Неисправности строчной развертки телевизоров

Принцип работы разверток

Важно заметить, что, хотя каскады строчной и кадровой развёртки в теории никак не связаны с принципами вывода изображения, кинескопные телевизоры способны воспроизводить видеоряд лишь в чересстрочном режиме. В большинстве старых телевизионных аппаратов чересстрочная развёртка реализована по стандартам PAL, SECAM и NTSC

Луч кинескопа не способен прочертить за один раз все горизонтальные строки видеоряда — чередование четных и нечётных полос сокращает объём работы системы в два раза и позволяет добиться относительно нормальных показателей FPS

В большинстве старых телевизионных аппаратов чересстрочная развёртка реализована по стандартам PAL, SECAM и NTSC. Луч кинескопа не способен прочертить за один раз все горизонтальные строки видеоряда — чередование четных и нечётных полос сокращает объём работы системы в два раза и позволяет добиться относительно нормальных показателей FPS.

Недостатки чересстрочного проигрывания проявляются лишь во время просмотра пользователем динамичных экшн-сцен, в которых отображаемый объект перемещается с большой скоростью: фактически в момент воспроизведения каждого кадра предмет является подвижным только на половину.

Современные телевизоры поддерживают деинтерлейсинг — конвертацию чересстрочной развёртки в прогрессивную: имитируя полноту видеоряда, TV-аппарат самостоятельно восстанавливает недостающие чётные или нечётные горизонтальные строки кадра. Качество преобразования видео зависит от встроенного в устройство программного обеспечения и мощности процессора: если внешние видеокарты способны выдавать чёткий и плавный видеоряд, то встроенные в телевизионные устройства деинтерлейсинг-системы размывают экшн-сцены в 80% случаев.

Заключение

Зная, как работает строчная развёртка телевизора и какие элементы каскадов наиболее подвержены риску выхода из строя, пользователь может попытаться провести самостоятельную диагностику неисправного кинескопа TB-аппарата.

В современных ЖК телевизорах вывод изображения основан на принципе прогрессивной развёртки, что, с одной стороны, делает динамичную картинку более плавной, а с другой — значительно усложняет ремонт устройства: к поиску сломанного осязаемого элемента каскада добавляется тестирование программного обеспечения.

Практика работы составного транзистора

На рис. 3 показаны три варианта построения выходного каскада (эмиттерный повторитель). При подборе транзисторов надо стремится к b1~b2 и b3~b4 . Различие можно компенсировать за счёт подбора пар по равенству коэффициентов усиления СТ b13~b24 (см. табл. 1).

  • Схема на рис. 3а имеет наибольшее входное сопротивление, но это худшая из приведённых схем: требует изоляцию фланцев мощных транзисторов (или раздельные радиаторы) и обеспечивает наименьший размах напряжения, поскольку между базами СТ должно падать ~2 В, в противном случае сильно проявятся искажения типа «ступенька».
  • Схема на рис. 3б досталась в наследство с тех времён, когда ещё не выпускались комплементарные пары мощных транзисторов. Единственный плюс по сравнению с предыдущим вариантом – меньшее падение напряжения ~1,8 В и больше размах без искажений.
  • Схема на рис. 3в наглядно демонстрирует преимущества СТШ: между базами СТ падает минимум напряжения, а мощные транзисторы можно посадить на общий радиатор без изоляционных прокладок.

На рис. 4 показаны два параметрических стабилизатора. Выходное напряжение для варианта с СТД равно:

Поскольку Uбэ гуляет в зависимости от температуры и коллекторного тока, то у схемы с СТД разброс выходного напряжения будет больше, а потому вариант с СТШ предпочтительней.

Рис. 3. Варианты выходных эмиттерных повторителей на СТ

Рис. 4. Применение СТ в качестве регулятора в линейном стабилизаторе

Для коммутации электромеханических приводов и, тем более, в импульсных схемах следует использовать готовые СТ с нормированными параметрами включения и выключения, паразитными ёмкостями. Типичный пример – широко распространённые импортные комплементарные СТД серии TIP12х.

ALJ13002 Datasheet (PDF)

1.1. alj13002.pdf Size:103K _update

SUNROC ALJ13002 TRANSISTOR(NPN) FEATURES 1. EMITTER Power dissipation 2.COLLECTOR PCM:0.8W(Tamb=25℃) Collector current 3.BASE ICM:0.6A Collector-base voltage V(BR)CBO: 600V 1 2 3 Opcrating and storage junction temperature range TJ,Tstg:-65℃ to -150℃ ELECTRICAL CHARACTERISTICS(Tamb=25℃ unless otherwise specjfied): MIN TYP MAX UNIT Parameter Symbol Tes

3.1. alj13005.pdf Size:150K _update

SUNROC ALJ13005 TRANSISTOR(NPN) MAXIMUM RATINGS(Ta=25℃ unless otherwise noted) MAXI Parameter Value Units Collector-Base Voltage VCBO 700 V Collector-Emitter Voltage VCEO 400 V Emitter-Base Voltage VEBO 9 V Collector Current IC 2.0 A Collector Power Dissipation PC 50 W Junction Temperature Tj 150 ℃ Storag Temperature -55~150 ℃ Tstg ELECTRICAL CHARACTERISTICS

SUNROC ALJ13003 TRANSISTOR(NPN) FEATURES ·power switching applications MAXIMUM RATINGS(Ta=25℃ unless otherwise noted) Symbol Parameter Value Units VCBO Collector-Base Voltage 600 V VCEO Collector-Emitter Voltage 400 V VEBO Emitter-Base Voltage 9 V IC Collector Current-Continuous 1.2 A PC Collector Power Dissipation 25 W TJ Junction Temperature 150 ℃ Tstg Storage Temperature -55

3.3. alj13001.pdf Size:195K _update

SUNROC ALJ13001 TRANSISTOR (NPN) TO-92 FEATURES 1. BASE power switching applications 2. COLLECTOR 3. EMITTER MAXIMUM RATINGS (TA=25℃ unless otherwise noted) Symbol Parameter Value Units 1 2 3 VCBO Collector -Base Voltage 600 V VCEO Collector-Emitter Voltage 400 V VEBO Emitter-Base Voltage 7 V IC Collector Current -Continuous 0.2 A PC Collector Power Dissipation

3.4. alj13003.pdf Size:104K _update

SUNROC ALJ13003 TRANSISTOR(NPN) FEATURES ·power switching applications MAXIMUM RATINGS(Ta=25℃ unless otherwise noted) Symbol Parameter Value Units VCBO Collector-Base Voltage 600 V VCEO Collector-Emitter Voltage 400 V VEBO Emitter-Base Voltage 9 V IC Collector Current-Continuous 1.2 A PC Collector Power Dissipation 25 W TJ Junction Temperature 150 ℃ Tstg Storage Temperature -55

Проверка биполярных типов

Ниже схема проверки npn, pnp транзисторов тестером, после нее распишем процедуру по пунктам.

Биполярный транзистор снабжен p-n линиями — условно, это диоды, а точнее, 2 таковых расположенных встречно, точка их пересечения — «база».

Один условный диод сконструирован контактами базы/коллект., иной — базы/эмит. Для анализа хватит посмотреть сопр. (прямо и обратно) указанных участков: если там нет неполадок, то деталь без изъянов.

Проверка своими руками без выпаивания биполярного pnp, npn транзистора предполагает прозвонку 3 комбинаций ножек:

Вариант p-n-p

Структуры (типы) показывает стрелка эмит. участка: p-n-p/n-p-n (к базе/от нее). Начнем с проверки первого варианта. Раскрываем p-n-p деталь подачей на базу минусового напряжения. На мультиметре селектор ставим на замеры Ом на отметку «2000», допускается также выставлять на «прозвонку».

Жила «−» (черная) — на ножку базы. Плюс (красная) — поочередно к коллект., эмит. Если участки не поврежденные, то отобразят около 500–1200 Ом.

Дальше опишем, как прозвонить обратное сопр.: «+» – на базу, «−» — на колл. и эмит. Должно отобразиться высокое сопр. на обоих p-n участках. У нас появилась «1», то есть для выставленной рамки в «2000» значение превышает 2000. Значит, 2 перехода без обрывов, изделие исправное.

Аналогично, как описано, можно прозвонить на исправность транзистор, не выпаивая из схемы. Реже есть сборки, где к переходам применено основательное шунтирование, например, резисторами. Тогда, если отобразится слишком низкое сопр., потребуется выпаивать деталь.

Элементы n-p-n проверяются аналогично, только на базу от тестера идет щуп «+».

Признаки неисправности

Если сопр. (прямое и обратное) одного из участков (p-n) стремится к бесконечности, то есть на отметке «2000» и выше на дисплее «1», значит, данный участок имеет обрыв, транзистор не годный. Если же «0» — изделие также с изъяном, пробит участок. Прямое сопр. там должно быть 500–1200 Ом.

Практика работы составного транзистора

На рис. 3 показаны три варианта построения выходного каскада (эмиттерный повторитель). При подборе транзисторов надо стремится к b1~b2 и b3~b4 . Различие можно компенсировать за счёт подбора пар по равенству коэффициентов усиления СТ b13~b24 (см. табл. 1).

  • Схема на рис. 3а имеет наибольшее входное сопротивление, но это худшая из приведённых схем: требует изоляцию фланцев мощных транзисторов (или раздельные радиаторы) и обеспечивает наименьший размах напряжения, поскольку между базами СТ должно падать ~2 В, в противном случае сильно проявятся искажения типа «ступенька».
  • Схема на рис. 3б досталась в наследство с тех времён, когда ещё не выпускались комплементарные пары мощных транзисторов. Единственный плюс по сравнению с предыдущим вариантом – меньшее падение напряжения ~1,8 В и больше размах без искажений.
  • Схема на рис. 3в наглядно демонстрирует преимущества СТШ: между базами СТ падает минимум напряжения, а мощные транзисторы можно посадить на общий радиатор без изоляционных прокладок.

На рис. 4 показаны два параметрических стабилизатора. Выходное напряжение для варианта с СТД равно:

Поскольку Uбэ гуляет в зависимости от температуры и коллекторного тока, то у схемы с СТД разброс выходного напряжения будет больше, а потому вариант с СТШ предпочтительней.

Рис. 3. Варианты выходных эмиттерных повторителей на СТ

Рис. 4. Применение СТ в качестве регулятора в линейном стабилизаторе

Какие транзисторы лучше полевые или биполярные?

И так, мы узнали, что главное отличие этих двух видов транзисторов в управление. Давайте рассмотрим прочие преимущества полевых транзисторов по сравнению с биполярными:

Накопление и рассасывание неосновных носителей заряда отсутствует в полевых транзисторах, от того и быстродействие у них очень высокое (что отмечается разработчиками силовой техники). И поскольку за усиление в полевых транзисторах отвечают переносимые основные носители заряда, то верхняя граница эффективного усиления у полевых транзисторов выше чем у биполярных.

   Отличие полевого транзистора от биполярного

Здесь же отметим высокую температурную стабильность, малый уровень помех (в силу отсутствия инжекции неосновных носителей заряда, как то происходит в биполярных), экономичность в плане потребления энергии.

Маркировка

Цифры “13001” на корпусе дают общее представление об этом полупроводниковом устройстве. Многие производители маркируют так свои изделия из-за отсутствия места на корпусе ТО-92, не указывая при этом префикс в начале. В статье приведены технические характеристики устройств малоизвестных в России производителей DGNJDZ, Semtech Electronics, YFWDIODE. Указанные производители в своих даташитах не указывают дополнительных символов маркировки. Без дополнительных обозначений маркирует свой транзистор TS13001 тайваньская компания TSMC. Первые две литеры “TS” являются аббревиатурой первых двух слов в полном названии компании Taiwan Semiconductor Manufacturing Company. В тоже время, на рыке достаточно широко представлены транзисторы mje13001, которые тоже промаркированы цифрами 13001. SHENZHEN JTD ELECTRONICS и многие другие производители применяют s13001 s8d при маркировке своих девайсов. Встречаются и другие префиксы, не рассмотренные в статье. Многие продавцы не заморачиваясь с маркировкой в наименовании товара, указывают все возможные его типы вместе с датой производства.

Система обозначений транзисторов

Встречаются транзисторы (биполярные), которые имеют старую, введенную до 1964 г. систему обозначений. По старой системе в обозначение транзистора входит буква П и цифровой номер.

По номеру транзистора можно определить, для каких каскадов радиоэлектронной конструкции он разработан. Если перед буквой П стоит буква М, то это значит, что корпус транзистора холодносварочной конструкции. Расшифровка типов транзисторов по номеру следующая:

Низкочастотные (до 5 МГц):

  • 1…100 — германиевые малой мощности, до 0,25 Вт;
  • 101…201 — кремниевые до 0,25 Вт;
  • 201…300 — германиевые большой мощности, более 0,25 Вт;
  • 301…400 — кремниевые более 0,25 Вт.

Высокочастотные (свыше 5 МГц):

  • 401…500 — германиевые до 0,25 Вт;
  • 501…600 — кремниевые до 0,25 Вт;
  • 601…700 — германиевые более 0,25 Вт;
  • 701…800 — кремниевые более 0,25 Вт.

Например:

  • П416 Б — транзистор германиевый, высокочастотный, малой мощности, разновидности Б;
  • МП39Б — германиевый транзистор, имеющий холодносварочный корпус, низкочастотный, малой мощности, разновидности Б.

В новой системе обозначений используется буквенно-цифровой шифр, который состоит из 5 элементов:

1-й  элемент системы обозначает исходный материал, на основе которого изготовлен транзистор и его содержание не отличается от системы обозначения диодов, то есть Г или 1 — германий, К или 2 — кремний, А или 3 — арсенид галлия, И или 4 — индий.

2-1  элемент — буква Т (биполярный) или П (полевой).

3-1  элемент — цифра, указывающая на функциональные возможности транзистора по допустимой рассеиваемой мощности и частотным свойствам.

Транзисторы малой мощности, Рmах < 0,3 Вт:

  • 1    — маломощный низкочастотный, Гф< 3 МГц;
  • 2    — маломощный среднечастотный, 3 < frp< 30 МГц;
  • 3    — маломощный высокочастотный, 30 < fгр< 300 МГц.

Транзисторы средней мощности, 0,3 < Рmах <1,5 Вт:

  • 4    — средней мощности низкочастотный;
  • 5    — средней мощности среднечастотный;
  • 6    — средней мощности высокочастотный.

Транзисторы большой мощности, Рmах >1,5 Вт:

  • 7    — большой мощности низкочастотный;
  • 8    — большой мощности среднечастотный;
  • 9    — большой мощности высокочастотный и сверхвысокочастотный (frp > 300 Гц).

4-й элемент — цифры от 01 до 99, указывающие порядковый номер разработки.

5-й элемент — одна из букв от А до Я, обозначающая деление технологического типа приборов на группы.

Например: КТ540Б — кремниевый транзистор средней мощности среднечастотный, номер разработки 40, группа Б.

При изготовлении транзисторов используют различные технологические приемы, в результате чего получаются приборы со специфическими особенностями, эксплуатационными свойствами и параметрами. Цоколевка транзисторов, широко используемых радиолюбителями, дана на рис. 1.

Рис. 1. Цоколевка отечественных транзисторов.

Биполярный транзистор C945 — описание производителя. Основные параметры. Даташиты

Наименование производителя: C945

  • Тип материала: Si
  • Полярность: NPN
  • Максимальная рассеиваемая мощность (Pc): 0.2 W
  • Макcимально допустимое напряжение коллектор-база (Ucb): 60 V
  • Макcимально допустимое напряжение коллектор-эмиттер (Uce): 50 V
  • Макcимально допустимое напряжение эмиттер-база (Ueb): 5 V
  • Макcимальный постоянный ток коллектора (Ic): 0.15 A
  • Предельная температура PN-перехода (Tj): 150 °C
  • Граничная частота коэффициента передачи тока (ft): 150 MHz
  • Ёмкость коллекторного перехода (Cc): 3 pf
  • Статический коэффициент передачи тока (hfe): 130
  • Корпус транзистора: SOT23
  • Аналоги (замена) для C945

Преимущества схемы Дарлингтона

Транзисторы Дарлингтона используются так же, как одинарные биполярные. Их можно рассматривать как один транзистор с измененными параметрами

Наиболее важной особенностью такого изменения является умножение текущих коэффициентов усиления

Вернемся к примеру, приведенному в начале: объединив мощный транзистор с β = 40 с меньшим значением β, мы получим коэффициент усиления 1600. Для включения нагрузки, потребляющей 5 А, потребуется всего 3 мА — это ток, который успешно обеспечивает большинство микроконтроллеров.

Однако необходимо помнить, что транзисторы в этом соединении загружены неравномерно: большая часть тока проходит через T2. Это означает, что они не обязательно должны быть одного типа. Например, T1 может быть транзистором малой мощности с большим β, что делает результирующее усиление еще выше!

Вступление

Грамотное проектирование твердотельных СВЧ-усилителей мощности (high power amplifier, HPA), особенно тех, которые используются в критически важных оборонных, авиакосмических и метеорологических приложениях, начинается с выбора наиболее подходящей технологии используемых дискретных или интегральных мощных полупроводниковых приборов. В настоящее время разработчики мощных СВЧ-усилителей имеют возможность выбирать из нескольких полупроводниковых технологий, применяемых для усиления импульсных и непрерывных (continuous-wave, CW) широкополосных или узкополосных сигналов в диапазоне частот от ВЧ, ОВЧ, УВЧ до L‑, S‑, C‑ и X‑диапазонов и выше. Транзисторы подобных усилителей мощности созданы на основе не только ряда устаревших и хорошо зарекомендовавших себя технологий полупроводниковых приборов (кремниевая биполярная Si-BJT, кремниевая VDMOS), но и более новых: кремниевая LDMOS и GaN-on-SiC HEMT (нитрид-галлиевые ПВПЭ транзисторы на подложках из карбида кремния). В зависимости от диапазона рабочих частот и ряда других требований каждая из транзисторных технологий обладает своими преимуществами с точки зрения выходной мощности, коэффициента усиления и эффективности (КПД). Таким образом, выбор приемлемого решения с позиции затрат и стоимости конечного изделия может оказаться весьма непростой задачей.

Параллельное включение транзисторов

Современные транзисторы позволяют реализовать электронные схемы расчитаные на широкие диапазоны изменений токов и напряжений, но в отдельных случаях для увеличения допустимой мощности рассеивания применяется параллельное включение транзисторов.

Схема параллельного включения транзисторов

Максимально допустимый ток протекающий через такой составной транзистор равен:

IKmax(общ) = IKmax(VT1) + IKmax(VT2)

При такой схеме включения транзисторов следует учитывать, что вследствие разброса параметров параллельно включённых транзисторов токи между ними распределяются неравномерно. Большая часть тока будет протекать через транзистор, имеющий больший коэффициент усиления. Рассеиваемые транзисторами мощности можно выровнять включением в их эмиттерные цепи дополнительных симметрирующих резисторов с небольшими сопротивлениями. Так как на практике трудно подбирать такие сопротивление для каждого транзистора, в практических схемах в эмиттеры всех транзисторов ставят резисторы одного сопротивления. Сопротивление симметрирующих резисторов R1 и R2 можно определить по формуле

R1 = R2 ≈ 0,5n/IK,

где n – число параллельно соединенных транзисторов

IK — ток проходящий через коллектор.

Такой способ связан с ухудшением усилительных свойств транзисторов, однако его достоинством является возможность получения мощного силового элемента при использовании относительно маломощных транзисторов.

Электрические характеристики

Данные в таблице действительны при температуре корпуса Tс=25°C.

Характеристика Обозначение Параметры при измерениях Значения
Ток коллектора выключения, мА ICBO UCB = 80 В, IE = 0 ≤ 0,1
Ток эмиттера выключения, мА IEBO UEB = 4 В, IC = 0 ≤ 0,1
Напряжение насыщения коллектор-эмиттер, В UCE(sat) IC = 5 А, IB = 500 мА ≤ 2,5
Напряжение включения база-эмиттер, В UBE(ON) IC = 1,0 А, UCE = 5 В ≤ 1,5
Статический коэффициент усиления по току hFE (1) ٭ UCE = 5 В, IC = 1,0 А 60…200
hFE (2) UCE = 5 В, IC = 6,0 А ≥ 20
Частота среза, МГц fT UCE = 5 В, IC = 1,0 А 15
Выходная емкость, pF Cob UCB = 10 В, IE = 0, f = 1 МГц 210
Время включения, мкс ٭٭ ton UCC = 20 В, IC = 1 А = 10×IB1 = -10×IB2, RL = 20 Ом 0,26
Время спадания импульса, мкс ٭٭ tf 0,68
Время рассасывания заряда, мкс ٭٭ tstg 6,88

٭ — производитель разделяет транзисторы по величине параметра hFE на группы O и Y в пределах указанного диапазона.

٭٭ — параметры сняты в импульсном режиме: схема для измерения параметров представлена ниже.

Транзисторы Дарлингтона медленные!

Для схемы Дарлингтона характерно определенное явление, которое очень затрудняет работу на высоких частотах. Его переключение, а особенно выключение, занимает много времени (для электроники).

Давайте еще раз посмотрим на принципиальную схему. При включении питания потенциал базы T1 повышается (например, микроконтроллером), тем самым вводя в нее ток. Этот транзистор очень быстро переходит из состояния засорения в активный, в котором он усиливает этот ток и подает его на базу T2, которая также очень эффективно включается. Все происходит довольно быстро.

Предположим, что этот транзистор используется для включения мощного приемника, например двигателя, который требует его сильного насыщения.

Примерная схема подключения двух биполярных транзисторов в схему Дарлингтона

Теперь выключаем транзистор Дарлингтона. Потенциал базы T1 подтягивается резистором к земле. Носители заряда, накопившиеся в этой базе, должны оттекать от нее через этот резистор. Поскольку T1 был «по-настоящему» насыщен, таких носителей там было довольно много.

В течение этого времени, T2 все еще был проводящим, хотя он больше не должен таковым быть. Предположим, что носители вышли из базы T1, вопрос: куда должны уйти носители с базы T2? Единственный выход — это база, но к ней подключен только забитый транзистор… Нам остается только ждать, пока эти носители самопроизвольно «рассеются» и транзистор окончательно перестанет проводить.

Это явление демонстрируют следующие иллюстрации (текущие значения, конечно, не отражают реальные — они служат только для иллюстрации шкалы и самого факта прохождения тока; RL и значок двигателя символизируют какой-то элемент, который питается от транзистора, например двигатель).

Оба транзистора непроводящие Течение тока через базу, активирует оба транзистора

В выключенном состоянии ситуация следующая:

Заряд, накопленный после отключения тока Захваченный заряд медленно рассеивается

Таким образом, на отключение транзистора Дарлингтона влияют два события:

  • снятие с насыщения и засорения Т1,
  • ожидание, пока транзистор Т2 перестанет проводить.

Первую проблему можно как-то решить, используя, например, соответствующие схемы для ускорения переключения транзисторов. Однако с последним есть проблема, потому что по носителям должен быть обеспечен поток от базы к эмиттеру.

Электроника придумала способ частично решить эту проблему. Этот метод предполагает добавление резистора между базой и эмиттером Т2. Благодаря этому, носители заряда находят выход из базы. Одним из недостатков является снижение коэффициента усиления по току, поскольку этот резистор «крадет» ток у эмиттера T1.

Такие модифицированные транзисторы Дарлингтона коммерчески доступны как одиночные, так и в виде интегральных схем с большим количеством компонентов внутри. Хорошим примером является популярная микросхема ULN2003, в состав которой входит аж 7 таких систем.

Популярная микросхема ULN2003

В состав этой микросхемы также входят резисторы, ограничивающие базовый ток T1 (2,7 кОм) и ускоряющие выключение T1. Использование таких интегральных блоков удобно тем, что экономит место на плате, вход этой схемы подключается напрямую к выходу микроконтроллера.

Внутренняя схема ULN2003

Область применения транзисторов 13001

Транзисторы серии 13001 разработаны специально для применения в преобразовательных устройствах небольшой мощности в качестве ключевых (переключающих) элементов.

  • сетевые адаптеры мобильных устройств;
  • электронная пускорегулирующая аппаратура люминесцентных ламп малой мощности;
  • электронные трансформаторы;
  • другие импульсные устройства.

Нет принципиальных ограничений на использование транзисторов 13001 в качестве транзисторных ключей. Также можно применять данные полупроводниковые приборы в усилителях низкой частоты в случаях, где не требуется особое усиление (коэффициент передачи по току у серии 13001 по современным меркам невелик), но в этих случаях не реализуются довольно высокие параметры этих транзисторов по рабочему напряжению и их высокое быстродействие.

Лучше в этих случаях применить более распространенные и дешевые типы транзисторов. Также при построении усилителей надо помнить, что комплементарная пара у транзистора 31001 отсутствует, поэтому с организацией двухтактного каскада могут быть проблемы.

На рисунке приведен характерный пример использования транзистора 13001 в сетевом зарядном устройстве для аккумулятора переносного устройства. Кремниевый триод включен в качестве ключевого элемента, формирующего импульсы на первичной обмотке трансформатора ТР1. Он с большим запасом выдерживает полное выпрямленное сетевое напряжение и не требует дополнительных схемотехнических мер.

Температурный профиль для пайки бессвинцовым припоем

При пайке транзисторов надо соблюдать определенную осторожность, не допуская излишнего нагрева. Идеальный температурный профиль указан на рисунке и состоит из трех этапов:

  • этап предварительного нагрева длится около 2 минут, за это время транзистор прогревается от 25 до 125 градусов;
  • собственно пайка длится около 5 секунд при максимальной температуре 255 градусов;
  • заключительный этап – расхолаживание со скоростью от 2 до 10 градусов в секунду.

Этот график сложно соблюсти в домашних условиях или в мастерской, да и не так это важно при демонтаже-монтаже единичного транзистора. Главное – не превышать максимально допустимую температуру пайки

Смотрите это видео на YouTube

Транзисторы 13001 имеют репутацию достаточно надежных изделий, и при условиях эксплуатации, не выходящих за установленные пределы, могут прослужить долго без отказов.

Описание, технические характеристики и аналоги выпрямительных диодов серии 1N4001-1N4007

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Как работает транзистор и где используется?

Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность

Описание, устройство и принцип работы полевого транзистора

Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: