Простой мощный стерео усилитель своими руками (схемы)

Транзисторный усилитель 50W своими руками

Приветствую, Самоделкины! Усилители мощности низкой частоты или просто усилитель звука, собираются радиолюбителями довольно часто. Специализированные микросхемы усилителей мощности низкой частоты сейчас довольно популярны и после сборки некоторых УНЧ на базе микросхем, радиолюбитель стремится к чему-то более сложному. Транзисторные усилители, несмотря на огромное разнообразие микросхем, не потеряли свою актуальность. Если нужен хороший качественный усилитель, то стоит собрать его на транзисторах. Сегодня мы поговорим о неплохом транзисторном усилителе, работающим в классе b. Не спешите с выводами, класс b тоже бывает неплохим.


Истинные ценители сверх высококачественного звука наверняка скажут, что это не самый лучший класс УНЧ, однотактный и ламповый — вот каким должен быть качественный усилитель. Я конечно же отчасти с вами согласен, но цены ламповых усилителей, сами видите:


А собрать их дома тоже процесс не из легких.

Представленная схема была опубликованная в журнале «Радио» в 1991 году.


Это легендарный усилитель Дорофеева, так что он имеет довольно преклонный возраст. Гениальность схемы заключается в простоте. Несмотря на минимальное количество используемых компонентов с соответствующим источником питания данный усилитель способен отдавать в нагрузку 4 Ома, мощность до 50 ватт, что согласитесь, очень даже неплохо. В разное время радиолюбители дорабатывали и изменяли схему. Для удобства, автор перевел схему на импортные компоненты, далее будем рассматривать именно ее.


В данном усилителе применены довольно интересные схематические решения, например, резистор R12, которой ограничивает коллекторный ток транзистора выходного каскада и является своеобразным ограничителем выходной мощности, одновременно защищает выходные транзисторы от коротких замыканий. Так что усилитель короткого, можно сказать, не боится.


С целью увеличения выходной мощности, можно увеличить питающее напряжение, но в этом случае нужно менять и транзисторы оконечного каскада на более мощные и пересчитать несколько резисторов.


Резисторы r9 и r10 подбираются в зависимости от питающего напряжения.


Они ограничивают ток через стабилитрон и в этой части схемы собран параметрический стабилизатор напряжения, которое обеспечивает стабильное питание для операционного усилителя.


Кстати, об операционнике, это довольно неплохой операционный усилитель, применяется в аудиотехнике очень часто. Можно спокойно менять на TL081.

В случае замены на иные операционные усилители, стоит обратить внимание на распиновку, так как расположение выводов может быть иным. Операционный усилитель советую установить на панельку беспаячного монтажа, для быстрой замены в случае чего

Кстати, у этого автора есть и вторая версия данного усилителя, на сей раз полностью на транзисторах, она сейчас перед вами:


Несколько слов о печатной плате, мастер старался ее сделать максимально компактной, вроде бы получилось неплохо.


Ссылку на скачивание найдете в описании под видеороликом автора (внизу страницы). На плате имеются перемычки, их желательно запаять в первую очередь.


Транзисторы предвыходного и выходного каскада, устанавливаются на общий теплоотвод. Естественно не забываем их изолировать от радиатора.


Как видно из схемы, в выходном и предвыходном каскаде, использованы комплементарные пары транзисторов. Очень и очень желательно подобрать транзисторы по коэффициенту усиления. Некоторые мультиметры имеют функцию проверки этого параметра, но можно использовать транзистор-тестер.


Пару слов об источнике питания.


В случае трансформаторного блока питания желательно использовать фильтрующие конденсаторы с емкостью не менее 4700 мкФ, тут чем больше тем лучше.


Усилитель работает в классе b и КПД на довольно высоком уровне, но в любом случае, источник питания нужен с некоторым запасом. Поэтому необходимо взять трансформатор с габаритной мощностью от 70 Вт. Как звучит усилитель вы можете узнать, посмотрев видеоролик автора. Должен заметить, что во время тестов будет слышен некий фон, это связано с тем, что в блоке питания у автора проекта использованы конденсаторы очень малой емкости, всего 1000 мкФ в плече.


На этом все. В описании под видео помимо архива проекта со схемой и платой, найдете ссылки на комплектующие для сборки такого же усилителя, а также на готовые платы усилителей низкой частоты на любой вкус.

Благодарю за внимание. До новых встреч!. Видео:

Видео:

Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Частотная характеристика усилителя

В любом теле- или радиоприемнике, в каждом музыкальном центре или усилителе звука можно найти транзисторные усилители звука (низкой частоты — НЧ). Разница между звуковыми транзисторными усилителями и другими видами заключается в их частотных характеристиках.

Звуковой усилитель на транзисторах имеет равномерную частотную характеристику в полосе частот от 15 Гц до 20 кГц. Это означает, что все входные сигналы с частотой внутри этого диапазона усилитель преобразует (усиливает) примерно одинаково. На рисунке ниже в координатах «коэффициент усиления усилителя Ку — частота входного сигнала» показана идеальная кривая частотной характеристики для звукового усилителя.

Эта кривая практически плоская с 15 Гц по 20 кГц. Это означает, применять такой усилитель следует именно для входных сигналов с частотами между 15 Гц и 20 кГц. Для входных сигналов с частотами выше 20 кГц или ниже 15 Гц эффективность и качество его работы быстро уменьшаются.

Вид частотной характеристики усилителя определяется электрорадиоэлементами (ЭРЭ) его схемы, и прежде всего самими транзисторами. Звуковой усилитель на транзисторах обычно собран на так называемых низко- и среднечастотных транзисторах с суммарной полосой пропускания входных сигналов от десятков и сотен Гц до 30 кГц.

Бестрансформаторные УНЧ

Усилитель НЧ на транзисторе, выполненный с использованием трансформатора, невзирая на то, что конструкция может иметь малые габариты, все равно несовершенен. Трансформаторы все равно тяжелые и громоздкие, поэтому лучше от них избавиться. Намного эффективнее оказывается схема, выполненная на комплементарных полупроводниковых элементах с различными типами проводимости. Большая часть современных УНЧ выполняется именно по таким схемам и работают в классе «В».

Два мощных транзистора, используемых в конструкции, работают по схеме эмиттерного повторителя (общий коллектор). При этом напряжение входа передается на выход без потерь и усиления. Если на входе нет сигнала, то транзисторы на грани включения, но все равно еще отключены. При подаче гармонического сигнала на вход происходит открывание положительной полуволной первого транзистора, а второй в это время находится в режиме отсечки.

НЧ-усилитель на транзисторах: искажения в основных классах работы

В рабочей области транзисторный усилитель класса «А» обладает малым уровнем нелинейных искажений. Но если сигнал имеет импульсные выбросы по напряжению, приводящие к насыщению транзисторов, то вокруг каждой «штатной» гармоники выходного сигнала появляются высшие гармоники (вплоть до 11-й). Это вызывает феномен так называемого транзисторного, или металлического, звука.

Если НЧ-усилители мощности на транзисторах имеют нестабилизированное питание, то их выходные сигналы модулируются по амплитуде вблизи частоты сети. Это ведет к жёсткости звука на левом краю частотной характеристики. Различные же способы стабилизации напряжения делают конструкцию усилителя более сложной.

Типовой КПД однотактного усилителя класса А не превышает 20 % из-за постоянно открытого транзистора и непрерывного протекания постоянной составляющей тока. Можно выполнить усилитель класса А двухтактным, КПД несколько повысится, но полуволны сигнала станут более несимметричными. Перевод же каскада из класса работы «А» в класс работы «АВ» повышает вчетверо нелинейные искажения, хотя КПД его схемы при этом повышается.

В усилителях же классов «АВ» и «В» искажения нарастают по мере снижения уровня сигнала. Невольно хочется врубить такой усилитель погромче для полноты ощущений мощи и динамики музыки, но зачастую это мало помогает.

Транзисторные УНЧ

Транзисторные усилители мощности низкой частоты (УМЗЧ) для звуковой и аудио-аппаратуры. В разделе собраны принципиальные схемы самодельных усилителей мощности НЧ на биполярных и полевых транзисторах.

Здесь вы найдете схемы транзисторных усилителей разной сложности и с разным классом мощности:

  • низкой мощности — до 1,5 Ватт;
  • средней мощности — от 1,5 Ватт до 20 Ватт;
  • большой мощности — 25 Ватт, 50 Ватт, 100 Ватт, 200 Ватт, 300 Ватт и более.

Для самодельного аудио-комплекса или при ремонте музыкального центра можно изготовить многоканальный усилитель мощности в конфигурациях:

  • система 2.1 (сабвуфер + 2 сателлита);
  • система 5.1 (сабвуфер + 5 сателлитов);
  • стерео — два канала усиления;
  • квадро — четыре канала усиления.

На транзисторах можно без лишних сложностей собрать небольшой самодельный усилитель для наушников. Присутствуют очень простые и доступные по себестоимости конструкции усилителей, которые прекрасно подойдут для изготовления начинающими радиолюбителями.

Усилитель построен по простой схеме на трех транзисторах. На выходе, на нагрузке сопротивлением 4 От выдает мощность 2W при питании от источника напряжением 12V. Входное сопротивление усилителя мало, и составляет 470 Ом. Столь малое входное сопротивление позволяет ему хорошо согласовываться .

Схема самодельного гибридного усилителя звука на лампах и микросхемах с выходной мощностью 30 Ватт. Усилитель построен на лампе ECC88 (отечественный аналог — 6Н23П) и мощной микросхеме LM3875.

Принципиальная схема гитарного усилителя мощности низкой частоты с предусилителем и темброблоком. УМЗЧ собран на транзисторах TIP142 и TIP147, выходная мощность — 40Вт на 8 Ом, 60 Вт на 4 Ома.

Несколько принципиальных схем высококачественных УМЗЧ на полевых транзисторах, привлекающие своей простотой и техническими характеристиками. Применение полевых транзисторов в усилителе мощности позволяет значительно повысить качество звучания при общем упрощении схемы.

Схема электрическая принципиальная усилителя приведена на рисунке (в скобках приведены замененные элементы). Данная конструкция является модернизациейразработки . Принципиальная схема УМЗЧ на MOSFET транзисторах (200Вт). Все основные части усилителя — трансформатор, радиаторы .

При разработке усилителей ЗЧ с максимальной выходной мощностью более 100 Вт первостепенноезначение приобретает необходимость получения возможно большего КПД усилителя при достаточно малых нелинейных искажениях. Вопрос о допустимом проценте нелинейных искажений усилителя ЗЧ не раз обсуждался на .

Свое знакомство с мощными усилителями я начал в 1958 году, когда учился в энергетическомтехникуме, и мне поручили обслуживать радиоузел. Он состоял из трех частей: малогабаритной радиотрансляционной установки “ТУ-100″, магнитофона “Днепр 9” и ЛАТРа на .

Уже давно разработчики УМЗЧ задают себе вопрос: до какого уровня необходимо снижать нелинейность усилителя? . Если проанализировать рекламные журналы по аудиотехнике, то гармонические искажения даже “топовых” моделей УМЗЧ в основном лежат в диапазоне 0,003. 0,05% .

Всем доброго времени суток! Вот с чем я осмелюсь с Вами поделиться. Тема для многих известна, и понятна. В чём она состоит. Дальше чисто моё ИМХО. Давно любителям звука внушают – если лампы, то в любом проявлении, а если транзисторы, то чтобы их было o-очень много! Иначе лапового звука не добьёшься. Например советские стандарты сначала классифицировали аудио-аппаратуру по кассам 4-й, 3-й, 2-й, 1-й!, и наконец.

Принципиальная схема простого трехтранзисторного усилителя мощности для применения в разнообразной малогабаритной аппаратуре. Зачастую, от «компьютерных колонок» требуется только воспроизведение каких-то звуковых сигналов, речевых сигналов, не требующих HI-FI или Hl-end качества .

Улучшениые варианты однотранзисторного усилителя

Усложненные и улучшенные по сравнению со схемой на рис. 1 схемы усилителей приведены на рис. 2 и 3. В схеме на рис. 2 каскад усиления дополнительно содержит цепочку частотнозависимой отрицательной обратной связи (резистор R2 и конденсатор С2), улучшающей качество сигнала.

Рис. 2. Схема однотранзисторного УНЧ с цепочкой частотнозависимой отрицательной обратной связи.

Рис. 3. Однотранзисторный усилитель с делителем для подачи напряжения смещения на базу транзистора.

Рис. 4. Однотранзисторный усилитель с автоматической установкой смещения для базы транзистора.

В схеме на рис. 3 смещение на базу транзистора задано более «жестко» с помощью делителя, что улучшает качество работы усилителя при изменении условий его эксплуатации. «Автоматическая» установка смещения на базе усилительного транзистора применена в схеме на рис. 4.

Настройка транзисторного усилителя низкой частоты

Питание обоих усилителей можно осуществить от 3 пальчиковых батарей или же от простого и надежного стабилизатора напряжения построенного на микросхеме LM317.

Настройка усилителя первого варианта сводится к подбору сопротивлений R2 и R4. Величину сопротивлений нужно подобрать такой, чтобы миллиамперметр, подключенный в коллекторную цепь каждого транзистора, показывал ток в районе 0,5…0,8 мА. По второй схеме необходимо также выставить коллекторный ток второго транзистора путем подбора сопротивления резистора R3.

В первом варианте возможно применить транзисторы марки КТ312, КТ3102, или их зарубежные аналоги, однако при этом необходимо будет выставить правильное смещение напряжения транзисторов путем подбора сопротивлений R2, R4. Во втором варианте в свою очередь, возможно применить кремневые транзисторы марки КТ209, КТ361, или зарубежные аналоги. При этом выставить режимы работы транзисторов можно путем изменения сопротивления R3.

Блок питания 0…30В/3A
Набор для сборки регулируемого блока питания

Подробнее

В коллекторную электроцепь транзистора VT2 (обоих усилителей) взамен наушников возможно подключить динамик с высоким сопротивлением. Если же необходимо получить более мощное усиление звука, то можно собрать усилитель на TDA2030, который обеспечивает усиление до 15 Вт.

Лабораторный блок питания 30 В / 10 А

Подробнее

Экономичный УНЧ на трех транзисторах

Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.

При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.

Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.

Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.

Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2… 15 В потребляемый усилителем ток описывается выражением:

1(мкА) = 52 + 13*(Uпит)*(Uпит),

где Uпит — напряжение питания в Вольтах (В).

Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.

Для сборки простого усилителя потребуется ряд деталей:

  • Транзистор КТ 817 (или аналогичный ему);
  • Резистор на 5 кОм, 0,25 Ватт;
  • Плёночный конденсатор на 0,22 – 1 микрофарад;
  • Динамик, дающий нагрузку на 4-8 Ом (1 – 3 Ватт);
  • Источник питания на 9 Вольт;
  • Источник сигнала (1 канал и заземление).

Величина резистора смещения R1 достигает десятков кОм и определяется опытным путём. Дело в том, что этот показатель вычисляется с учётом напряжением питания прибора, сопротивлением телефонного капсюля, коэффициентом передачи, свойственным выбранной разновидности транзистора. Начальной точкой отсчёта может служить сопротивление нагрузки, увеличенное как минимум в сотню раз.

Конденсатор (на схеме обозначается как C1) и уровень его ёмкости варьируется в диапазоне от 1 до 100 микрофарад, с увеличением ёмкости конденсатора прибор получает возможность. Назначение конденсатора (называемого также разделительным) заключается в том, чтобы пропускать переменный ток и отфильтровывать постоянный, не давая схеме замкнуться.

Для данной схемы уместно применение биполярного транзистора со структурой n-p-n и мощностью среднего и высокого уровня. Конденсатор желательно брать плёночный. Принимаемый сигнал можно получить через выход MP3-плеера. Собранный по данной схеме прибор можно оснастить потенциометром (на 50 000 Ом), позволяющим регулировать громкость.

При отсутствии в питающем блоке электролитического конденсатора с большой ёмкостью, понадобится установка электролита на 1000 – 2200 микрофарад, имеющего рабочее напряжение большее, чем в схеме.

Тому, кто не имел опыта работы с электроникой, следует знать, что при паянии составные элементы можно очень легко перегреть. Чтобы этого не произошло, лучше всего использовать паяльники на 25 Ватт, а прекращать пайку нужно через каждые 10 секунд непрерывного воздействия.

По сравнению с приведённой схемой однокаскадного усилителя НЧ, двухкаскадный обладает гораздо лучшими характеристиками, но его сборка не намного сложнее. Чтобы его сконструировать понадобится лишь последовательно соединить два простых каскада. Однако, при этом могут использоваться различные виды соединения, которые, конечно, влияют на качество и особенности передачи сигнала. Но в самом простом варианте можно просто соединить выход первого каскада с входом второго напрямую или через резистор. Связь такого типа соответственно называется непосредственной или резисторной. Степень усиления сигнала при этом равняется перемноженным коэффициентам усиления каждого из каскадов. К сожалению, последующее увеличение количества каскадов в усилителе не даёт аналогичного эффекта. Проблема в том, что величина коэффициента усиления определяется комплексно и достаточно сильно зависит от задержки во времени, то есть изменения фазы.

Но вместе с тем, если стоит задача налаживания работы тех или иных устройств, а также решения каких-то спорных моментов экспериментальным путём, то может быть необходим простейший вариант усилителя, собираемый буквально за четверть часа. Основным требованием к такому прибору будет минимальное количество дефицитных компонентов, а также способность работать при широком разбросе уровней напряжения и сопротивления.

При эксплуатации усилителя низких частот не забывайте о том, что его показатели сильно зависят от температурных условий, особенно это касается самодельных устройств.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните накарту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Однотактный усилитель на одном транзисторе

Схема его, выполненная с общим эмиттером и R-C-связями по входному и выходному сигналам для работы в классе «А», приведена на рисунке ниже.

На ней показан транзистор Q1 структуры n-p-n. Его коллектор через токоограничивающий резистор R3 присоединен к положительному выводу +Vcc, а эмиттер — к -Vcc. Усилитель на транзисторе структуры p-n-p будет иметь такую же схему, но выводы источника питания поменяются местами.

C1 — разделительный конденсатор, посредством которого источник переменного входного сигнала отделяется от источника постоянного напряжения Vcc. При этом С1 не препятствует прохождению переменного входного тока через переход «база — эмиттер транзистора Q1». Резисторы R1 и R2 совместно с сопротивлением перехода «Э — Б» образуют Vcc для выбора рабочей точки транзистора Q1 в статическом режиме. Типичной для этой схемы является величина R2 = 1 кОм, а положение рабочей точки — Vcc/2. R3 является нагрузочным резистором коллекторной цепи и служит для создания на коллекторе переменного напряжения выходного сигнала.

Предположим, что Vcc = 20 В, R2 = 1 кОм, а коэффициент усиления по току h = 150. Напряжение на эмиттере выбираем Ve = 9 В, а падение напряжения на переходе «Э — Б» принимаем равным Vbe = 0,7 В. Эта величина соответствует так называемому кремниевому транзистору. Если бы мы рассматривали усилитель на германиевых транзисторах, то падение напряжения на открытом переходе «Э — Б» было бы равно Vbe = 0,3 В.

Ток эмиттера, примерно равный току коллектора

Ie = 9 B/1 кОм = 9 мА ≈ Ic.

Ток базы Ib = Ic/h = 9 мА/150 = 60 мкА.

Падение напряжения на резисторе R1

V(R1) = Vcc — Vb = Vcc — (Vbe + Ve) = 20 В — 9,7 В = 10,3 В,

R1 = V(R1)/Ib = 10,3 В/60 мкА = 172 кОм.

С2 нужен для создания цепи прохождения переменной составляющей тока эмиттера (фактически тока коллектора). Если бы его не было, то резистор R2 сильно ограничивал бы переменную составляющую, так что рассматриваемый усилитель на биполярном транзисторе имел бы низкий коэффициент усиления по току.

В наших расчетах мы принимали, что Ic = Ib h, где Ib — ток базы, втекающий в нее из эмиттера и возникающий при подаче на базу напряжения смещения. Однако через базу всегда (как при наличии смещения, так и без него) протекает еще и ток утечки из коллектора Icb0. Поэтому реальный ток коллектора равен Ic = Ib h + Icb0 h, т.е. ток утечки в схеме с ОЭ усиливается в 150 раз. Если бы мы рассматривали усилитель на германиевых транзисторах, то это обстоятельство нужно было бы учитывать при расчетах. Дело в том, что имеют существенный Icb0 порядка нескольких мкА. У кремниевых же он на три порядка меньше (около нескольких нА), так что в расчетах им обычно пренебрегают.

Частотные характеристики

Усилители низкой (звуковой) частоты имеются практически во всех бытовых приборах – музыкальных центрах, телевизорах, радиоприемниках, магнитолах и даже в персональных компьютерах. Но существуют еще усилители ВЧ на транзисторах, лампах и микросхемах. Отличие их в том, что УНЧ позволяет усилить сигнал только звуковой частоты, которая воспринимается человеческим ухом. Усилители звука на транзисторах позволяют воспроизводить сигналы с частотами в диапазоне от 20 Гц до 20000 Гц.

Следовательно, даже простейшее устройство способно усилить сигнал в этом диапазоне. Причем делает оно это максимально равномерно. Коэффициент усиления зависит прямо от частоты входного сигнала. График зависимости этих величин – практически прямая линия. Если же на вход усилителя подать сигнал с частотой вне диапазона, качество работы и эффективность устройства быстро уменьшатся. Каскады УНЧ собираются, как правило, на транзисторах, работающих в низко- и среднечастотном диапазонах.

Двухкаскадные УНЧ с непосредственной связью между каскадами

Примерами УНЧ с непосредственными связями и минимальным подбором режима работы являются схемы, приведенные на рис. 11 — 14. Они имеют высокий коэффициент усиления и хорошую стабильность.

Рис. 11. Простой двухкаскадный УНЧ для микрофона (низкий уровень шумов, высокий КУ).

Рис. 12. Двухкаскадный усилитель низкой частоты на транзисторах КТ315.

Рис. 13. Двухкаскадный усилитель низкой частоты на транзисторах КТ315 — вариант 2.

Микрофонный усилитель (рис. 11) характеризуется низким уровнем собственных шумов и высоким коэффициентом усиления [МК 5/83-XIV]. В качестве микрофона ВМ1 использован микрофон электродинамического типа.

В роли микрофона может выступать и телефонный капсюль. Стабилизация рабочей точки (начального смещения на базе входного транзистора) усилителей на рис. 11 — 13 осуществляется за счет падения напряжения на эмиттерном сопротивлении второго каскада усиления.

Рис. 14. Двухкаскадный УНЧ с полевым транзистором.

Усилитель (рис. 14), имеющий высокое входное сопротивление (порядка 1 МОм), выполнен на полевом транзисторе VT1 (истоковый повторитель) и биполярном — VT2 (с общим).

Каскадный усилитель низкой частоты на полевых транзисторах, также имеющий высокое входное сопротивление, показан на рис. 15.

Рис. 15. схема простого двухкаскадного УНЧ на двух полевых транзисторах.

Класс работы усилителя

Как известно, в зависимости от степени непрерывности протекания тока на протяжении его периода через транзисторный усилительный каскад (усилитель) различают следующие классы его работы: «А», «B», «AB», «C», «D».

В классе работы ток «А» через каскад протекает на протяжении 100 % периода входного сигнала. Работу каскада в этом классе иллюстрирует следующий рисунок.

В классе работы усилительного каскада «AB» ток через него протекает более чем 50 %, но менее чем 100 % периода входного сигнала (см. рисунок ниже).

В классе работы каскада «В» ток через него протекает ровно 50 % периода входного сигнала, как это иллюстрирует рисунок.

И наконец в классе работы каскада «C» ток через него протекает менее чем 50 % периода входного сигнала.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector