Силовой инверторный блок
Переменное напряжение 220 В – это некоторое усредненное значение, которое показывает, что оно имеет такую же энергию, как и постоянный ток в 220 В. Фактически амплитуда равна 310 В. Из-за этого в фильтрах используются емкости на 400 В.
Мостовая выпрямительная сборка монтируется на радиатор. Требуется охлаждение диодов, поскольку через них протекают большие токи. Для защиты диодов от перегрева на радиаторе имеется предохранитель, при достижении критической температуры он отключает мост от сети.
В качестве фильтра используются электролитические конденсаторы, емкостью от 470 мкФ и рабочим напряжением 400 В. После фильтра напряжение поступает на инвертор.
Во время переключения ключей происходят броски импульсного тока вызывающие высокочастотные помехи. Чтобы они не проникали в сеть и не портили ее качество, сеть защищают фильтром электромагнитной совместимости. Он представляет собой набор конденсаторов и дросселя.
Сам инвертор собирается по мостовой схеме. В качестве ключевых элементов применяются IGBT транзисторы на напряжения от 600 В и токи соответствующие данному инвертору.
Они тоже с помощью специальной термопасты монтируются на радиаторы. При переключениях этих транзисторов возникают броски напряжения. Чтобы их погасить применяются RC фильтры.
Полученный на выходе электронных ключей переменный ток поступает на первичную обмотку высокочастотного понижающего трансформатора. На выходе вторичной обмотки получается переменный ток напряжением 50-60 В.
Под нагрузкой, когда идет сварка, он может выдавать ток до нескольких сотен ампер. Вторичная обмотка обычно выполняется ленточным проводом для уменьшения габаритов.
На выходе трансформатора стоит еще один мощный диодный мост. С него уже снимается необходимый сварочный ток. Здесь используются быстродействующие силовые диоды, другие использовать нельзя, потому что они сильно греются и выходят из строя. Для защиты от импульсных бросков напряжения используются дополнительные RC цепи.
Какие бывают виды и где применяются
Разделить импульсники можно по разным признакам. По выходному напряжению они делятся на:
- однополярные с одним уровнем напряжения;
- ондополярные с несколькими уровнями напряжения;
- двухполярные.
Эти типы можно комбинировать как угодно – принципиальных ограничений нет. Можно создать блок питания, например, с несколькими однополярными напряжениями (+5 В, +24 В) и с двуполярным (±12 В), или с двумя двуполярными выходами (±12 В, ±5 В). Все зависит от области применения.
Более интересной является информация о типе стабилизации. Здесь ИИП можно разделить на категории:
- Нестабилизированные источники. У них выходное напряжение зависит от нагрузки. Могут быть применены для питания оконечных устройств аудиоаппаратуры (усилители и т.п.).
- Стабилизированные источники. У таких устройств от нагрузки могут не зависеть напряжение, ток или и то, и другое. Источники со стабилизированным напряжением используются, например, в качестве БП для компьютеров и серверов, или для заряжания кислотно-свинцовых аккумуляторов. Стабилизированный ток подойдет для зарядных устройств для других типов АКБ.
- Регулируемые источники. У них уровень выходного напряжения и тока можно выставлять в определенных пределах в зависимости от потребности. Такие устройства используются в качестве лабораторных источников питания.
Описать все области использования импульсников невозможно. Они применяются там, где надо получить большой ток от легкого и компактного источника.
Также можно разделить ИИП по схемотехнике:
- с импульсным трансформатором;
- с накопительной индуктивностью.
В схемотехнику можно углубляться и дальше и классифицировать БП по другим критериям, но это принципиального значения не имеет.
Выбор технологии для конкретного приложения
Требования, предъявляемые конкретным приложением к параметрам проектируемого усилителя (тип сигнала, диапазон рабочих частот, уровень выходной мощности и т. д.), во многом определяют выбор транзисторной технологии. На более низких частотах все рассмотренные нами технологии изготовления транзисторов являются вполне приемлемыми кандидатами, и выбор типа транзистора зависит от того, что для проектируемого приложения является наиболее критичным. В S‑диапазоне и выше GaN HEMT-транзисторы на подложке из карбида кремния находятся вне конкуренции и являются, пожалуй, единственными подходящими кандидатами. Однако если задача обеспечения баланса между стоимостью и производительностью сложнее, рекомендуется сначала выяснить, какая из транзисторных технологий традиционно является наиболее подходящей для импульсных или CW-приложений. В таблице приведены преимущества и недостатки трех рассмотренных транзисторных технологий применительно к радиолокации.
Параметр |
Технология |
||
Кремниевая биполярная |
Кремниевая LDMOS |
GaN/SiC |
|
Плотность мощности, Вт/см2 |
высокая |
средняя |
очень высокая |
Эффективность (КПД) |
высокая |
низкая |
очень высокая |
Усиление |
низкое |
высокое |
очень высокое |
Емкость/Вт (для максимальной мощности и полосы пропускания необходимо как можно более низкое значение) |
средняя |
средняя |
низкая |
Широкополосное согласование |
сложное |
сложное |
простейшее |
Сложность построения схемы смещения |
низкая |
средняя |
высокая |
Типовое напряжение смещения, В |
28–60 |
28–50 |
24–50 |
Максимальная рабочая частота |
S-диапазон (2–4 ГГц) |
C-диапазон (4–8 ГГц) |
более 10 ГГц |
Тепловые характеристики транзисторов в импульсном режиме |
посредственные |
хорошие |
хорошие |
Устойчивость к высокому КСВН |
слабая |
высокая |
средняя |
Уровень зрелости технологии |
высокая |
высокая |
средняя |
Цена (долл./Вт) |
средняя |
низкая |
средняя |
Экологические характеристики |
плохие (используется корпус из BeO) |
отличные |
отличные |
Как устроен ШИМ контроллер
В стабилизированных и регулируемых источниках питания напряжение на выходе поддерживается методом широтно-импульсной модуляции (ШИМ). Суть метода в том, что первичная обмотка питается импульсами неизменной амплитуды и частоты. Для регулировки напряжения в зависимости от нагрузки или выбранного уровня изменяется ширина импульса. Трансформированные во вторичную обмотку импульсы затем выпрямляются и усредняются на выходном конденсаторе фильтра. Чем больше ширина импульса, тем выше усредненное напряжение. Если в результате увеличения тока нагрузки напряжение на выходе просело, ШИМ-контроллер сравнивает выходное напряжение с заданным и дает команду увеличить ширину импульсов. Если напряжение увеличилось, ширина импульсов уменьшается. Среднее напряжение также уменьшается.
Принцип регулирования выходного напряжения методом широтно-импульсной модуляции.
Культовой микросхемой для построения импульсных источников считается TL494. На ее примере можно разобрать принцип действия шим контроллера блока питания.
Распиновка TL494.
Назначение выводов микросхемы указано в таблице.
Назначение | Обозначение | Номер вывода | Номер вывода | Обозначение | Назначение |
---|---|---|---|---|---|
Прямой вход усилителя ошибки 1 | IN1 | 1 | 16 | IN2 | Прямой вход усилителя ошибки 1 |
Инверсный вход усилителя ошибки 1 | IN1 | 2 | 15 | IN2 | Инверсный вход усилителя ошибки 1 |
Выход обратной связи | FB | 3 | 14 | Vref | Выход опорного напряжения |
Управление временем задержки | DTC | 4 | 13 | ОТС | Выбор режима работы |
Частотозадающий конденсатор | C | 5 | 12 | VCC | Напряжение питания |
Частотозадающий резистор | R | 6 | 11 | С2 | Коллектор 2-го транзистора |
Общий провод | GND | 7 | 10 | E1 | Эмиттер 1-го транзистора |
Коллектор 1-го транзистора | C1 | 8 | 9 | E2 | Эмиттер 2 -го транзистора |
На выводы 7 и 12 подается напряжение питания +7..40 вольт. На выходе микросхемы установлены два транзистора, которые можно использовать для управления внешними ключами. Коллекторы (выводы 8 и 11) и эмиттеры (10 и 9) выходных транзисторов никуда не подключены. Их можно включать по схеме с открытым коллектором или с открытым эмиттером. Микросхема оптимизирована для управления ключами на биполярных транзисторах, но с использованием немного усложненных схемотехнических решений можно переключать и полевые транзисторы.
Структурная схема TL494.
Частоту генератора задают элементы, подключаемые к выводам 5 и 6. Напряжением на выводе 4 ограничивают ширину выходного импульса. Это необходимо для исключения «перехлеста» открытия транзисторов чтобы избежать ситуации, когда оба ключа оказываются открыты. Через этот вывод также можно организовать мягкий пуск БП. Вывод 13 служит для перевода микросхемы в однотактный режим. Если его подключить к общему проводу, импульсы на выводах обоих ключей станут одинаковыми. На выводе 14 постоянно присутствует образцовое напряжение, равное +5 вольтам. Оно может быть использовано в любых схемотехнических целях.
Выводы 1 и 2 служат прямым и инверсным выводами усилителя ошибки. Если напряжение на выводе 1 превышает напряжение на 2 ноге, то ширина выходных импульсов будет уменьшаться пропорционально разнице на этих выводах. Если напряжение на 2 выводе выше, чем на 1, то на выходе импульсы будут отсутствовать. Также работает второй усилитель ошибки (выводы 16 и 15). Выходы обоих усилителей соединены по схеме ИЛИ и подключены к ноге 3. Первый усилитель обычно используют для регулирования напряжения, второй – для регулирования тока.
Схема ИИП на TL494.
В качестве примера можно рассмотреть схему лабораторного источника на данной микросхеме. Здесь применены практически все технические решения, описанные выше. Регулируемая обратная связь, выполненная на операционных усилителях OP1..OP4, позволяет настраивать уровень выходного напряжения и ограничивать ток. Для создания импульсного напряжения используется полумостовой инвертор на биполярных транзисторах, подключенных к микросхеме посредством драйвера.
Для наглядности рекомендуем серию тематических видеороликов.
Также при создании ИИП применяются и другие микросхемы-регуляторы ШИМ. Они могут отличаться от TL494 по функционалу и назначению выводов, но в них используются те же принципы. Разобраться в их работе не составит труда.
IGBT-транзисторы
Объединив положительные качества биполярных и полевых, с изолированным затвором, транзисторов, можно получить для низкочастотной (имеется в виду промышленная частота 50-60 Hz) техники весьма достойный переключающий элемент – IGBT. Его обозначение и упрощенная эквивалентная схема показана на рисунке выше. Схема собрана подобно дарлингтоновской для биполярных. Полевой транзистор с n-каналом фактически служит усилителем тока с большим усилением, и хорошо открывает связанный с ним биполярный транзистор, который служит силовым в данной паре.
Его эмиттер в этой структуре назван коллектором и наоборот (по “принципу утки” – по отношению к клеммам прибор отчасти ведет себя как биполярный транзистор с гигантским усилением). В то же время, нельзя считать IGBT простой схемой, которую “спаяли” из n-канального полевого и pnp-биполярного транзисторов, – это именно полупроводниковая структура, а не схема. Формальные переход база-коллектор биполярной части и канал полевой образуют единую структуру на кристалле.
Область применения IGBT транзисторов по электрическим параметрам лежит от 300 В и выше, по частоте – до 10 кГц. Это как раз хорошо подходит для промышленной частоты (в применении частотников). IGBT применяются в электроприводах, начиная от небольших электроинструментов вплоть до электровозов. То, что они работают в области не очень высоких частот, в отличие от mosfet, избавляет от множества проблем, связанных с паразитными индуктивностями и емкостями – управляющий транзистор в такой структуре чувствует себя вполне комфортно, его частота переключений сравнительно невелика. Значит, легче перезаряжать затворную емкость.
Большой проводимости от него, в данном случае, не требуется. Выходной pnp биполярный транзистор устроен таким образом, что выдерживает большое обратное напряжение и может работать в инверсном режиме. Простота управления IGBT и область безопасной работы оказались гораздо выше, чем у биполярных транзисторов. IGBT, как таковые, не имеют встроенного обратного диода, но такой диод с быстрым восстановлением может быть добавлен в схему или внешним образом, или интегрирован на кристалле, если это нужно для той области, для которой предназначается прибор.
IGBT появились в 1983 году (в IR запатентовали первый образец)
Первые образцы неважно переключались и были ненадежными, поэтому на рынок, как следует, не вышли. Трудности были технологическими, связанными с получением пластин толщиной около 100 мкм
Их преодоление, а также появление Trench-технологии для изготовления MOSFET позволили резко снизить сопротивление канала в открытом состоянии, и это позволило приблизить свойства IGBT практически к свойствам традиционного механического выключателя, но без присущего ему образования дуги и на несколько порядков высоким быстродействием.
Транзисторы IGBT применяют в частотных преобразователях, устройствах плавного пуска, они интенсивно вытесняют тиристоры из всех областей, несмотря на свою значительную цену. Из используют в источниках питания, инверторах, электроприводах, сварочных питающих устройствах, на транспорте.
Схемы включения биполярного транзистора
В зависимости от
того, какой вывод транзистора является
общим, различают три схемы включения:
с общей базой ОБ, с общим эмиттером ОЭ
и общим коллектором ОК. Эти схемы
показаны на рис. 6. Полярность источников
на схемах относится к полупроводниковому
триоду типа р-n-p.
Физические процессы, протекающие в
указанных схемах, одинаковы, но
усилительные свойства различны.
В рассмотренной
выше схеме (см. рис.5), общим выводом
является вывод базы, поэтому эта
схема соответствует схеме с ОБ (рис.6а).
Аналогичной схемой в ламповых усилителях
является схема с общей сеткой.
Эта
аналогия базируется на том, что эмиттер
выполняет в полупроводниковом триоде
функции катода коллектор — функции
анода, а база — роль сетки.
Усилительный каскад, собранный
по схеме с ОБ, как отмечалось, имеет
малое входное и большое выходное
сопротивление.
Малое входное
сопротивление каскада является
существенным недостатком данной
схемы, поэтому схема с ОБ применяется
в усилителях низкой частоты редко.
Всхеме с ОЭ (рис.6б)
входной сигнал также подводится к
выводам эмиттера и базы, а резистор Rк
включается между выводами эмиттера и
коллектора.
Здесь
общим выводом служит вывод эмиттера.
Основной особенностью схемы с ОЭ является
то, что входным током в ней является
не ток эмиттера, а малый по величине
ток базы.
Поэтому входное сопротивление
в данной схеме значительно больше, чем
в предыдущей, и составляет сотни и
тысячи Ом; выходное сопротивление —
десятки кОм.
Коэффициент
усиления по примерно такую же величину,
как для схемы с ОБ.
Коэффициент
усиления по мощности Кр=К1КU
оказывается значительно выше, чем
для схемы с ОБ и может достигать нескольких
тысяч. Схема с ОЭ аналогична ламповому
каскаду с общим катодом и является
наиболее распространенной.
В схеме о ОК (рис.5,а)
сигнал подается на участок база –
коллектор, а выходное напряжение
снимается с резистора Rк,
включенного между эмиттером и коллектором.
Общим выводом служит вывод коллектора.
Входным током в этой схеме является ток
базы, а выходным – ток эмиттера.
В схеме
о ОК К1
немного больше,
чем в схема с ОЭ. Входное сопротивление
схемы о ОК велико – порядка десятков
или сотен кОм, а выходное, наоборот, мало
и составляет десятки или сотни Ом.
Схема с ОК применяется
реже, чем предыдущая, и служит, в основном,
для согласования сопротивлений между
отдельными каскадами усилителей и
в качестве входного каскада, когда
требуется высокое входное сопротивление.
Схема с ОК аналогична ламповому каскаду
с общим анодом.
Конденсаторы С1
и С1
в схемах на рис.5 служат для отделения
постоянной и переменной составляющих
тока на входе и выходе.
Цветовая маркировка стабилитрона
Для обозначения параметров стабилитрона используются цветные отметки, выполненные в виде опоясывающих корпус полосок. Отрицательный контакт (катод) обозначается черной (иногда серой) полосой. Необходимо учитывать, что у отечественных деталей черное кольцо может обозначать как катод, так и анод. На импортных деталях цветные кольца находятся ближе к отрицательному выводу.
Цвет (или сочетание цветов) полосок обозначает тип стабилитрона. Это несколько усложняет процесс идентификации, так как надо сначала определить сам тип стабилитрона, потом найти сведения о его параметрах. Однако, малый размер деталей не позволяет нанести подробную информацию, поэтому приходится решать вопрос наиболее надежным способом. Маркировка не стирается, не меняет цвет при нагреве, что позволяет определить номинал и тип стабилитрона даже после короткого замыкания прибора.
Кратко о MOSFET
MOSFET – это управляемый переключатель с тремя контактами (затвор, сток и исток). Сигнал затвора (управления) подается между затвором и истоком, а контактами переключения являются сток и исток. Сам затвор выполнен из металла и отделен от истока оксидом металла в качестве диэлектрика. Это позволяет снизить энергопотребление и делает этот транзистор отличным выбором для использования в качестве электронного переключателя или усилителя в схеме с общим истоком.
Существует много различных типов МОП-транзисторов, но наиболее сопоставимыми с IGBT являются мощные MOSFET. Они специально разработаны для работы со значительными уровнями мощности и используются чаще всего только во включенном или выключенном состояниях, что делает их наиболее используемым ключом для низковольтных схем. По сравнению с IGBT, мощные полевые МОП-транзисторы имеют преимущества – более высокую скорость коммутации и более высокую эффективность при работе при низких напряжениях. Более того, такая схема может выдерживать высокое напряжение блокировки и поддерживать высокий ток. Это связано с тем что большинство мощных МОП-структур являются вертикальными (а не плоскими). Номинальное напряжение является прямой функцией легирования и толщины эпитаксиального слоя с примесью N-типа, а ток зависит от ширины канала (чем шире канал, тем выше ток).
Графические иллюстрации характеристик
Рис. 1. Зависимость статического коэффициента усиления hFE транзистора в схеме с общим эмиттером от величины коллекторной нагрузки IC.
Зависимость снята при трех значениях температуры кристалла и при напряжении коллектор-эмиттер UCE = 10 В.
Рис. 2. Зависимость напряжения насыщения UCE(sat) коллектор-эмиттер от величины коллекторной нагрузки IC.
Зависимость снята при трех значениях температуры кристалла и при соотношении тока коллектора к току базы IC/IB = 5.
Рис. 3. Зависимость напряжения насыщения UBE(sat) база-эмиттер от величины коллекторной нагрузки IC.
Зависимость снята при трех значениях температуры кристалла и при соотношении тока коллектора к току базы IC/IB = 5.
Рис. 4. Ограничение мощности рассеивания PC при увеличении температуры внешней среды Ta.
Рис. 5. Область безопасной работы транзистора.
Ограничительные кривые определены при в импульсном режиме при длительностях импульсов: 1 мс, 100 мс, 1с.
Переход на нитрид-галлиевую технологию
Рис. 3. IGN1011L1200 — мощный GaN-on-SiC транзистор с импульсной выходной мощностью 1250 Вт. Транзистор предназначен для работы на частотах 1030 и 1090 МГц в режиме Mode-S ELM в составе систем вторичной радиолокации
Технология нитрид-галлиевых ПВПЭ (GaN HEMT) транзисторов — новейшая технология изготовления мощных усилительных полупроводниковых ВЧ/СВЧ-приборов, быстро набирающая популярность во многих приложениях благодаря высокому коэффициенту усиления и большой выходной мощности в S-диапазоне и выше. Как правило, приборы этого типа выполнены на подложке из карбида кремния (SiC), которая, обеспечивая высокую теплопроводность, способствует повышению долговременной надежности работы устройств.
GaN HEMT-транзисторы в силу конструктивного исполнения на SiC-подложке, обеспечивающей оптимальное охлаждение, идеально подходят для импульсных приложений высокой мощности с их строгими требованиями к плотности мощности (по сравнению с CW-приложениями). Кроме того, поскольку эти транзисторы отличаются высокой плотностью мощности, их выходная емкость из расчета на 1 Вт намного ниже, чем у конкурирующих с ними технологий. Это позволяет проводить настройку гармонических составляющих сигнала на выходе, что обеспечивает КПД выше 85% даже при киловаттных уровнях выходной мощности. Меньшая емкость из расчета на 1 Вт — то, что позволяет этим полупроводниковым устройствам работать на гораздо более высоких частотах, чем при использовании технологии LDMOS.
Однако одним из недостатков, присущих GaN HEMT-транзисторам, является то, что они являются полупроводниковыми устройствами, работающими в режиме обеднения носителями. Это значит, что для их функционирования требуется и положительное, и отрицательное напряжения. Кроме того, напряжение на затвор такого транзистора подается до появления напряжения на его стоке. Чтобы нивелировать этот недостаток, компания Integra в усилительных субмодулях (паллетах) использует специальные схемы, распределяющие по времени управляющие импульсы затвора (gate pulsing and sequencing, GPS). Такое решение позволяет избежать затруднений, связанных с указанной особенностью GaN HEMT-транзисторов, и не приводит к увеличению числа элементов в конечном решении усилителя.
Примером современного GaN HEMT-устройства является транзистор IGN1011L1200 компании Integra, представленный на рис. 3. Импульсная выходная мощность транзистора (предназначенного для систем опознавания и обзорных радиолокационных станций) превышает 1250 Вт. Он работает на частотах 1030 и 1090 МГц в том же схемотехническом решении, что является следствием исключительно низкого отношения емкости из расчета на 1 Вт. При коэффициенте усиления около 17 дБ у IGN1011L1200 — очень высокий КПД: 85% в режиме Mode-S ELM при усилении импульсного сигнала соответствующего формата (пачка из 48 импульсов — 32 мкс вкл./18 мкс выкл., период повтора посылок — 24 мс, усредненный коэффициент заполнения — 6,4%.
MOSFET-транзистор — влияние резистора затвора
Большинство полевых МОП-транзисторов используются как переключатели, управляемые напряжением. Эти элементы очень популярны по двум причинам. Во-первых, их ворота не потребляют электричество. Во-вторых, из-за низкого сопротивления открытого канала происходят очень маленькие потери (что всегда является большим преимуществом).
Лучше всего проверить это на практике. На этот раз для выполнения упражнения вам понадобятся:
- 1 × зуммер с генератором,
- 1 × транзистор BS170,
- Резистор 1 × 100 R,
- Резистор 1 × 1 кОм,
- Резистор 1 × 1М,
- Батарея 4 × AA,
- 1 × корзина для 4 батареек АА,
- 1 × макетная плата,
- Комплект соединительных проводов.
Описание выводов транзистора BS170 (слева вид снизу, т.е. со стороны выводов)
Теперь нам необходимо собрать простую схему, в которой мы заменим резистор, подключенный к затвору — пусть в начале он будет 10 кОм. Если хотите, для безопасности, при сборке схемы, можно закоротить ножки транзистора фольгой — не забудьте снять ее непосредственно перед подключением батареи.
Пример использования полевого МОП-транзистора
На практике схема может выглядеть так:
Схема на макетной плате | MOSFET на практике |
Если схема собрана правильно, зуммер должен пищать. В такой ситуации стоит измерить ток, протекающий через зуммер, и напряжение между стоком и истоком транзистора. Также стоит измерить напряжение между выводами резистора.
Измерение напряжения сток-исток | Измерение тока стока |
Измерение напряжения затвор-исток | Измерение тока затвора |
Когда измерения готовы, замените наш резистор на резистор большего размера, то есть на 1 МОм, и повторите измерения, затем то же самое для резистора 100 Ом. Наконец, также стоит проверить, что произойдет, если мы подключим затвор через резистор к земле.
Схема с заземлением
В этом эксперименте, каждый раз, напряжение транзистора UGS превышало пороговое значение напряжения. Это произошло из-за того, что исток был подключен к земле, а затвор — к напряжению, близкому к +6 В, а пороговое напряжение этого транзистора было от 2 до 3 В. В свою очередь, подключение затвора к земле вызвал исчезновение канала и отсутствие тока, потому что UGS = 0.
Идеально работающий мультиметр имел бы бесконечно большое сопротивление. Однако наш мультиметр имеет сопротивление 1 МОм, что приводит к большим искажениям при последовательном измерении с R = 1 МОм. |
Результаты, полученные нами в этом упражнении, могут отличаться от ваших
Собранные в таблице данные, наглядно показывают состояние засорения и насыщения транзистора. В насыщенном состоянии (когда UGS намного больше, чем UGSth), сопротивление между стоком и истоком незначительно, следовательно, падение напряжения составляет порядка нескольких мВ, а сток ограничен током, ограниченным только зуммером. В засоренном состоянии сопротивление настолько велико, что ток стока практически не течет, и почти все напряжение протекает между стоком и истоком. Все эти наблюдения не зависят от используемого резистора затвора (ситуация была бы иной в случае с биполярными транзисторами).
Если резистор удален из работающей схемы (что мы не рекомендуем делать из-за возможности повреждения транзистора), зуммер все еще мог бы издавать звуковой сигнал. Почему? Затвор отделен от канала изолятором, поэтому там создается емкость, то есть там есть небольшой внутренний конденсатор. Только через некоторое время из-за несовершенства изолятора он разрядится.
Datasheet Download — General
Номер произв | MMBT4401 | ||
Описание | SMALL SIGNAL TRANSISTORS (NPN) | ||
Производители | General | ||
логотип | |||
1Page
ADVANCED INFORMATION ¨ NPN Silicon Epitaxial Planar Transistor for switching and amplifier applications. ¨ As complementary type, the PNP transistor MMBT4403 is recommended. ¨ This transistor is also available in the TO-92 case with the type designation 2N4401. Case: SOT-23 Plastic Package Weight: approx. 0.008g Marking code: 2X MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Power Dissipation FR-5 Board,* TA=25°C Derate above 25°C Power Dissipation Alumina Substrate,** TA=25°C Derate above 25°C Thermal Resistance, Junction to Ambient VCBO VCEO VEBO IC Ptot Ptot RQJA Tj TS VALUE mW/°C mW mW/°C °C/W ¡C
MMBT4401 at IC = 0.1 mA, IE = 0 Collector-Emitter Breakdown Voltage(1) at IC = 1 mA, IB = 0 Emitter-Base Breakdown Voltage at IE = 0.1 mA, IC = 0 Collector-Emitter Saturation Voltage at IC = 150 mA, IB = 15 mA at IC = 500 mA, IB = 50 mA Base-Emitter Saturation Voltage at IC = 150 mA, IB = 15 mA at IC = 500 mA, IB = 50 mA Collector Cutoff Current at VEB = 0.4 V, VCE = 35 V Base Cutoff Current at VEB = 0.4 V, VCE = 35 V DC Current Gain at VCE = 1 V, IC = 0.1 mA at VCE = 1 V, IC = 1 mA at VCE = 1 V, IC = 10 mA at VCE = 1 V, IC = 150 mA(1) at VCE = 2 V, IC = 500 mA(1) Input Impedance at VCE = 10 V, IC = 1 mA, f = 1 kHz Voltage Feedback Ratio at VCE = 10 V, IC = 1 mA, f = 1 kHz Current Gain-Bandwidth Product at VCE = 10 V, IC = 20 mA, f = 100 MHz Collector-Base Capacitance at VCB = 5 V,f = 1 MHz, IE=0 Emitter-Base Capacitance at VEB = 0.5 V,f = 1 MHz, IC=0 SYMBOL V(BR)CBO V(BR)CEO V(BR)EBO VCEsat VCEsat VBEsat VBEsat ICEX IBEV hFE hFE hFE hFE hFE hie hre fT CCBO CEBO MIN. 0.1 ¥ 10-4 250 (1) Pulse test: pulse width ²300ms, cycle ² 2.0% MAX. 8 ¥ 10-4 Ð kW Ð
MMBT4401
ELECTRICAL CHARACTERISTICS at VCE = 10 V, IC = 1 mA, f = 1 kHz Output Admittance at VCE = 10 V, IC = 1 mA, f = 1 kHz Delay Time (see Fig. 1) at IB1 = 15 mA, IC = 150 mA VCC = 30 V, VBE = 40 V Rise Time (see Fig. 1) at IB1 = 15 mA, IC = 150 mA VCC = 30 V, VBE = 40 V Storage Time (see Fig. 2) at IB1 = IB2 = 15 mA, IC = 150 mA VCC = 30 V, IC = 150 mA Fall Time (see Fig. 2) at IB1 = IB2 = 15 mA, IC = 150 mA VCC = 30 V, IC = 150 mA SYMBOL hfe hoe td tr ts tf MIN. mS ns -2 V 1.0 to 100 ms, DUTY CYCLE Å 2% < 2 ns 1kW +30V 200W CS* < 10 pF Scope rise time < 4ns -14 V 1.0 to 100 ms, DUTY CYCLE Å 2% +30V 200W < 20 ns 1kW -4 V CS* < 10 pF |
|||
Всего страниц | 3 Pages | ||
Скачать PDF |
Электрические параметры
Характеристика | Обозначение | Параметры при измерениях | Значения |
---|---|---|---|
Напряжение коллектор-база, В | UCBO | IC = 100 мкА | 600 |
Напряжение коллектор-эмиттер, В | UCEO | IC = 10 мА | 400 |
Напряжение эмиттер-база, В | UEBO | IE = 10 мкА | 6 |
Ток коллектора выключения, мкА | ICBO | UCB = 550 В | 10 |
Ток коллектора выключения, мА | ICEO | UCB = 400 В | 10 |
Ток эмиттера выключения, мкА | IEBO | UEB = 6,0 В | 10 |
Напряжение насыщения коллектор-эмиттер, В | UCE(sat)1 ٭ | IC = 50 мА, IB = 10 мА | 0,4 |
Напряжение насыщения коллектор-эмиттер, В | UCE(sat)2 ٭ | IC = 100 мА, IB = 20 мА | 0,75 |
Напряжение насыщения база-эмиттер, В | UBE(sat) ٭ | IC = 50 мА, IB = 10 мА | 1 |
Статический коэффициент усиления по току | hFE (1) ٭ | UCE = 10,0 В, IC = 10 мА | ≥ 8 |
hFE (2) ٭ | UCE = 10,0 В, IC = 50 мА | 10…36 |
٭ — получено в импульсном режиме: длительность импульса – 380 мкс, скважность поступления импульсов — ≤ 2%. Примечание: данные в таблицах действительны при температуре среды Ta = 25°C
Примечание: данные в таблицах действительны при температуре среды Ta = 25°C.
Полевые SMD транзисторы
Маркировка | Тип прибора | Маркировка | Тип прибора |
6A | MMBF4416 | C92 | SST4392 |
6B | MMBF5484 | C93 | SST4393 |
6C | MMBFU310 | H16 | SST4416 |
6D | MMBF5457 | I08 | SST108 |
6E | MMBF5460 | I09 | SST109 |
6F | MMBF4860 | I10 | SST110 |
6G | MMBF4393 | M4 | BSR56 |
6H | MMBF5486 | M5 | BSR57 |
6J | MMBF4391 | M6 | BSR58 |
6K | MMBF4932 | P01 | SST201 |
6L | MMBF5459 | P02 | SST202 |
6T | MMBFJ310 | P03 | SST203 |
6W | MMBFJ175 | P04 | SST204 |
6Y | MMBFJ177 | S14 | SST5114 |
B08 | SST6908 | S15 | SST5115 |
B09 | SST6909 | S16 | SST5116 |
B10 | SST6910 | S70 | SST270 |
C11 | SST111 | S71 | SST271 |
C12 | SST112 | S74 | SST174 |
C13 | SST113 | S75 | SST175 |
C41 | SST4091 | S76 | SST176 |
C42 | SST4092 | S77 | SST177 |
C43 | SST4093 | TV | MMBF112 |
C59 | SST4859 | Z08 | SST308 |
C60 | SST4860 | Z09 | SST309 |
C61 | SST4861 | Z10 | SST310 |
C91 | SST4391 |
А это пример n-p-n и p-n-n биполярных транзисторов (sot-23, sot-323) с типовым расположением выводов:
Важнейшие параметры МОП-транзисторов
MOSFET-транзисторы, как и биполярные транзисторы, имеют множество различных параметров. Однако мы сосредоточимся на тех, которые являются наиболее важными с точки зрения «управляемого переключателя». Энтузиасты DIY используют их чаще всего в своих проектах.
Сопротивление открытого канала — когда напряжение затвор-исток (UGS) в несколько раз превышает пороговое напряжение, тогда создаваемый канал достаточно широк, и его дальнейшее расширение ничего не меняет, потому что задействованы другие ограничения, такие как ширина протекания канала или контактное сопротивление. В этом состоянии транзистор ведет себя как резистор с сопротивлением от нескольких Ом до нескольких миллиомов.
Чем ниже это сопротивление, тем меньше будет рассеиваемая мощность. |
Максимальное напряжение затвор-исток — затвор и исток разделены очень тонким слоем диэлектрика, который можно пробить, если к нему приложить слишком высокое напряжение.
Будьте осторожны, не привышайте максимальное напряжение, иначе это может привести к разрушению транзистора. |
- Максимальный ток стока — максимальный ток, которым может управлять транзистор.
- Максимальное напряжение сток-исток — как и в случае максимального UGS — превышение допустимого UDS может привести к выходу из строя транзистора.
- Максимальная потеря мощности — результат нагрева транзистора при протекании тока.
SMD маркировка электрических элементов
Принцип нанесения обозначений состоит в зашифрованной передаче сведений о размерах и электрических параметрах чипа. Существует условное деление по количеству выводов и величине корпуса элементов:
Количество выводов | Маркировка корпуса по возрастанию размера | Краткое описание |
Двухконтактные | SOD (например, SOD128, SOD323 и т.п.) или WLCSP2 | Пассивные чипы цилиндрической или квадратной формы, танталовые конденсаторы, диоды |
Трехконтактные | DPAK, D2PAK, D3PAK | Автор данного корпуса — компания Моторола. Все элементы имеют одинаковую форму, но разный размер. Используются для полупроводниковых элементов, выделяющих тепловую энергию |
Четырехконтактные и более | WLCSP(N) (литера N обозначает число выводов), SOT, SOIC, SSOP, CLCC, LQFP, DFN,DIP / DIL,Flat Pack,TSOP,ZIP | Контакты этих чипов размещены по двум противоположным боковым сторонам корпуса |
Элементы с числом контактов более четырех | LCC, PLCC, QFN, QFP, QUIP | Выводы расположены по всем четырем сторонам корпуса |
Выводы размещены в виде решетки | BGA, uBGA | Микросхемы, предназначенные для пайки с помощью специальной пасты |
Безвыводные элементы | μBGA, LFBGA | Оснащены только контактными пластинками или каплями припоя |
Подведем итог
Многие из вышеупомянутых фактов касаются исторической основы обоих устройств. Достижения и технологические прорывы в разработке нового оборудования, а также использование новых материалов, таких как карбид кремния (SiC), привели к значительному улучшению производительности этих радиодеталей за последние годы.
МОП-транзистор:
- Высокая частота переключения.
- Лучшие динамические параметры и более низкое энергопотребление драйвера.
- Более низкая емкость затвора.
- Более низкое термосопротивление, которое приводит к лучшему рассеиванию мощности.
- Более короткое время нарастания и спада, что означает способность работать на более высоких частотах.
IGBT модуль:
- Улучшенная технология производства, которая приводит к снижению затрат.
- Лучшая устойчивость к перегрузкам.
- Улучшенная способность распараллеливания схемы.
- Более быстрое и плавное включение и выключение.
- Снижение потерь при включении и при переключении.
- Снижение входной мощности.
В любом случае модули MOSFET и IGBT быстро заменяют большинство старых полупроводниковых и механических устройств, используемых для управления током. Силовые устройства на основе SiC демонстрируют такие преимущества как меньшие потери, меньшие размеры и более высокая эффективность. Подобные инновации будут продолжать расширять пределы использования MOSFET и IGBT транзисторов для схем с более высоким напряжением и большей мощностью.