в Вольт/сек. Ну и как вы поняли, чем больше значение этого параметра, тем лучше ведет себя ОУ в импульсных схемах. Для LM358 этот параметр равен 0,6 В/мкс.
При участии осциллограф это
Также смотрите видео «Что такое операционный усилитель (ОУ) и как он работает»
Однополярное питание операционных усилителей
Если за точку отсчета будет принят положительный полюс батарейки а измеряющий щуп был подключен к минусу то любой вольтметр нам покажет В. Теория это хорошо, но без практического применения это просто слова. Схемы включения операционных усилителей, описанные выше, не являются исчерпывающими, а лишь только призваны дать основные понятия. При превышении напряжения на входе величины основного опорного напряжения, на выходе получается наибольшее напряжение, которое равно положительному питающему напряжению.
Поэтому интегратор может действовать в качестве активного фильтра низких частот.
И в результате мы получаем К сожалению инвертирующий усилитель обладает одним явным недостатком — низким входным сопротивлением, которое равняется резистору R1.
Как следует из схемы на рис.
Скорее она связана с неприятностями, так как в схеме с отрицательной ОС на высокой частоте могут возникать достаточно большие сдвиги по фазе, приводящие к возникновению положительной ОС и нежелательным автоколебаниям. Усилитель с единичным коэффициентом усиления называют иногда буфером, так как он обладает изолирующими свойствами большим входным импедансом и малым выходным.
Более подробно смещение ОУ при однополярном питании рассматривается в . Сигнала поступает на усилитель с бесконечным входным сопротивлением, а напряжение на неинвертирующем входе имеет такое же значение, как и на инвертирующем входе.
Здесь было бы уместно вспомнить транзистор включенный по схеме с ОЭ. В современной измерительной аппаратуре в качестве линейных усилителей используются операционные усилители.
Электроника от простого к сложному. Урок 8. Первые схемы на оу. (PCBWay)
Рабочая точка и смещение базы
Для того, чтобы транзистор не искажал входной сигнал, нужно его для начала чуть-чуть приоткрыть.
Это можно сделать при помощи делителя напряжения из двух резисторов R1 и R2. Этот делитель напряжения позволяет приоткрыть транзистор VT1 для того, чтобы входной сигнал не тратил свою электрическую энергию на его открытие.
Ток, который протекает через R1 и R2 поступает на базу транзистора VT1, который потом уходит через эмиттер, тем самым его открывая. Это называется базовое смещение транзистора, то есть его открытие. Напряжение смещения определяет рабочую точку. В данном случае усилитель А класса.
Как определяется класс усилителя
Класс усилителя определяется его рабочей точкой. Рабочая точка выбирается с помощью вольтамперной характеристики транзистора. Чем выше напряжение подается на вход транзистора, тем больше ток, тем выше рабочая точка.
Например, точка по центру это А класс.
А класс самый качественный из усилителей. Он усиливает как положительные, так и отрицательные полуволны входного сигнала. В то же время, у этого класса есть существенный недостаток. Это ограничение мощности и снижение энергоэффективности. Дело в том, что пока на вход УНЧ не поступает входной сигнал, он работает все время, пока он включен.
Получается, что при это расходуется лишняя электроэнергия. Поэтому, еще рабочая точка называется точкой покоя, когда усилитель не усиливает входной сигнал.
Еще есть B класс, AB и D. Они отличаются друг от друга по эффективности усиления и наличию искажений. Все зависит от используемой схемы.
Например. D класс вообще не открывает транзистор, однако с точки зрения энергоэффективности – это самый лучший выбор. Транзистор в покое не потребляет ничего, он включается только при подаче входного сигнала. И при этом если на вход подается аналоговый звуковой сигнал, то он искажается. Такой класс не подойдет для схемы, которую разбираем в этой статье.
Поэтому, схемотехники и инженеры изобрели цифровые усилители. У них аналоговый сигнал преобразовывается в цифровой, и только потом подается на вход усилителя. Транзистор не искажает входной цифрой сигнал. После усиления сигнал снова преобразовывается в аналоговый с наименьшими потерями и искажениями.
А режим АВ применяется в схемах, где есть несколько транзисторов, которые работают на свои полуволны. Есть схемы, где один транзистор усиливает только положительные полуволны, а второй только отрицательные. Такие усилители называются двухтактными.
Схема работы компаратора и применение
Обычно в электронике компаратор используется для сравнения двух напряжений или токов, подаваемых на два входа компаратора. Это означает, что он берет два входных напряжения, затем сравнивает их и выдает дифференциальное выходное напряжение высокого или низкого уровня. Компаратор используется для определения момента, когда произвольно изменяющийся входной сигнал достигает опорного уровня или определенного порогового уровня. Компаратор может быть разработан с использованием различных компонентов, таких как диоды, транзисторы, операционные усилители . Компараторы используются во многих электронных приложениях для управления логическими схемами.
Символ компаратора
Операционный усилитель как компаратор
Когда мы внимательно посмотрим на символ компаратора, мы узнаем его как операционного усилителя (операционного усилителя) символ , так что отличает этот компаратор от операционного усилителя; Операционный усилитель предназначен для приема аналоговых сигналов и вывода аналогового сигнала, тогда как компаратор выдает только выходной сигнал в виде цифрового сигнала; хотя в качестве компараторов можно использовать обычный операционный усилитель (операционные усилители, такие как LM324, LM358 и LM741, не могут использоваться непосредственно в схемах компаратора напряжения.
Операционные усилители часто могут использоваться в качестве компараторов напряжения, если к выходу усилителя добавлен диод или транзистор), но реальный компаратор разработан так, чтобы иметь более быстрое время переключения по сравнению с многоцелевыми операционными усилителями. Таким образом, можно сказать, что компаратор – это модифицированная версия операционных усилителей, специально разработанная для работы с цифровым выходом.
Сравнение выходной схемы операционного усилителя и компаратора
Базовая схема работы компаратора
Схема компаратора работает, просто принимая два аналоговых входных сигнала, сравнивая их и затем вырабатывая логический выход с высоким «1» или низким «0».
Цепь неинвертирующего компаратора Схема неинвертирующего компаратора
Путем подачи аналогового сигнала на вход + компаратора, называемый «неинвертирующим», и – вход, называемый «инвертирующим», схема компаратора будет сравнивать эти два аналоговых сигнала, если аналоговый вход на неинвертирующем входе больше, чем аналоговый вход на при инвертировании выходной сигнал перейдет в высокий логический уровень, и это заставит с транзистор открытым коллектором Q8 на эквивалентной схеме LM339, приведенной выше, включиться. Когда аналоговый вход на неинвертирующем входе меньше аналогового входа на инвертирующем входе, тогда на выходе компаратора будет низкий логический уровень.
Это выключит транзистор Q8. Как мы видели на изображении эквивалентной схемы LM339 выше, LM339 использует на выходе транзистор с открытым коллектором Q8, поэтому мы должны использовать «подтягивающий» резистор, который подключен к выводу коллектора Q8 с помощью Vcc, чтобы заставить этот транзистор Q8 работать. Согласно таблице данных LM339, максимальный ток, который может протекать через этот транзистор Q8 (выходной ток стока), составляет около 18 мА. V- можно рассчитать следующим образом.
V- = R2.Vcc / (R1 + R2)
Неинвертирующий вход компаратора подключен к потенциометру 10 K, который также формирует схему делителя напряжения, где мы можем регулировать начало напряжения V + с Vcc до 0 вольт. Во-первых, когда V + равно Vcc, выход компаратора перейдет в высокий логический уровень (Vout = Vcc), потому что V + больше, чем V-.
Это выключит транзистор Q8 и погаснет светодиод . Когда напряжение V + падает ниже V- вольт, выход компаратора переходит в низкий логический уровень (Vout = GND), что включает транзистор Q8 и загорается светодиод.
Путем замены аналогового входа; делитель напряжения R1 и R2, подключенный к неинвертирующему входу (V +), и потенциометр, подключенный к инвертирующему входу (V-), мы получим противоположный выходной результат.
Схема инвертирующего компаратора
Опять же, используя принцип делителя напряжения, напряжение на неинвертирующем входе (V +) составляет около V- вольт, поэтому, если мы начинаем инвертирующее входное напряжение (V-) с Vcc вольт, V + ниже, чем V-, это включит транзистор Q8, выход компаратора перейдет в низкий логический уровень. Когда мы регулируем V- ниже V +. После выключения транзистора Q8 выход компаратора перейдет в высокий логический уровень, потому что теперь V + больше, чем V-, и светодиод погаснет.
Возможно, вам также будет интересно
Один из способов измерения тока в электрической цепи — это измерение падения напряжения на токоизмерительном резисторе (шунте) известного сопротивления, включенном последовательно с нагрузкой. Чтобы сопротивление шунта оказывало минимальное воздействие на режим работы нагрузки, оно выбирается минимально возможной величины, что предполагает последующее усиление сигнала. В таблице 1 перечислены производители электронных компонентов, выпускающие как специализированные изделия, предназначенные для
Термопарные измерители мощности с интерфейсом USB с лучшей линейностью и точностью