Операционные усилители с однополярным питанием: примеры применения

Что такое компаратор напряжения?

Компаратор напряжения — это небольшая интегральная схема, которая позволяет сравнивать два напряжения друг с другом. Компаратор имеет два входа: инвертирующий (-) и неинвертирующий (+), а также выход. Кроме того, такая схема явно требует мощности.

На схемах часто не указывается информация о линиях электропитания, потому что опытному электронщику «очевидно», что каждая схема должна быть запитана.

Символ компаратора на схемах

Компаратор проверяет разницу напряжений между входами, и на основании этого устанавливает свой выход:

  • Если напряжение на неинвертирующем входе выше, чем на инвертирующем, то напряжение на выходе близко к положительному полюсу питания (например, 5 в).
  • Если напряжение на неинвертирующем входе ниже, чем на инвертирующем, то напряжение на выходе близко к отрицательному полюсу питания (например, к земле, 0 в).

На картинке ниже мы видим схему компаратора с питанием от 6 В. Кроме того, два его входа подключены к отдельным источникам напряжения, которые мы и хотим сравнить друг с другом. К выходу компаратора (и к земле) подключается мультиметр.

Слева большее напряжение на инвертирующем входе, а справа — на неинвертирующем входе

Сразу стоит запомнить, что при сравнении двух напряжений компаратор выдает информацию в виде нуля или единицы. Это означает, что на его выходе напряжение близко к положительной шине питания (здесь 6 В) или к отрицательной (здесь 0 В). Промежуточных состояний нет!

Таким образом, компараторы являются чрезвычайно важным «мостом» между аналоговыми и цифровыми схемами.

Компараторы напряжения также полезны там, где вам просто нужно сравнить два напряжения. В следующей статье мы обсудим так называемые аналоговые датчики, которые могут измерять, например, текущую температуру или яркость солнечного света. Объединив их с компараторами, мы построим термостат (систему, которая реагирует на превышение заданной температуры) и лампу, которая включается после наступления темноты. Однако, прежде чем мы перейдем к таким схемам, нам необходимо познакомиться с самим компаратором на практике.

Маркировка

Транзистор промаркирован по система Pro Electron, применяющейся в Европе и европейской ассоциацией производителей радиокомпонентов. Первые две “BD ”указывают на то, что перед нами кремнёвый, мощный транзистор низкой частоты. В европейской Pro Electron нет транзисторов средней мощности, по ней они маркируются маломощными или мощными. Далее идет серийный номер устройства “140”.

Первые выпуски bd140 проводила компания Philips. По некоторым сведениям, эта она прекратила их выпуск. Однако в некоторых магазинах еще можно найти ее устройства. Из-за хорошего качества сборки и своих характеристик они будут стоить дороже своих клонов.

Что какое преобразователь напряжения

Преобразователь – это электротехническое устройство, преобразующее электроэнергию одних параметров или показателей качества в электроэнергию с другими значениями параметров или показателей качества. Параметрами электрической энергии могут являться род тока и напряжения, их частота, число фаз, фаза напряжения. По степени управляемости преобразователи электрической энергии подразделяются на неуправляемые и управляемые. В управляемых преобразователях выходные переменные: напряжение, ток, частота — могут регулироваться.

По элементной базе преобразователи электроэнергии подразделяются на электромашинные (вращающиеся) и полупроводниковые (статические). Электромашинные преобразователи реализуются на основе применения электрических машин и в настоящее время находят относительно редкое применение в электроприводах. Полупроводниковые преобразователи могут быть диодными, тиристорными и транзисторными.

По характеру преобразования электроэнергии силовые преобразователи подразделяются на выпрямители, инверторы, преобразователи частоты, регуляторы напряжения переменного и постоянного тока, преобразователи числа фаз напряжения переменного тока.

В современных автоматизированных электроприводах применяются главным образом полупроводниковые тиристорные и транзисторные преобразователи постоянного и переменного тока. Достоинствами полупроводниковых преобразователей являются широкие функциональные возможности управления процессом преобразования электроэнергии, высокие быстродействие и КПД, большие сроки службы, удобство и простота обслуживания при эксплуатации, широкие возможности по реализации защит, сигнализации, диагностирования и тестирования как самого электрического привода, так и технологического оборудования.

Принцип работы преобразователя напряжения.

Вместе с тем, для полупроводниковых преобразователей характерны и определенные недостатки. К ним относятся: высокая чувствительность полупроводниковых приборов к перегрузкам по току, напряжению и скорости их изменения, низкая помехозащищенность, искажение синусоидальной формы тока и напряжения сети.

Как обозначаются конденсаторы на схеме.
Читать далее

Как отличается параллельное и последовательное соединение резисторов.
Читать далее

Масляные трансформаторы – что это такое, устройство и принцип работы.
Читать далее

Аналоги КТ315

У транзистора имеется как отечественная замена, так и заграничная. Начнем с первой. Это КТ3102 (ТО-92). Он тоже кремниевый, с npn структурой, но с большей температурой (до +150 С), другим расположением диодов и более высокими электрическими возможностями. Можно сказать, что они, относительно, одинаковы.

Иностранные заменители: ВС547 (npn, высокочастотный (примерно в 300 МГц, когда у КТ315 — 250 МГц), расположение диодов как у КТ3102, температура до +150 С), PN2222 (300 МГц, цоколевка соответствует предыдущей, остальные характеристики примерно одинаковы с КТ315), 2SC9014 (температура от -55 С до +150 С, 270 МГц). Раньше зарубежные транзисторы выходили с корпусом КТ-13, но на данный момент таких уже не существует.

Паразитные индуктивности

Наличие распределенных индуктивностей в цепях коммутации, включающих силовые терминалы и внутренние соединения между кристаллами, является общей проблемой электронных модулей, работающих с большими скоростями изменения тока. Высокий уровень di/dt при выключении приводит к возникновению всплесков напряжения на транзисторах и диодах. Влияние паразитных индуктивностей в цепях нагрузки и управления (выход драйвера) приводит к искажению сигнала управления «затвор–эмиттер» VGE и ложным срабатываниям транзистора.

На рис. 1 показан IGBT с антипараллельным диодом и паразитная индуктивность Ls в цепи «затвор–эмиттер». Схема является очень упрощенной, на практике распределенные элементы образуют сложную систему, созданную эффектами самоиндукции и взаимоиндукции в силовых и сигнальных цепях.

Рис. 1. Влияние паразитной индуктивности в цепи «затвор–эмиттер»

При изменении тока нагрузки в индуктивности Ls на ней образуется перепад напряжения вследствие явления самоиндукции. Значение наведенного сигнала рассчитывается с помощью Закона Фарадея:

nLs = Ls × diLs/dt.

При положительном изменении тока напряжение «затвор–эмиттер» VGE уменьшается в соответствии с уравнением (рис. 1), при отрицательном значении diLs/dt значение VGE увеличивается:

VGE’ = VGE – nLs.

Соответственно, включение и выключение IGBT или диода D вызывает изменение тока в паразитной индуктивности Ls. На рис. 2 показана блок-схема одной фазы инвертора с распределенными индуктивностями Ls1 и Ls2 в цепях «затвор–эмиттер» (слева), а также эпюры тока и напряжения на Ls2 при включении и выключении IGBT Т2 и диода D2.

Рис. 2. Влияние паразитных индуктивностей в цепи «затвор–эмиттер» в полумостовой схеме

Когда транзистор Т2 открывается, он начинает проводить ток нагрузки, который до этого шел через диод D1. До момента появления пика обратного тока (t0–t1) на паразитной индуктивности Ls2 наводится положительный сигнал, уменьшающий напряжение «затвор–эмиттер» VGE2’. Во время спада обратного тока диода D2 (t1–t3) на Ls2 индуцируется отрицательный сигнал, при этом значение VGE2′ возрастает.

При выключении IGBT Т2 его ток перекоммутируется в диод D1. Напряжение, наведенное на паразитной индуктивности Ls2, увеличивает сигнал управления затвором VGE2 на период времени t4–t5. В обоих случаях распределенная индуктивность формирует отрицательную обратную связь для IGBT, снижающую скорость коммутации и увеличивающую уровень динамических потерь. В этом есть и положительный побочный эффект, который состоит в улучшении управляемости при отключении тока короткого замыкания .

При запирании транзистора Т1 диод D2 включается и берет на себя его ток. С момента t4 и до t5 наведенный сигнал vLs2 увеличивает напряжение «затвор–эмиттер» транзистора Т2. Однако его паразитное включение в этот период времени не создает проблем, поскольку ток проходит в другом направлении через антипараллельный диод D2.

Критическим является момент включения IGBT Т1, когда он принимает на себя ток диода D2. В процессе выключения D2 (период времени t1–t3) напряжение «затвор–эмиттер» IGBT Т2 возрастает. Если оно достигнет порогового уровня VGEth, транзистор Т2 откроется, результатом чего будет возникновение сквозного тока в полумостовом каскаде и резкий рост потерь Т1 и Т2.

Зачем нужна маркировка

Современному радиолюбителю сейчас доступны не только обычные компоненты с выводами, но и такие маленькие, темненькие, на которых не понять что написано, детали. Они называются “SMD”. По-русски это значит “компоненты поверхностного монтажа”. Их главное преимущество в том, что они позволяют промышленности собирать платы с помощью роботов, которые с огромной скоростью расставляют SMD-компоненты по своим местам на печатных платах, а затем массово “запекают” и на выходе получают смонтированные печатные платы. На долю человека остаются те операции, которые робот не может выполнить. Пока не может.

Маркировка на практике

Применение чип-компонентов в радиолюбительской практике тоже возможно, даже нужно, так как позволяет уменьшить вес, размер и стоимость готового изделия. Да ещё и сверлить практически не придётся

Другое важное качество компонентов поверхностного монтажа заключается в том, что благодаря своим малым размерам они вносят меньше паразитных явлений

Дело в том, что любой электронный компонент, даже простой резистор, обладает не только активным сопротивлением, но также паразитными ёмкостью и индуктивностью, которые могут проявится в виде паразитных сигналов или неправильной работы схемы. SMD-компоненты обладают малыми размерами, что помогает снизить паразитную емкость и индуктивность компонента, поэтому улучшается работа схемы с малыми сигналами или на высоких частотах.

Разнообразные корпуса транзисторов.

Маркировка SMD компонентов

SMD компоненты все чаще используются в промышленных и бытовых устройствах. Поверхностный монтаж улучшил производительность по сравнению с обычным монтажом, так как уменьшились размеры компонентов, а следовательно и размеры дорожек. Все эти факторы снизили паразитические индуктивности и емкости в электрических цепях.

Код Сопротивление
101 100 Ом
471 470 Ом
102 1 кОм
122 1.2 кОм
103 10 кОм
123 12 кОм
104 100 кОм
124 120 кОм
474 470 кОм

Маркировка импортных SMD

Маркировка импортных SMD транзисторов происходит в основном по нескольким принятым системам. Одна из них – это система маркировки полупроводниковых приборов JEDEC.Согласно ей первый элемент – это число п-н переходов, второй элемент – тип номинал, третий – серийный номер, при наличие четвертого – модификации.

Вторая распространенная система маркировка – европейская. Согласно ей обозначение SMD транзисторов происходит по следующей схеме: первый элемент – тип исходного материала, второй – подкласс прибора, третий элемент – определение применение данного элемента, четвертый и пятый – основную спецификацию элемента.

Третьей популярной системой маркировки является японская. Эта система скомбинировала в себе две предыдущие. Согласно ей первый элемент – класс прибора, второй – буква S, ставится на всех полупроводниках, третий – тип прибора по исполнению, четвертый – регистрационный номер, пятый – индекс модификации, шестой – (необязательный) отношение к специальным стандартам.

Что бы к Вам ни попало в руки, для полной идентификации данного элемента следует применять маркировочные таблицы и по ним определить все характеристики данного элемента. По оценкам специалистов соотношение между производством ЭРЭ в обычном и SMD-исполнении должно приблизиться к 30:70. Многие радиолюбители уже начинают с успехом осваивать применение SMD в своих конструкциях.

Скорость нарастания выходного напряжения

Также обратите внимание на то, что напряжение на выходе ОУ не может резко менять свое значение. Поэтому, в ОУ есть такой параметр, как скорость нарастания выходного напряжения VUвых

Этот параметр показывает насколько быстро может измениться выходное напряжение ОУ при работе в импульсных схемах. Измеряется в Вольт/сек. Ну и как вы поняли, чем больше значение этого параметра, тем лучше ведет себя ОУ в импульсных схемах. Для LM358 этот параметр равен 0,6 В/мкс.

При участии осциллограф это

Также смотрите видео «Что такое операционный усилитель (ОУ) и как он работает»

Идеальный операционный усилитель и его свойства

Так как наш мир не является идеальным, так и идеальных операционных усилителей не существует. Однако параметры современных ОУ находятся на достаточно высоком уровне, поэтому анализ схем с идеальными ОУ даёт результаты, очень близкие к реальным усилителям.

Для понимания работы схем с операционными усилителями вводится ряд допущений, которые приводят реальные операционные усилители к идеальным усилителям. Таких допущений всего пять:

  1. Ток, протекающий через входы ОУ, принимается равным нулю.
  2. Коэффициент усиления ОУ принимается бесконечно большим, то есть выходное напряжение усилителя может достичь любых значений, однако в реальность ограничено напряжением питания.
  3. Разность напряжений между входами идеального ОУ равна нулю, то есть если один из выводов соединён с землёй, то и второй вывод имеет такой же потенциал. Отсюда также следует, что входное сопротивление идеального усилителя бесконечно.
  4. Выходное сопротивление идеального ОУ равно нулю.
  5. Амплитудно-частотная характеристика идеального ОУ является плоской, то есть коэффициент усиления не зависит от частоты входного сигнала.

Близость параметров реального операционного усилителя к идеальным определяет точность, с которой может работать данный ОУ, а также выяснить ценность конкретного операционного усилителя, быстро и правильно сделать выбор подходящего ОУ.

Исходя из вышеописанных допущений, появляется возможность проанализировать и вывести соотношения для основных схем включения операционного усилителя.

Возможно, вам также будет интересно

C увеличением сложности высокоскоростных многоканальных систем обработки сигналов средства формирования тактовых сигналов каждого из используемых в них аналого-цифрового преобразователя (АЦП) начинают оказывать существенное влияние на динамический диапазон и потенциально достижимые характеристики системы. По мере роста частоты дискретизации и полосы входного каскада современных АЦП с быстродействием 1 млрд выб/с (GSPS, Giga-Sample per Second) и более качество распределенного тактового сигнала системы становится критически важным. Системы, предназначенные

Все статьи цикла Введение. Задача проектирования Напомним задачу читателям, впервые открывшим наш цикл статей: создать принципиальную схему и развести печатную плату устройства средствами САПР DesignSpark PCB на примере светодиодного модуля . Модуль может использоваться в светильнике декоративного или служебного освещения или интерьерной подсветки. Наш модуль состоит из восьми светодиодов популярной серии Duris E5 производства компании Osram и самого популярного

Данная статья продолжает рассмотрение вопросов отладки проектов на основе ПЛИС. Она содержит рекомендации и примеры практической работы со средствами фирм Altera и Synplicity.

Ток в открытом состоянии

Величина, определяемая в спецификации как максимальный ток коллектора IGBT IC или стока MOSFET ID, при котором достигается предельный нагрев кристаллов Tj(max) при температуре корпуса Tc= +25 и +80 °C (для базовых модулей) или +25 и +70 °C (для безбазовых модулей), рассчитывается следующим образом:

IC = (Tj(max)–Tc)/(VCE(sat) × Rth(j-c));

ID = √(Tj(max)–Tc)/(RDS(on) × Rth(j-c)).

Для силовых ключей без базовой платы вместо параметров Tcи Rth(j-c) используются Ts (температура радиатора) и Rth(j-s) (тепловое сопротивление «кристалл – радиатор»); RDS(on) и VCE(sat) в приведенных выражениях должны соответствовать максимальной температуре кристалла. Отметим, что значения IC и ID могут использоваться только для грубой оценки или сравнения, поскольку реальные величины рабочих токов зависят от конкретных условий эксплуатации и должны определяться с помощью теплового расчета.

Величина IСnom (равная номинальному току кристалла, умноженному на количество параллельных чипов) также необходима для предварительной оценки, поскольку, как и в предыдущем случае, она определяется для DC-режима.

Значение повторяющегося пикового тока коллектора IСRM является предельным для состояния периодической длительной коммутации, оно не зависит от температуры и ограничено допустимой плотностью тока кристалла. В большинстве спецификаций величина IСRM ранее определялась как двойной номинал (2IСnom). Для новейших кристаллов Trench 4 производитель указывает IСRM= 3IСnom, но без определения допустимой длительности импульса. Как показывают соответствующие тесты, повторяющееся отключение такого тока может привести к раннему выходу из насыщения наиболее нагретого кристалла и, следовательно, увеличению потерь мощности. Поэтому SEMIKRON рекомендует выходить за определенные ранее пределы области безопасной работы RBSOA (2IСnom) только в исключительных случаях, например при пониженном напряжении DC-шины или плавном отключении (Soft Turn Off).

Еще одним лимитирующим фактором является максимальный эффективный ток модуля It(RMS), усредненный за период рабочей частоты. Это ограничение применимо к любой токовой характеристике, углу отсечки, условиям охлаждения. Величина It(RMS) определяется нагрузочной способностью внутренних шин и внешних терминалов силового ключа.

Характеристики оппозитных/антипараллельных диодов IGBT, такие как прямой ток IF, ток чипа IFnom и пиковый прямой ток IFRM, определяются так же, как и для транзисторов. Значение допустимой непериодической перегрузки IFSM выпрямительных диодов необходимо для выбора параметров соответствующих средств защиты (предохранителей, автоматов). Эта величина соответствует предельному пиковому току импульса 50 Гц полусинусоидальной формы, который диод способен выдержать без повреждения в аварийном режиме (КЗ) несколько раз в течение срока службы.

Как правило, максимальные нагрузочные характеристики силового преобразователя определяются балансом потерь мощности транзисторов и диодов (статических, динамических, восстановления) и возможностью отвода тепла, генерируемого кристаллами, через корпус модуля и радиатор в охлаждающую среду. При этом:

  • Должны быть исключены статические и динамические состояния (кроме случая отключения тока КЗ в рамках ограничений области безопасной работы SCSOA), при которых перегрев кристаллов IGBT, MOSFET, диодов превышает установленные лимиты.
  • Перепады температуры, обусловленные изменениями нагрузки или окружающей среды, и вызванные ими термомеханические напряжения не должны приводить к сокращению срока службы и прежде­временному отказу модулей.

Кроме того, существуют ограничения, обусловленные следующими факторами:

  • коммутационная способность силовых ключей в номинальном режиме и при перегрузке, вплоть до максимального тока (т. е. в пределах ОБР);
  • возможности активных и пассивных средств защиты от перегрузки по току;
  • величина коммутационных перенапряжений.

Преобразователь тока в напряжение для незаземленного источника

Такой преобразователь отличается наличием второго токочувствительного резистора в цепи прохождения сигнального тока, который заземлен. Схема симметричного преобразователя ток-напряжение это подобие дифференциального усилителя.

В следствии падения напряжения так же и на заземленном резисторе, потенциал входа ОУ падает ниже потенциала земли, а на выходе устанавливается напряжение:

Uвых = −2 × iвх × R

Симметричный преобразователь тока в напряжение — пример операционной схемы, которой необходим незаземленный (плавающий) источник сигнала. Таким источником может послужить все тот же фотодиод. При этом фотодиод может быть вынесен за пределы платы. Для еще большей минимизации помех, желательно использовать экранированный кабель, экран которого должен быть соединен с землей.

Принцип работы операционного усилителя

Давайте рассмотрим, как работает ОУ

Принцип работы ОУ очень прост. Он сравнивает два напряжения и на выходе уже выдает отрицательный, либо положительный потенциал питания. Все зависит от того, на каком входе потенциал больше. Если потенциал на НЕинвертирующем входе U1 больше, чем на инвертирующем U2, то на выходе будет +Uпит, если же на инвертирующем входе U2 потенциал будет больше, чем на НЕинвертирующем U1, то на выходе будет -Uпит. Вот и весь принцип ;-).

Давайте рассмотрим этот принцип в симуляторе Proteus. Для этого выберем самый простой и распространенный операционный усилитель LM358 (аналоги 1040УД1, 1053УД2, 1401УД5) и соберем примитивную схему, показывающую принцип работы

Подадим на НЕинвертирующий вход 2 Вольта, а на инвертирующий вход 1 Вольт. Так как на НЕинвертирующем входе потенциал больше, то следовательно, на выходе мы должны получить +Uпит. Мы получили 13,5 Вольт, что близко к этому значению

Но почему не 15 Вольт? Виновата во всем сама внутренняя схемотехника ОУ. Максимальное значение ОУ не всегда может равняться положительному либо отрицательному напряжению питания. Оно может отклоняться от 0,5 и до 1,5 Вольт в зависимости от типа ОУ.

Но, как говорится, в семье не без уродов, и поэтому на рынке уже давно появились ОУ, которые могут выдавать на выходе допустимое напряжение питания, то есть в  нашем случае это значения, близкие к +15 и -15 Вольтам. Такая фишка называется Rail-to-Rail, что в дословном переводе с англ. «от рельса до рельса», а на языке электроники «от одной шины питания и до другой».

Давайте теперь на инвертирующий вход подадим потенциал больше, чем на НЕинвертирущий. На инвертирующий подаем 2 Вольта, а на НЕинвертирующий подаем 1 Вольт:

Как вы видите, в данный момент выход «лег» на -Uпит, так как на инвертирующем входе потенциал был больше, чем на НЕинвертирующем.

Чтобы не качать лишний раз программный комплекс Proteus, можно в онлайне с помощью программы Falstad сэмулировать работу идеального ОУ. Для этого выбираем вкладку Circuits—Op-Amps—>OpAmp. В результате на вашем экране появится вот такая схемка:

На правой панели управления увидите бегунки для добавления напряжения на входы ОУ и уже можете визуально увидеть, что получится на выходе ОУ при изменении напряжения на входах.

Схемы питания операционных усилителей

Схем включения ОУ существует большое количество, и они не ограничиваются представленными в статье.

Данной схеме присуще высокое входное сопротивление, и напротив, низкий показатель на входе.

Напряжение попадает на инвертирующий вход, а прямой вход, в свою очередь, заземлён.

Работа от однополярного источника питания

Двухполярное питание в настоящее время задействуется в работе крайне редко, поэтому на замену пришёл другой способ – работа от однополярного источника питания. В цепь вводится дополнительная деталь – цепь дополнительного смещения.

Работа от двухполярного источника питания

Основополагающей составляющей ОУ выступает дифференциальный каскад, поддерживающийся при помощи транзисторов. Для снабжения прибора питанием необходим источник с отрицательным и положительным напряжением. Единицы измерения должны совпадать по обоим показателям.

В стандартную схему подключения операционных усилителей входит несколько составляющих: два конденсатора, двухполярный источник питания, а также защитные диоды.

Последние из перечисленных составляющих являются необязательными, но для того чтобы понять, как работает операционный усилитель, лучше учесть это в схеме.

При подключении конденсаторов следует учитывать, что оно должно быть максимально близко к выходам схемы. Составляющие отвечают за развязку шин.

Компаратор LM311 на практике

Пора запустить компаратор и проверить его работу на практике. Мы построим схему, которая позволит нам точно наблюдать, что происходит при изменении разницы напряжений между двумя входами компаратора. Для выполнения упражнения вам потребуются следующие элементы:

  • 1 × LM311,
  • Резистор 4 × 10 кОм ,
  • Резистор 1 × 330 Ом ,
  • Потенциометр 1 × 5 кОм,
  • Конденсатор 1 × 100 нФ,
  • 1 × 220 мкФ конденсатор,
  • 1 × светодиод (выберите свой любимый цвет),
  • Батарея 4 × AA,
  • 1 × корзина для 4 батареек АА,
  • 1 × макетная плата,
  • Комплект соединительных проводов.

Эти элементы следует подключать согласно схеме ниже. Если вам все понятно, можно попробовать собрать эту схему на плате самостоятельно. Только помните о правильной полярности светодиода и электролитического конденсатора

Также обратите внимание на нумерацию выводов (ножек) LM311. Если вы не хотите рисковать или не знаете, как собрать такую ​​схему на плате, следуйте приведенным ниже инструкциям, которые пошагово описывают весь процесс сборки

Обратите внимание на углубление в корпусе компаратора — сравните элемент с рисунком выше, чтобы найти правильные выводы схемы.

Схема первой цепи с компаратором LM311

Шаг 1. Начинаем с размещения компаратора в центре макетной платы — углубление в середине платы должно проходить под схемой. Если сомневаетесь, вспомните, как устроена макетная плата — другое расположение схемы может привести к короткому замыканию контактов.

Примеры неправильного и правильного размещения интегральных схем на макетной плате

При размещении схемы на плате, обратите внимание на положение выемки в корпусе (или точки), которая позволяет найти первый вывод схемы.

Шаг 2. Добавьте два фильтрующих конденсатора блока питания (C1 и C2 на схеме).

Шаг 1: размещение на макетной плате Шаг 2: конденсаторы силового фильтра

Шаг 3: берем два резистора по 10 кОм (в схеме R3 и R4), создаем один делитель напряжения, центр которого совмещаем с инвертирующим входом компаратора (вывод 3).

Шаг 4. Подключите питание к восьмой ножке (выводу) компаратора. Дополнительно подключите светодиод с резистором к плате (на схеме LED1 и R5).

Шаг 3: делитель напряжения Шаг 4: питание микросхемы, светодиод и резистор

Шаг 5. Используя следующие резисторы 10 кОм (R1 и R2 на схеме) и потенциометр 5 кОм (P1), создаем делитель напряжения, который подключаем к неинвертирующему входу компаратора LM311.

Шаг 6. Добавьте недостающие соединения, то есть соедините контакты 1 и 4 с землей схемы. Вы также должны подключить крайние положительные провода, расположенные на макетной плате, для передачи напряжения с одной стороны платы на другую.

Шаг 5: второй делитель напряжения Шаг 6: последние штрихи

На практике, схема может выглядеть как на фото ниже. Сматывание проводов нужно только для того, чтобы сделать сборку более понятной. На практике, вся схема может выглядеть более хаотичной — это совершенно нормальный вид для сборки на макетной плате.

Подключение с помощью смотанных проводов Подключение без сматывания проводов

Какие бывают стандарты маркировки

Маркировка, которая наносится на корпус SMD-элементов, как правило, отличается от их фирменных названий. Причина банальная – нехватка места из-за миниатюрности корпуса. Проблема особенно актуальна для ЭРЭ, которые размещаются в корпусах с шестью и менее выводами.

Это миниатюрные диоды, транзисторы, стабилизаторы напряжения, усилители и т.д. Для разгадки “что есть что” требуется проводить настоящую экспертизу, ведь по одному маркировочному коду без дополнительной информации очень трудно идентифицировать тип ЭРЭ. С момента появления первых SMD-приборов прошло более 20 лет.

Несмотря на все попытки стандартизации, фирмы-изготовители до сих пор упорно изобретают все новые разновидности SMD-корпусов и бессистемно присваивают своим элементам маркировочные коды.

Полбеды, что наносимые символы даже близко не напоминают наименование ЭРЭ, – хуже всего, что имеются случаи “плагиата”, когда одинаковые коды присваивают функционально разным приборам разных фирм.

Тип Наименование ЭРЭ Зарубежное название
A1 Полевой N-канальный транзистор Feld-Effect Transistor (FET), N-Channel
A2 Двухзатворный N-канальный полевой транзистор Tetrode, Dual-Gate
A3 Набор N-канальных полевых транзисторов Double MOSFET Transistor Array
B1 Полевой Р-канальный транзистор MOS, GaAs FET, P-Channel
D1 Один диод широкого применения General Purpose, Switching, PIN-Diode
D2 Два диода широкого применения Dual Diodes
D3 Три диода широкого применения Triple Diodes
D4 Четыре диода широкого применения Bridge, Quad Diodes
E1 Один импульсный диод Rectifier Diode
E2 Два импульсных диода Dual
E3 Три импульсных диода Triple
E4 Четыре импульсных диода Quad
F1 Один диод Шоттки AF-, RF-Schottky Diode, Schottky Detector Diode
F2 Два диода Шоттки Dual
F3 Три диода Шоттки Tripple
F4 Четыре диода Шоттки Quad
K1 “Цифровой” транзистор NPN Digital Transistor NPN
K2 Набор “цифровых” транзисторов NPN Double Digital NPN Transistor Array
L1 “Цифровой” транзистор PNP Digital Transistor PNP
L2 Набор “цифровых” транзисторов PNP Double Digital PNP Transistor Array
L3 Набор “цифровых” транзисторов | PNP, NPN Double Digital PNP-NPN Transistor Array
N1 Биполярный НЧ транзистор NPN (f < 400 МГц) AF-Transistor NPN
N2 Биполярный ВЧ транзистор NPN (f > 400 МГц) RF-Transistor NPN
N3 Высоковольтный транзистор NPN (U > 150 В) High-Voltage Transistor NPN
N4 “Супербета” транзистор NPN (г“21э > 1000) Darlington Transistor NPN
N5 Набор транзисторов NPN Double Transistor Array NPN
N6 Малошумящий транзистор NPN Low-Noise Transistor NPN
01 Операционный усилитель Single Operational Amplifier
02 Компаратор Single Differential Comparator
P1 Биполярный НЧ транзистор PNP (f < 400 МГц) AF-Transistor PNP
P2 Биполярный ВЧ транзистор PNP (f > 400 МГц) RF-Transistor PNP
P3 Высоковольтный транзистор PNP (U > 150 В) High-Voltage Transisnor PNP
P4 “Супербета” транзистор PNP (п21э > 1000) Darlington Transistor PNP
P5 Набор транзисторов PNP Double Transistor Array PNP
P6 Набор транзисторов PNP, NPN Double Transistor Array PNP-NPN
S1 Один сапрессор Transient Voltage Suppressor (TVS)
S2 Два сапрессора Dual
T1 Источник опорного напряжения “Bandgap”, 3-Terminal Voltage Reference
T2 Стабилизатор напряжения Voltage Regulator
T3 Детектор напряжения Voltage Detector
U1 Усилитель на полевых транзисторах GaAs Microwave Monolithic Integrated Circuit (MMIC)
U2 Усилитель биполярный NPN Si-MMIC NPN, Amplifier
U3 Усилитель биполярный PNP Si-MMIC PNP, Amplifier
V1 Один варикап (варактор) Tuning Diode, Varactor
V2 Два варикапа (варактора) Dual
Z1 Один стабилитрон Zener Diode

Ремонт прибора

Ремонт этих устройств для преобразования одного вида напряжения в другой, лучше производить в сервисных центрах, где персонал имеет высокую квалификацию и впоследствии предоставит гарантии выполненных работ. Чаще всего любые современные качественные преобразователи состоят из нескольких сотен электронных деталей и если нет явных сгоревших элементов, то найти поломку и устранить её будет очень сложно.

Некоторые же китайские недорогие устройства данного типа, вообще, в принципе лишены возможности их ремонта, чего нельзя сказать об отечественных производителях. Да может они немного громоздкие и не компактные, но зато подлежат ремонту, так как многие из их деталей можно заменить на аналогичные.

Повышающий Dc Dc преобразователь – преобразователь типа boost

Повышающие преобразователи применяются в основном при низковольтном питании, например, от двух-трех батареек, а некоторые узлы конструкции требуют напряжения 12…15 В с малым потреблением тока. Достаточно часто повышающий преобразователь кратко и понятно называют словом «бустер».

   Функциональная схема повышающего преобразователя

Входное напряжение U in подается на входной фильтр C in и поступает на последовательно соединенные катушку индуктивности L и коммутирующий транзистор VT. В точку соединения катушки и стока транзистора подключен диод VD. К другому выводу диода подключены нагрузка R н и шунтирующий конденсатор C out.

Транзистор VT управляется схемой управления, которая вырабатывает сигнал управления стабильной частоты с регулируемым коэффициентом заполнения D, так же, как было рассказано чуть выше при описании чопперной схемы. Диод VD в нужные моменты времени блокирует нагрузку от ключевого транзистора.

Когда открыт ключевой транзистор правый по схеме вывод катушки L соединяется с отрицательным полюсом источника питания U in. Нарастающий ток (сказывается влияние индуктивности) от источника питания протекает через катушку и открытый транзистор, в катушке накапливается энергия.

В это время диод VD блокирует нагрузку и выходной конденсатор от ключевой схемы, тем самым предотвращая разряд выходного конденсатора через открытый транзистор. Нагрузка в этот момент питается энергией накопленной в конденсаторе C out. Естественно, что напряжение на выходном конденсаторе падает.

Как только напряжение на выходе станет несколько ниже заданного, (определяется настройками схемы управления), ключевой транзистор VT закрывается, и энергия, запасенная в дросселе, через диод VD подзаряжает конденсатор C out, который подпитывает нагрузку. При этом ЭДС самоиндукции катушки L складывается с входным напряжением и передается в нагрузку, следовательно, напряжение на выходе получается больше входного напряжения.

По достижении выходным напряжением установленного уровня стабилизации схема управления открывает транзистор VT, и процесс повторяется с фазы накопления энергии.

Дифференциатор

Дифференциатор по своему действию противоположен работе интегратора, то есть выходной сигнал пропорционален скорости изменения входного сигнала. Схема простейшего дифференциатора показана ниже



Дифференциатор на операционном усилителе.

Дифференциатор реализует операцию дифференцирование над входным сигналом и аналогичен действию дифференцирующих RC и RL цепочек, кроме того имеет лучшие параметры по сравнению с RC и RL цепочками: практически не ослабляет входной сигнал и обладает значительно меньшим выходным сопротивлением. Основные расчётные соотношения и реакция на различные импульсы аналогична дифференцирующим цепочкам.

Выходное напряжение составит

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: