Отличие полевого транзистора от биполярного. сфера их применения

Сферы применения тех и других транзисторов

Различия между полевыми и биполярными транзисторами четко разделяют области их применений. Например в цифровых микросхемах, где необходим минимальный ток потребления в ждущем состоянии, полевые транзисторы применяются сегодня гораздо шире. В аналоговых же микросхемах полевые транзисторы помогают достичь высокой линейности усилительной характеристики в широком диапазоне питающих напряжений и выходных параметров.

Схемы типа reel-to-reel удобно реализуются сегодня с полевыми транзисторами, ведь легко достигается размах напряжений выходов как сигналов для входов, совпадая почти с уровнем напряжения питания схемы. Такие схемы можно просто соединять выход одной с входом другой, и не нужно никаких ограничителей напряжения или делителей на резисторах.

Что касается биполярных транзисторов, то их типичными сферами применения остаются: усилители, их каскады, модуляторы, детекторы, логические инверторы и микросхемы на транзисторной логике.

Транзисторы КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315И, КТ315Ж.

Т ранзисторы КТ315 — кремниевые, маломощные высокочастотные, структуры — n-p-n. Корпус пластиковый — желтого, красного, темно — зеленого, оранжевого цветов. Масса — около 0,18г. Маркировка буквенно — цифровая, либо буквенная. Цоколевка легко определяется с помощью буквы, обозначающей подкласс транзистора. Она распологается напротив вывода эмиттера. Вывод коллектора — посередине, базы — оставшийся, крайний.

Наиболее широко распространенный отечественный транзистор. При изготовлении КТ315 впервые массово была применена планарно — эпитаксиальная технология. На пластине из материала n — проводимости формировался участок базы, проводимостью — p, затем, уже в нем — n участок эмиттера. Эта технология способствовала значительному удешевлению производства, при меньшем разбросе параметрических характеристик, по тому времени — довольно высоких.

Благодаря плоской форме корпуса и выводов КТ315 хорошо подходит для поверхностного монтажа. Таким образом, применение КТ315 позволило в свое время значительно уменьшить размеры элементов ТТЛ советских ЭВМ второго поколения. Область применения КТ315 черезвычайно широка, кроме элементов логики это — низкочастотные, среднечастотные, высокочастотные усилители, генераторы, все что сотавляло основу огромного количества бытовых и промышленных электронных устройств советской эпохи.

Разработка КТ315 была отмечена в 1973 г. Государственной премией СССР. Примечательно, что КТ315 до сих пор производятся в Белоруссии, в корпусе ТО-92.

Наиболее важные параметры.

Граничная частота передачи тока — 250 МГц. Коэффициент передачи тока у транзисторов КТ315А, КТ315В, КТ315Д — от 20 до 90. У транзисторов КТ315Б,КТ315Г,КТ315Е — от 50 до 350. У транзистора КТ315Ж, — от 30 до 250. У транзистора КТ315Ж, не менее 30.

Максимальное напряжение коллектор — эмиттер. транзистора КТ315А — 25в. Транзистора КТ315Б — 20в, транзистора КТ315Ж — 15в. У транзисторов КТ315В, КТ315Д — 40 в. у транзисторов КТ315Г, КТ315Е — 35 в. У транзистора КТ315И — 60 в.

Напряжение насыщения база — эмиттер при токе коллектора 20 мА, а токе базы — 2 мА: У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г — 1,1 в. У транзисторов КТ315Д, КТ315Е — 1,5 в. У транзисторов КТ315Ж — 0,9 в.

Напряжение насыщения коллектор — эмиттер при токе коллектора 20 мА, а токе базы 2 мА: У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г — 0,4 в. У транзисторов КТ315Д, КТ315Е — 1 в. У транзисторов КТ315Ж — 0,5 в.

Максимальное напряжение эмиттер-база — 6 в.

Обратный ток коллектор-эмиттер при предельном напряжении : У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315Е — 1 мкА. У транзисторов КТ315Ж — 10 мкА. У транзисторов КТ315И — 100 мкА.

Обратный ток коллектора при напряжении колектор-база 10в — 1 мкА.

Максимальный ток коллектора. У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315Е — 100 мА. У транзисторов КТ315Ж, КТ315И — 50 мА.

Емкость коллекторного перехода при напряжении коллектор-база 10 в, не более: У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г,КТ315Д, КТ315Е, КТ315И — 7 пФ. У транзисторов КТ315Ж — 10 пФ.

Рассеиваемая мощность коллектора.

У транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315Е — 150 мВт. У транзисторов КТ315Ж, КТ315И — 100 мВт.

Зарубежные аналоги транзисторов КТ315.

Прямых зарубежных аналогов у КТ315 нет. Наиболее близкий аналог(полное совпадение параметров) транзистора КТ315А — BFP719.

Аналог КТ315Б — 2SC633. Параметры этих транзисторов в основном совпадают, но у 2SC633 несколько ниже граничная частота передачи тока — 200МГц.

Аналог КТ315Г — BFP722, КТ315Д — BC546B

Схема на составном транзисторе

Параметрический стабилизатор напряжения на транзисторе ограничивает ток нагрузки не только за счет допустимого тока ключевого элемента. Задолго до наступления момента предельного режима стабилизация ухудшается, поскольку ограничивается статическим коэффициентом передачи ключевого транзистора.

Увеличить ток нагрузки можно, применяя составные элементы, включенные по схеме Дарлингтона. В таком включении общий коэффициент передачи равняется произведениям коэффициентов обоих транзисторов. Мощные усилительные транзисторы Дарлингтона часто выпускаются в едином корпусе, не требуя дополнительных соединений.

Основные характеристики

Принцип работы транзисторов и их характеристики будут напрямую зависеть от типа устройства и его конструкции. К основным параметрам полупроводников можно отнести следующее:

  • Максимально допустимый ток.
  • Показатель управляющего напряжения.
  • Внутреннее сопротивление.
  • Период задержки подключения и выключения.
  • Паразитная индуктивность.
  • Входная и выходная емкость.
  • Напряжение насыщения у эмиттера и коллектора.
  • Ток отсечки эмиттера.
  • Напряжение пробоя коллектора и эмиттера.

Широкое распространение получили сегодня мощные IGBT транзисторы, которые применяются в блоках питания инверторов. Такие устройства одновременно сочетают мощность, высокую точность работы и минимум паразитной индуктивности. В регуляторах скорости применяются IGBT с частотой в десятки тысяч кГц, что позволяет обеспечить максимально возможную точность работы приборов.

Рабочее напряжение

Блокирующая способность

Поскольку большинство силовых преобразователей получает питание от однофазных или трехфазных выпрямителей, стандартные нормы блокирующей способности MOSFET и IGBT (600, 1200, 1700 В) выбираются с учетом параметров промышленных сетей. В таблице 1 даны рекомендации по определению рабочего напряжения силовых модулей при работе от неуправляемого выпрямителя (или при нулевом угле отсечки для управляемого выпрямителя) VN или непосредственно от DC-шины (VCC , VDC).Таблица 1.Рекомендуемое рабочее напряжение MOSFET/IGBT для разных вариантов питающего напряжения

VN, В Схема выпрямления VCC, VDC, В VDSS, VCES, В
24 B2 22 50
48 B2 44 100
125 B2 110 200
200–246 B2 180–220 500, 600
400–480 B6 540–648 1200
575–690 B6 777–932 1800

Кроме того, необходимо оценить предельно возможный уровень перегрузки с учетом следующих факторов:

  • максимальное значение выпрямленного напряжения с учетом допусков на сеть или максимально возможное значение выходного сигнала активного выпрямителя или ККМ (корректора коэффициента мощности);
  • пиковые всплески питающего сигнала, не подавленные входными фильтрами, конденсаторами звена постоянного тока (ЗПТ), супрессорами (варисторами), снабберами;
  • динамические пики напряжения в DC-шине, вызванные осцилляциями между индуктивностями и емкостями источника питания;
  • предельное напряжение тормозного каскада (если он имеется);
  • коммутационные перенапряжения при выключении IGBT (VCC+DV), DV ≈ Lstray × 0,8ICmax/tf (при ICmax), где Lstray — суммарная паразитная индуктивность цепи коммутации, IСmax — максимальное значение тока выключения (как правило, ток КЗ), tf (при ICmax) — время выключения тока ICmax.

Отметим, что биполярные структуры, в отличие от MOSFET, не обладают стойкостью к лавинному пробою, поэтому перегрузка IGBT по напряжению недопустима даже в кратковременном режиме. Приводимые в документации предельные значения VCES или VDES, как правило, относятся к кристаллам, а не модулю, следовательно, при расчетах следует учитывать динамический перепад сигнала между чипами и силовыми терминалами. Собственная индуктивность выводов LCE или LDC (она находится в пределах 15–30 нГн) является частью Lstray. Таким образом, максимальная величина напряжения на терминалах модуля VCEmax,T или VDSmax,T должна быть ограничена в соответствии с формулой:

VCEmax,T ≤ VCES × LCE × 0,8ICmax/tf (при ICmax).

Для ЗПТ с учетом всех возможных видов стационарных или коммутационных перенапряжений справедливо выражение:

VCСmax ≤ VCES–Lstray × 0,8ICmax/tf (при ICmax).

Данная методика позволяет определить динамический перепад между терминалами и кристаллом и, соответственно, общий уровень перенапряжения на чипе. В некоторых модулях (SEMiX) имеется непосредственный доступ к выводам кристаллов Cx, Ex, что позволяет провести соответствующие измерения. Результаты таких замеров, выполненных при отключении тока КЗ (рис. 1), показывают, что кристаллы 4-го поколения IGBT особенно чувствительны к токовой перегрузке, если напряжение на DC-шине приближается к предельным значениям (что может быть, например, в режиме торможения). Для безопасного блокирования IGBT 4 в аварийном режиме (при IC > 2ICnom) рекомендуется применение режима плавного отключения (STO, SSD) при увеличенном значении RGoff(например, 20 Ом для 300-А модуля). Существуют также различные виды «интеллектуального» запирания, один из которых, названный IntelliOff, реализован в цифровом драйвере модулей SKiiP 4-го поколения .

Рис. 1. Напряжение на кристаллах 450

Техническое описание

Транзистор выпускается с гибкими выводами в пластмассовом корпусе КТ-26 (ТО-92), либо в металлостеклянном корпусе КТ-17. Цоколевка выводов кт3102 следующая: 1 – эмиттер, 2 – база, 3 –коллектор.

Характеристики

Все нижеуказанные характеристики для транзисторов в пластиковом корпусе КТ3102 (А-Л) идентичны соответствующим параметрам в металлостекленном (АМ- ЛМ).

  • принцип действия – биполярный;
  • корпус: пластик для КТ26 (ТО-92); металлостеклянный у КТ-17;
  • материал – кремний (Si);
  • npn-проводимость (обратная);

предельно допустимые электрические эксплуатационные данные (при температуре окружающей среды от +25 °C):

основные электрические параметры:

  • IКБО (ICBO) не более 50 нА (nA), при UКБ макс. (VCB max) = 50 В (V) и IЭ (IE)=0;
  • IЭБО (IEBO) не более 10 мкА (µA), при UEБ макс. (VEB max ) = 5 В (V);
  • fгр норм.(ftTYP) от 100 до 300 МГц (MHz), при UКб (VCB) = 5 В (V), IЭ (IE)= 10 мА (mA);
  • емкость коллекторного перехода СК (СС) 6 пФ (pF) при UКБ (VCB) = 5 В (V), f= 10 МГц (MHz);
  • коэффициент шума КШ (Noise Figure) NF от 4 до 10 Дб (dB), при UКЭ(VCE) =5 В (V), IK (Ic) = 0.2 мА (mA);
  • cтатический коэффициент усиления по току h21E находится в диапазоне от 100 до 1000, при UКЭ(VCE) =5 В (V), IK (Ic) = 2 мА (mA), f=50 Гц(Hz).
  • тепловое сопротивление переход- среда 0,4 °C/мВт (°C/mW);
  • Токр от -40 до +85 °C.

При выборе транзистора обратите внимание на дату выпуска и его предельно допустимые напряжения и токи, определите возможность его использования в схеме. Более новые модели имеют преимущества перед старыми, так как производители непрерывно работают над улучшением характеристик в своих продуктах

Не стоит забывать, что у некоторых из них (например КТ3102Г, КТ3102Е) предельные значения по напряжению не превышают 20 В. Ниже приведена классификация КТ3102.

По мнению радиолюбителей, несмотря на идентичность характеристик заявленных производителем, транзистор в пластиковом корпусе немного уступает металлостеклянному. Так, при работе на предельно допустимых параметрах, пластик расширяется и сжимается, что нередко приводит к отрыву выводов от кристалла. Это основная причина, из за которой стоит подумать о применении устройства в пластиковом корпусе. Кроме того пластик иногда становится не герметичен и вдоль выводов к кристаллу может проникать влага. Считают, что в металлопластиковом корпусе кристалл рассеивает большую мощность. Так же у него будет меньшее тепловое сопротивление, а следовательно устройство будет меньше греться и в свою очередь схема будет работать более стабильней.

Зарубежными аналогами, с похожими техническими характеристиками считаются: BC 174, 2S A2785, BC 182, BC 546, BC 547, BC 548, BC 549. Прототипами для разработки некоторых серий КТ3102 были: BC 307A, BC 308A BC 308B, BC 309B, BC 307B, BC 308C, BC 309C. Из российских аналогов КТ-3102, в качестве замены может подойти КТ 611 или популярный КТ315 с группой Б, Г, Е.

Маркировка

Транзисторы маркируются на боковой стороне корпуса. КТ3102 разных годов выпуска могут встречается с различной маркировкой. До 1995 года производители использовали цветовую и кодовую (буквенно-цифровая и символьно-цветовая) маркировку. Советские транзисторы КТ3102 до 1986 года, изготовленные в корпусе КТ-26, можно узнать по темно-зеленой точке на передней части корпуса. По цвету точки, нанесенной на корпусе сверху, определить принадлежность транзистора конкретной к группе. Дата выпуска при цветовой обозначении могла не указываться.

Маркировать транзистор кт3102 с использованием стандартного метода начали с 1986 года. Согласно кодовой метки он узнаваем по белой фигуре прямоугольного треугольника, размещенного на передней части корпуса (слева сверху), обозначающему его тип (модель). Правее указывается групповая принадлежность, а в нижней части год и месяц даты выпуска. В стандартной кодовой маркировке так же указывался год и месяц выпуска транзистора.

Иногда встречается нестандартные цветовые и кодовые маркировки. Как правило, в них не хватает информации о дате выпуска или групповой принадлежности. Современные производители, уже не используют фигуры в обозначении, а указывают на корпусе полное название типа и группы транзистора. Кроме этого на корпусе можно увидеть знак, указывающий на производителя устройства.

Как уже писалось ранее, транзистор встречается в пластиковом и металлическом корпусе. Устройства с пластиковым корпусом КТ-26 содержат в конце символ “М”. Например КТ3102ВМ это транзистор в пластиковом корпусе КТ-26, а КТ3102В в металлическом КТ-17.

Примеры расчета IGBT-транзистора

Выбор транзистора производится по следующим условиям, например, для преобразователей напряжения с резонансным контуром.

  • Транзистор должен переключался при значении нулевого тока.
  • Форма токовой синусоиды относительно силовых ключей должна быть аналогична к собственной частоте контура и составляет 100 кГц.
  • Амплитуда тока должна соответствовать средней мощности, например, как 40 А к 2000 Вт.
  • Определение максимального значения напряжения и максимальной частоты переключения транзисторов при условии, что плечи транзисторов должны работать в противофазе.

Для подбора драйвера IGBT транзистора руководствуются параметрами управления затвора, необходимого для коммутирования отпиранием и запиранием силового полупроводника. Для определения мощности управления нужно знать величину заряда затвора Q gate, частоту коммутации (fin) и реальный замеренный размах напряжения на выходе драйвера ΔVgate

Формула заряда затвора:

где время интегрирования должно не превышать время на управление выходных напряжений драйвера до их окончательных показателей, или при достижении выходного токового значения драйвера близкого к нулю.

Выбор максимальной величины тока управления затвором определяется по упрощенной формуле:

Зависит от осцилляции величины тока на выходе. Если осцилляция тока управления затвором есть, то значение пикового тока должно быть очень большим, а его величина должна определяться исключительно с помощью измерения.

Не менее важны условия учета размаха выходного напряжения. Наихудший случай – это максимальное значение размаха на затворе, измеряется по реально существующей схеме.

Необходим учет максимальной рабочей температуры, руководствуются значением характерным для условия естественной конверсии без использования принудительного охлаждения.

Максимальная частота коммутации, она должна быть максимально-допустимая. На выбор оказывает влияние результирующая выходная мощность и рассеиваемая мощность резистора, используемого в цепи затвора.

Максимальный ток управления зависит от величины пикового тока, который может протекать через реальный контур управления затвором без появления осцилляций.

Замена MOSFET-транзисторов на IGBT

Во многих высоковольтных приложениях не удается использовать МОП-транзисторы, несмотря на их отличные динамические характеристики. Причиной этого является их невысокая устойчивость к помехам и наличие значительных паразитных индуктивностей. В таких случаях IGBT становятся наиболее привлекательной альтернативой по целому ряду причин. К преимуществам IGBT можно отнести:

  • минимальные потери проводимости, которые слабо зависят от температуры.
  • меньшая площадь кристалла по сравнению с MOSFET, что приводит к уменьшению входной емкости, упрощению управления затвором и снижению стоимости.
  • отсутствие резких перепадов di/dt и dv/dt, что обеспечивает минимальный уровень генерируемых помех и хорошие показатели ЭМС.
  • высокие динамические характеристики встроенных диодов, которые значительно превосходят показатели встроенных диодов MOSFET, благодаря чему при переключениях генерируются меньшие импульсы тока. Это является большим плюсом для приложений, в которых обратный диод является обязательным элементом схемы.

Поскольку корпусные исполнения и назначение выводов у MOSFET и IGBT совпадает, то при их замене друг на друга никаких механических изменений или модификаций печатной платы не требуется.

Требования к управлению затворами IGBT и МОП-транзисторов в значительной степени совпадают. В большинстве случаев для нормального включения будет достаточно 12…15 В, а при выключении можно обойтись без отрицательных запирающих напряжений. Так как входная емкость у IGBT меньше, чем у MOSFET, то чтобы избежать звона, в ряде схем может потребоваться увеличение сопротивления резистора в цепи затвора.

Технические компоненты

Общая структура работы такого устройства простая, и включает в себя основной источник тока, опциональный элемент выпрямителя для выходного тока,  общий блок управления.

Качественный источник тока может быть полностью реализован на базе трансформаторной технологии или исключительно на базе инверторной системы, где силовые транзисторы для сварочных инверторов играют важную роль качественной работоспособности устройства.

Для трансформаторных установок допускается самостоятельное ручное регулирование работы прибора, но среди недостатков выделяется грубый режим регулировки, низкий уровень качества сварного шва.  Инверторные установки, наоборот, имея самый простой сварочный инвертор на одном транзисторе обеспечивают высокое качество образования шва, которые сочетаются с силовыми полупроводниковыми элементами.

Транзисторы для инверторов

Основными техническими компонентами, обеспечивающие высокое качество сварочных работ, является наличие IGBT-транзисторов, а также универсальных быстродействующих диодов. В этом случае возникает резонный вопрос, как проверить IGBT транзистор сварочного инвертора. Укажем основные данные транзисторных компонентов для сварки версии IGBT

Тип

 Характеристика

V

Сверхнизкая энергия осуществления выключения, работа до 600 В, частота до 1200 кГц

НВ

 Малое напряжение насыщенного принципа воздействия. Низкая энергия выключения. Напряжение до 650 Вольт, частота до 50 кГц

Н

Низкий эффект режима выключения. Напряжение подачи – до 1200 вольт, частота до 35 кГц.

М

Низкое напряжение режима насыщения, напряжение сети до 1200 Вольт, частотный параметр – до 20 кГц

W

Режим малого прямого падения напряжения, и минимальный режим эффекта восстановления работоспособности.

Особенности работы транзисторных узлов

Наиболее частая схема применения внутри инверторов используется по технологии push-pull, мостовой принцип функционирования, полумостовой вариант рабочего инвертора, полумостовой комплексный несимметричный вариант исполнения инверторного прибора или косой полумост. Несмотря на достаточное обилие топологий, замена транзистора FGH40N60 в сварочном инверторе по общим требованиям является стандартным, куда включается следующее:

  • Высокий режим напряжения. Для эффективной замены транзисторов в сварочных инверторах, общие данные сети напряжения должны быть выше 600 Вольт.
  • Большие параметры коммутационных токов. Среднее значение показателя должен быть не менее десятков ампер, а максимальные параметры могут показывать отметку за сотни Амперов.
  • Режим высокой частоты переключения. В зависимости от габаритов трансформатора внутри прибора, можно увеличить частоту прибора, а также индуктивность для модели выходного фильтра.
  • Для режима минимизации потерь на включение и выключение агрегата, можно узнать, как проверить транзисторы сварочного инвертора, при помощи малого значения подачи энергии на режим включения (Евкл), а также на режим выключения (Евыкл). В данном случае будут минимизированы все потери.
  • Для минимизации возможных потерь, используем низкое значение для напряжения режима насыщения, или Uкэ нас.
  • Жесткий эффект коммутации, должен быть стойкий для транзисторов для сварочных инверторов Ресанта. Инверторное оборудование в данном случае работает только с индуктивным режимом нагрузки.
  • Параметры короткого замыкания. Аппарат должен иметь режим стойкости для данного параметра, эти сведения являются исключительно критичными для мостовых и полумостовых вариантов инверторной техники.

Как рассчитать потерю мощности на IGBT?

Рекомендуем для детального расчёта правильного выбора транзисторных систем использовать ниже приведённую схему.

Параметры Значения
Суммарные потери Pd = Pконд + Pперекл
Кондуктивные потери Pконд = Uкэ нас (rms) × Iк × D, где D – коэффициент заполнения
Потери на переключение Pперекл = Eперекл × f, где f – частота переключений, Eперекл = (Eвкл + Eвыкл) — суммарные потери на переключения (приводится в параметрах IGBT)
Максимальная мощность, ограничиваемая перегревом кристалла Pd = (Tj – Tc)/Rth-jc, где Tc – температура корпуса, Tj – температура кристалла, Rth-jc – тепловое сопротивление «кристалл-корпус» (приводится в параметрах IGBT)

Все эти данные помогут вам правильно рассчитать нужный тип транзистора для инверторного сварочного аппарата. При выборе транзистора учитываем обязательно параметр для высокого порога возможного напряжения работы устройства.

Устройство биполярного транзистора

Основой устройства биполярного транзистора является полупроводниковый материал. Первые полупроводниковые кристаллы для транзисторов изготавливали из германия, сегодня чаще используется кремний и арсенид галлия. Сначала производят чистый полупроводниковый материал с хорошо упорядоченной кристаллической решеткой. Затем придают необходимую форму кристаллу и вводят в его состав специальную примесь (легируют материал), которая придаёт ему определённые свойства электрической проводимости. Если проводимость обуславливается движением избыточных электронов, она определяется как донорная (электронная) n-типа. Если проводимость полупроводника обусловлена последовательным замещением электронами вакантных мест, так называемых дырок, то такая проводимость называется акцепторной (дырочной) и обозначается проводимостью p-типа.

Рисунок 1.

Кристалл транзистора состоит из трёх частей (слоёв) с последовательным чередованием типа проводимости (n-p-n или p-n-p). Переходы одного слоя в другой образуют потенциальные барьеры. Переход от базы к эмиттеру называется эмиттерным (ЭП), к коллектору – коллекторным (КП). На рисунке 1 структура транзистора показана симметричной, идеализированной. На практике при производстве размеры областей значительно ассиметричны, примерно как показано на рисунке 2. Площадь коллекторного перехода значительно превышает эмиттерный. Слой базы очень тонкий, порядка нескольких микрон.

Рисунок 2.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: