Технические характеристики [ править ]
Точные рабочие характеристики зависят от производителя и даты; до перехода на эпитаксиальную базовую версию в середине 1970-х годов f T могла составлять, например, всего 0,8 МГц.
производитель | Дата | V генеральный директор | V CBO | V CER (100 Ом) | I C | I B | P D @ T C = 25 град. | h fe (импульсный тест) | f T |
---|---|---|---|---|---|---|---|---|---|
RCA | 1967 | 60 В генеральный директор (вус) | 100 В CBO | 70 В CER (Sus) | 15А | 7А | 115 Вт | 20-70 (при I C = 4А в импульсном режиме ) | не дано |
ON-Semiconductor | 2005 | 60 В генеральный директор | 100 В CBO | 70 В CER | 15А (непрерывный) | 7А | 115 Вт | 20-70 (при I C = 4A) | 2,5 МГц |
Упакованный в корпус типа TO-3 , это силовой транзистор на 15 А , 60 В (или более, см. Ниже), 115 Вт с (усиление прямого тока) от 20 до 70 при токе коллектора 4 А (это может быть от 100 до 200 при тестировании с помощью мультиметра ). часто составляет около 3,0 МГц, а для 2N3055A типично 6 МГц; на этой частоте расчетное усиление по току (бета) падает до 1, указывая на то, что транзистор больше не может обеспечивать полезное усиление в конфигурации с обычным эмиттером . Частота, при которой усиление начинает падать, может быть намного ниже, см. Ниже.
Транзистор 2Н3055 внутреннее устройство.
Максимальные оценки
Максимальное напряжение между коллектором и эмиттером для 2N3055, как и для других транзисторов, зависит от пути сопротивления, который внешняя цепь обеспечивает между базой и эмиттером транзистора; при 100 Ом номинальное напряжение пробоя 70 В, V CER , и поддерживающее напряжение коллектор-эмиттер, V CEO (sus) , предоставлено ON Semiconductor. Иногда напряжение пробоя CBO 100 В (максимальное напряжение между коллектором и базой при открытом эмиттере, нереалистичное расположение в практических схемах) указывается как единственное номинальное напряжение, которое может вызвать путаницу. Производители редко указывают номинальное напряжение V CES для 2N3055.
Общая потребляемая мощность (P написана D в большинстве американских справочных данных, P карапуз в европейских) зависит от радиатора , к которому подключен 2N3055. С «бесконечным» радиатором, то есть: когда температура корпуса определенно составляет 25 градусов, номинальная мощность составляет около 115 Вт (некоторые производители указывают 117 Вт), но для большинства приложений (и, конечно, при высокой температуре окружающей среды) ожидается значительно более низкая номинальная мощность согласно графику снижения мощности производителя
Устройство разработано для работы с эффективным радиатором, но необходимо соблюдать осторожность, чтобы правильно установить устройство иначе это может привести к физическому повреждению или ухудшению энергопотребления, особенно с корпусами или радиаторами, которые не идеально плоский
Частота перехода, f T
Руководство по RCA-транзисторам 1967 года, SC-13, не упоминает никаких измерений высокочастотных характеристик 2N3055; в руководстве SC-15 1971 года была указана частота перехода f T не менее 800 кГц (при I C = 1 A) и f hfe (частота, при которой усиление тока слабого сигнала падает на 3 дБ). указано при 1А как минимум 10 кГц. Другие производители примерно в это время также указали бы аналогичные значения (например, в 1973 году Philips дал f T > 0,8 МГц и f hfe > 15 кГц для своего устройства 2N3055).
К 1977 году RCA изменили свою спецификацию, чтобы дать 2,5 для минимальной величины усиления слабого сигнала при f = 1 МГц, по существу давая минимальное значение f T 2,5 МГц (и 4 МГц для их MJ2955). Современные таблицы данных 2N3055 часто, но не всегда, указывают f T равным 2,5 МГц (минимум), потому что со временем были внесены некоторые улучшения (особенно переход на эпитаксиальный производственный процесс). Тем не менее, нельзя предполагать, что 2N3055 (и многие другие силовые транзисторы того времени) обладают хорошими высокочастотными характеристиками, и даже в пределах диапазона звуковых частот может наблюдаться ухудшение фазового сдвига и усиления без обратной связи. Современные преемники 2N3055 могут быть гораздо более подходящими в схемах с быстрым переключением или высококачественных усилителях мощности звука.
Основные параметры
- Коэффициент передачи по току.
- Входное сопротивление.
- Выходная проводимость.
- Обратный ток коллектор-эмиттер.
- Время включения.
- Предельная частота коэффициента передачи тока базы.
- Обратный ток коллектора.
- Максимально допустимый ток.
- Граничная частота коэффициента передачи тока в схеме с общим эмиттером.
Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:
- коэффициент усиления по току α;
- сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
- rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
- rк — сумму сопротивлений коллекторной области и коллекторного перехода;
- rб — поперечное сопротивление базы.
Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».
Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.
- h11 = Um1/Im1, при Um2 = 0
Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.
- h12 = Um1/Um2, при Im1 = 0.
Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.
- h21 = Im2/Im1, при Um2 = 0.
Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.
- h22 = Im2/Um2, при Im1 = 0.
Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:
- Um1 = h11Im1 + h12Um2;
- Im2 = h21Im1 + h22Um2.
В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.
Для схемы ОЭ: Im1 = Imб, Im2 = Imк, Um1 = Umб-э, Um2 = Umк-э. Например, для данной схемы:
- h21э = Imк/Imб = β.
Для схемы ОБ: Im1 = Imэ, Im2 = Imк, Um1 = Umэ-б, Um2 = Umк-б.
Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ:
;
;
;
.
С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.
В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.
Модификации
Тип | Pc | Ucb | Uce | Ueb | Tj | Ic | hfe | ft | Корпус |
---|---|---|---|---|---|---|---|---|---|
2N3055 | 117 W | 100 V | 70 V | 7 V | 200 °C | 15 A | 20 | 0.2 MHz | TO3 |
2N3055-1 | 117 W | 90 V | 40 V | 7 V | 200 °C | 15 A | 20 | 0.8 MHz | TO3 |
2N3055-2 | 117 W | 90 V | 40 V | 7 V | 200 °C | 15 A | 10 | 0.8 MHz | TO3 |
2N3055-3 | 117 W | 110 V | 100 V | 7 V | 200 °C | 15 A | 20 | 0.8 MHz | TO3 |
2N3055-4 | 117 W | 80 V | 30 V | 7 V | 200 °C | 15 A | 30 | 0.8 MHz | TO3 |
2N3055-5 | 117 W | 80 V | 30 V | 7 V | 200 °C | 15 A | 14 | 0.8 MHz | TO3 |
2N3055-6 | 117 W | 110 V | 100 V | 7 V | 200 °C | 15 A | 15 | 0.8 MHz | TO3 |
2N3055-7 | 117 W | 110 V | 100 V | 7 V | 200 °C | 15 A | 14 | 0.8 MHz | TO3 |
2N3055-8 | 117 W | 110 V | 100 V | 7 V | 200 °C | 15 A | 70 | 0.8 MHz | TO3 |
2N3055-9 | 117 W | 95 V | 55 V | 7 V | 200 °C | 15 A | 14 | 0.8 MHz | TO3 |
2N3055-10 | 117 W | 95 V | 55 V | 7 V | 200 °C | 15 A | 70 | 0.8 MHz | TO3 |
2N3055A | 117 W | 100 V | 60 V | 7 V | 200 °C | 15 A | 20 | 0.8 MHz | TO204AA |
2N3055AG | 115 W | 100 V | 60 V | 7 V | 200 °C | 15 A | 10 | 0.8 MHz | TO3 |
2N3055B | 115 W | 100 V | 60 V | 7 V | 150 °C | 15 A | 10 | TO-3 | |
2N3055C | 117 W | 80 V | 60 V | 7 V | 200 °C | 15 A | 20 | 0.8 MHz | TO3 |
2N3055E | 115 W | 100 V | 60 V | 7 V | 200 °C | 15 A | 20 | 2.5 MHz | TO3 |
2N3055ESM | 115 W | 100 V | 60 V | 7 V | 200 °C | 15 A | 20 | 2.5 MHz | TO252 |
2N3055ESMD | 115 W | 60 V | 15 A | 20 | 2.5 MHz | TO276AB | |||
2N3055G | 115 W | 100 V | 60 V | 7 V | 200 °C | 15 A | 20 | 2.5 MHz | TO3 |
2N3055H | 115 W | 100 V | 60 V | 7 V | 200 °C | 15 A | 20 | 0.8 MHz | TO3 |
2N3055HV | 90 W | 100 V | 100 V | 7 V | 200 °C | 15 A | 5 | 2.5 MHz | TO-3 |
2N3055S | 117 W | 100 V | 60 V | 7 V | 200 °C | 15 A | 20 | 0.8 MHz | TO3 |
2N3055SD | 115 W | 100 V | 60 V | 7 V | 200 °C | 15 A | 20 | 0.8 MHz | TO3 |
2N3055U | 150 W | 100 V | 80 V | 7 V | 200 °C | 15 A | 20 | 0.8 MHz | TO3 |
2N3055V | 150 W | 100 V | 60 V | 7 V | 200 °C | 15 A | 20 | 0.8 MHz | TO3 |
G2N3055 | 117 W | 100 V | 70 V | 7 V | 200 °C | 15 A | 20 | 0.2 MHz | TO3 |
TIP3055 Datasheet (PDF)
1.1. tip3055r.pdf Size:104K _motorola
Order this document MOTOROLA by TIP3055/D SEMICONDUCTOR TECHNICAL DATA NPN TIP3055 Complementary Silicon Power PNP TIP2955 Transistors . . . designed for general�purpose switching and amplifier applications. � DC Current Gain � hFE = 20�70 @ IC = 4.0 Adc 15 AMPERE � Collector�Emitter Saturation Voltage � VCE(sat) = 1.1 Vdc (Max) @ IC = 4.0 Adc IIIIIIIIIIIIIIIIIIIIIII POWER TRANSISTO
TIP2955 TIP3055 Complementary power transistors Features � Low collector-emitter saturation voltage � Complementary NPN – PNP transistors Applications � General purpose � Audio Amplifier 3 2 1 Description TO-247 The devices are manufactured in epitaxial-base planar technology and are suitable for audio, power linear and switching applications. Figure 1. Internal schematic diagr
TIP3055 (NPN), TIP2955 (PNP) Complementary Silicon Power Transistors Designed for general-purpose switching and amplifier applications. http://onsemi.com Features � DC Current Gain – 15 AMPERE hFE = 20 – 70 @ IC POWER TRANSISTORS = 4.0 Adc COMPLEMENTARY SILICON � Collector-Emitter Saturation Voltage – 60 VOLTS, 90 WATTS VCE(sat) = 1.1 Vdc (Max) @ IC = 4.0 Adc � Excellent Safe
1.4. tip3055.pdf Size:82K _bourns
TIP3055 NPN SILICON POWER TRANSISTOR ? Designed for Complementary Use with the SOT-93 PACKAGE TIP2955 Series (TOP VIEW) ? 90 W at 25�C Case Temperature B 1 ? 15 A Continuous Collector Current C 2 ? Customer-Specified Selections Available 3 E Pin 2 is in electrical contact with the mounting base. MDTRAAA absolute maximum ratings at 25�C case temperature (unless otherwise noted) RAT
Continental Device India Limited An ISO/TS 16949, ISO 9001 and ISO 14001 Certified Company POWER TRANSISTORS TIP2955F PNP TIP3055F NPN TO- 3P Fully Isolated Plastic Package B C E Designed for General Purpose Switching and Amplifier Applications ABSOLUTE MAXIMUM RATINGS DESCRIPTION SYMBOL VALUE UNIT Collector-Emitter Voltage VCEO 60 V Collector-Emitter Voltage VCER 70 V Collector-Bas
1.7. tip3055.pdf Size:142K _inchange_semiconductor
Inchange Semiconductor Product Specification Silicon NPN Power Transistors DESCRIPTION Ў¤ With TO-3PN package Ў¤ Complement to type TIP2955 Ў¤ 90 W at 25°C case temperature Ў¤ 15 A continuous collector current APPLICATIONS Ў¤ Designed for generalpurpose switching and amplifier applications. PINNING PIN 1 2 3 Base Collector;connected to mounting base Emitter DESCRIPTION TIP3
* Изображения служат только для ознакомления См. DataSheet продукта
Описание
NPN 70V, 15A, 90W (Comp. TIP2955)
Биполярный транзистор, NPN, 70 В, 15 А, 90 Вт
Транзистор 2N3055 – мощный биполярный транзистор n-p-n типа, который может быть использован в различных устройствах: в источниках питания, в аудио усилителях, в схемах переключения и т.д. В данной статье приведены его подробные электрические характеристики в соответствии с документацией производителя «ON Semiconductor».
Аналоги
Тип | Pc | Ucb | Uce | Ueb | Ic | Tj | Ft | Hfe | Корпус |
---|---|---|---|---|---|---|---|---|---|
2N3055 | 117 W | 100 V | 70 V | 7 V | 15 A | 200 °C | 0,2 MHz | 20 | TO3 |
2N5630 | 200 W | 120 V | 120 V | 7 V | 20 A | 200 °C | 1 MHz | 20 | TO3 |
2N5671 | 140 W | 120 V | 90 V | 7 V | 30 A | 200 °C | 50 MHz | 20 | TO3 |
2N6678 | 175 W | 650 V | 400 V | 8 V | 15 A | 3 MHz | от 8 | TO3 | |
2N6254 | 150 W | 100 V | 90 V | 7 V | 15 A | 200 °C | 0,8 MHz | 20 | TO3 |
2N6322 | 200 W | 300 V | 200 V | 30 A | 200 °C | 40 | TO3 | ||
2SC6011 | 160 W | 200 V | 200 V | 15 A | 20 MHz | 50 | TO3P | ||
BDY58 | 175 W | 160 V | 125 V | 10 V | 25 A | 200 °C | 10 MHz | 20 | TO3 |
BDY77 | 150 W | 150 V | 120 V | 7 V | 16 A | 200 °C | 0,8 MHz | 40 | TO3 |
BD130 | 100 W | 100 V | 60 V | 15 A | 1 MHz | 20…70 | TO3 | ||
BUR52 | 350 W | 350 V | 250 V | 10 V | 60 A | 200 °C | 10 MHz | 20 | TO3 |
BUS13 | 175 W | 850 V | 400 V | 9 V | 15 A | 200 °C | 30 | TO3 | |
BUS14 | 250 W | 850 V | 400 V | 9 V | 30 A | 200 °C | 30 | TO3 | |
BUS52 | 350 W | 350 V | 200 V | 40 A | 200 °C | 20 | TO3 | ||
BUV12 | 150 W | 300 V | 250 V | 7 V | 20 A | 200 °C | 8 MHz | 20 | TO3 |
BUV21 | 150 W | 250 V | 200 V | 7 V | 40 A | 200 °C | 8 MHz | 20 | TO3 |
BUX10 | 150 W | 160 V | 125 V | 7 V | 25 A | 200 °C | 8 MHz | 20 | TO3 |
BUX48 | 175 W | 800 V | 400 V | 7 V | 15 A | от 8 | TO3 | ||
BUX48A | 175 W | 1000 V | 450 V | 7 V | 15 A | 200 °C | 30 | TO3 | |
BUX92 | 300 W | 500 V | 500 V | 60 A | 200 °C | 5 MHz | 30 | TO3 | |
MJ10005 | 175 W | 500 V | 400 V | 8 V | 20 A | 200 °C | 40 | TO3 | |
MJ10016 | 250 W | 700 V | 500 V | 8 V | 60 A | 200 °C | 25 | TO3 | |
MJ10022 | 250 W | 450 V | 350 V | 8 V | 40 A | 200 °C | 50 | TO3 | |
MJ10023 | 250 W | 600 V | 400 V | 8 V | 40 A | 200 °C | 50 | TO3 | |
MJ15026 | 250 W | 200 V | 250 V | 7 V | 16 A | 200 °C | 4 MHz | 25 | TO3 |
MJL21194 | 200 W | 250 V | 16 A | 4 MHz | 25 | TO3PBL TO264 | |||
MJL21196 | 200 W | 250 V | 16 A | 4 MHz | 25 | TO3PBL TO264 | |||
MJL3281A | 200 W | 260 V | 15 A | 30 MHz | 75 | TO3PBL TO264 | |||
MJL4281A | 230 W | 350 V | 15 A | 35 MHz | 80 | TO3PBL TO264 | |||
MJ15015 | 180 W | 200 V | 120 V | 7 V | 15 A | 1 MHz | 20…70 | TO3 | |
MJ15015G | 180 W | 200 V | 120 V | 7 V | 15 A | 1 MHz | 20…70 | TO3 | |
MJ12022 | 175 W | 850 V | 450 V | 6 V | 15 A | 15 MHz | от 5 | TO3 | |
NJW0302 | 150 W | 250 V | 15 A | 30 MHz | 75 | TO3P | |||
NJW1302 | 200 W | 250 V | 15 A | 30 MHz | 75 | TO3P | |||
NJW21194 | 200 W | 250 V | 15 A | 4 MHz | 20 | TO3P | |||
SK3260 | 150 W | 160 V | 140 V | 7 V | 30 A | 200 °C | 0,8 MHz | 75 | TO3 |
SM1258 | 250 W | 400 V | 50 A | 200 °C | 20 MHz | 20 | TO3 |
В качестве отечественного производителя могут подойти транзисторы 2Т808А, КТ819ГМ.
Примечание: данные в таблицах взяты из даташип компаний-производителей.
MOSFET-транзистор — влияние резистора затвора
Большинство полевых МОП-транзисторов используются как переключатели, управляемые напряжением. Эти элементы очень популярны по двум причинам. Во-первых, их ворота не потребляют электричество. Во-вторых, из-за низкого сопротивления открытого канала происходят очень маленькие потери (что всегда является большим преимуществом).
Лучше всего проверить это на практике. На этот раз для выполнения упражнения вам понадобятся:
- 1 × зуммер с генератором,
- 1 × транзистор BS170,
- Резистор 1 × 100 R,
- Резистор 1 × 1 кОм,
- Резистор 1 × 1М,
- Батарея 4 × AA,
- 1 × корзина для 4 батареек АА,
- 1 × макетная плата,
- Комплект соединительных проводов.
Описание выводов транзистора BS170 (слева вид снизу, т.е. со стороны выводов)
Теперь нам необходимо собрать простую схему, в которой мы заменим резистор, подключенный к затвору — пусть в начале он будет 10 кОм. Если хотите, для безопасности, при сборке схемы, можно закоротить ножки транзистора фольгой — не забудьте снять ее непосредственно перед подключением батареи.
Пример использования полевого МОП-транзистора
На практике схема может выглядеть так:
Схема на макетной плате | MOSFET на практике |
Если схема собрана правильно, зуммер должен пищать. В такой ситуации стоит измерить ток, протекающий через зуммер, и напряжение между стоком и истоком транзистора. Также стоит измерить напряжение между выводами резистора.
Измерение напряжения сток-исток | Измерение тока стока |
Измерение напряжения затвор-исток | Измерение тока затвора |
Когда измерения готовы, замените наш резистор на резистор большего размера, то есть на 1 МОм, и повторите измерения, затем то же самое для резистора 100 Ом. Наконец, также стоит проверить, что произойдет, если мы подключим затвор через резистор к земле.
Схема с заземлением
В этом эксперименте, каждый раз, напряжение транзистора UGS превышало пороговое значение напряжения. Это произошло из-за того, что исток был подключен к земле, а затвор — к напряжению, близкому к +6 В, а пороговое напряжение этого транзистора было от 2 до 3 В. В свою очередь, подключение затвора к земле вызвал исчезновение канала и отсутствие тока, потому что UGS = 0.
Идеально работающий мультиметр имел бы бесконечно большое сопротивление. Однако наш мультиметр имеет сопротивление 1 МОм, что приводит к большим искажениям при последовательном измерении с R = 1 МОм. |
Результаты, полученные нами в этом упражнении, могут отличаться от ваших
Собранные в таблице данные, наглядно показывают состояние засорения и насыщения транзистора. В насыщенном состоянии (когда UGS намного больше, чем UGSth), сопротивление между стоком и истоком незначительно, следовательно, падение напряжения составляет порядка нескольких мВ, а сток ограничен током, ограниченным только зуммером. В засоренном состоянии сопротивление настолько велико, что ток стока практически не течет, и почти все напряжение протекает между стоком и истоком. Все эти наблюдения не зависят от используемого резистора затвора (ситуация была бы иной в случае с биполярными транзисторами).
Если резистор удален из работающей схемы (что мы не рекомендуем делать из-за возможности повреждения транзистора), зуммер все еще мог бы издавать звуковой сигнал. Почему? Затвор отделен от канала изолятором, поэтому там создается емкость, то есть там есть небольшой внутренний конденсатор. Только через некоторое время из-за несовершенства изолятора он разрядится.