Технические характеристики
Семейство кремниевых биполярных транзисторов КТ819, в зависимости от модификации, могут иметь следующие предельные эксплуатационные характеристики:
- напряжение между: коллектором и базой от 25 до 60 В; коллектором и эмиттером (при RБЭ ≤ 100 Ом) от 40 до 100 В; базой и эмиттером – 5 В;
- постоянный ток на коллекторе от 10 до 15 А; проходящий через базу – 3 А;
- импульсный ток (при tи ≤ 10 мс, Q ≥ 100): коллектора от 15 до 20 А; базы– 5 А;
- максимальная рассеиваемая мощность (при ТК ≤ 25 oC) с теплоотводом от 60 до 100 Вт и без него от 1,5 до 3 Вт;
- температура p-n перехода от +125 до +150 oC;
- диапазон рабочих температур от -45 до +150 oC;
Основные параметры представлены в документации от производителя. Значения приводятся с учетом температуры окружающей среды не более +25 oC. Рассмотрим их подробнее, в зависимости от классификации устройств.
В связи с тем, что транзистор устарел, современные производители указывают в его техописании только минимальный набор параметров. Более подробную информацию по серии можно найти в старой версии даташит. Там данные приведены вместе с графиками передаточных характеристик, зависимостями статического коэффициента усиления от тока эмиттера и др.
Маркировка
Изучая параметры КТ819, стоит знать и другую маркировку этой серии транзисторов. Выполняя условия отраслевого стандарта ОСТ 11.336.919-81 различные отечественные производители обозначали его так — 2Т819. Первые символы «2T» указывают на кремневые биполярные транзисторы. В старых технических описаниях данные об этих устройствах приводят вместе с рассматриваемыми в этой статье.
Транзисторы КТ825
Транзисторы КТ825 — кремниевые, составные(схема Дарлингтона), усилительные мощные низкочастотные, структуры p-n-p. Применяются в усилительных и генераторных схемах. Цоколевка КТ825 и разновидности корпусов такие же как и у КТ818.
КТ825 — можно заменить эквивалентной схемой на двух транзисторах. Обычно, для этой цели используются КТ818 и КТ814. Сама схема выглядит вот таким образом.
Наиболее важные параметры.
Коэффициент передачи тока — У транзисторов КТ825Г, КТ825Д, КТ825Е — 750. У транзисторов 2Т825А, 2Т825А2 — от 500 , до 18000 . У транзисторов 2Т825Б, 2Т825В2, 2Т825Б2 — от 750 , до 18000 .
Максимально допустимое напряжение коллектор-эмиттер У транзисторов КТ825Д, 2Т825В, 2Т825В2 — 45 в. У транзисторов КТ825Е — 25 в. У транзисторов 2Т825Б, 2Т825Б2 — 60 в. У транзисторов КТ825Г — 70 в. У транзисторов 2Т825А, 2Т825А2 — 45 в.
Максимальный ток коллектора. У транзисторов КТ825Г, КТ825Д, КТ825Е, 2Т825А, 2Т825Б, 2Т825В — 20 А. У транзисторов 2Т825А2, 2Т825Б2, 2Т825В2 — 15 А.
Рассеиваемая мощность коллектора.(на радиаторе) У транзисторов КТ825Г, КТ825Д, КТ825Е — 125 Вт. У транзисторов 2Т825А, 2Т825Б, 2Т825В — 160 Вт. У транзисторов 2Т825А2, 2Т825Б2, 2Т825В2 — 30 Вт. Без радиатора — 3 Вт.
Напряжение насыщения база — эмиттер при токе коллектора 10 А и базовом токе 40 мА — 3 в, при токе коллектора 20 А и базовом токе 200 мА — 4в
Емкость коллекторного перехода при напряжении коллектор-база 10 в на частоте 100 КГц — не более 600пФ.
Напряжение насыщения коллектор-эмиттер при токе коллектора 10А, базы 40мА — не более 2в.
Максимальная температура перехода: У транзисторов КТ825А, КТ825Б, КТ825В — +175 Цельсия. У транзисторов КТ825Г, КТ825Д, КТ825Е — +150 Цельсия.
Граничная частота передачи тока — 4 МГц.
Зарубежные аналоги транзисторов КТ825
КТ825Г — 2N6051. КТ825Д — 2N6050. КТ825Е — BDX64. КТ825ГM — 2N6052G. 2Т825В -2N6285. 2Т825Б — 2N6286. 2Т825А — TIP147, TIP142
Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».
Источник
Транзисторы КТ819 и КТ818 (А-Г, АМ…ГМ) характеристики, цоколевка (datasheet)
September 10, 2012 by admin
Комментировать »
Транзисторы КТ819 , 2Т819 и КТ818 , 2Т818 широко применяются в радиоаппаратуре в качестве ключевых элементов или выходных транзисторов в звуковоспроизводящих устройствах. Транзисторы достаточно дешевы и имеют сравнительно неплохие параметры что способствовало их широкому распостранению в странах СНГ.
В статье представлены основные параметры и характеристики (даташиты) транзисторов КТ819 , 2Т819 и КТ818 , 2Т818. Для каждого транзистора представлена цоколевка при выполнении в пластмассовом и металическом корпусе.
КТ819 , 2Т819 (кремниевый транзистор, n-p-n)
КТ819 (А…Г), 2Т819 (А2…В2) КТ819 (АМ…ГМ), 2Т819 (А…В)
Основные технические характеристики транзисторов КТ819
Прибор | Предельные параметры | Параметры при T = 25°C | RТ п-к, °C/Вт | ||||||||||||||||||
при T = 25°C | |||||||||||||||||||||
IК, max, А | IК и, max, А | UКЭ0 гр, В | UКБ0 max, В | UЭБ0 max, В | PК max, Вт | TК, °C | Tп max, °C | TК max, °C | h21Э | UКЭ(UКБ),В | IК (IЭ), А | UКЭ нас, В | I КБ0, мА |
fгр, МГц | Кш, дБ | CК, пФ | CЭ, пФ | tвкл, мкс | tвыкл, мкс | ||
КТ819А | 10 | 15 | 25 | 5 | 60 | 25 | 125 | 100 | 15 | (5) | 5 | 2 | 1 | 3 | 1000 | 2,5 | 1,67 | ||||
КТ819Б | 10 | 15 | 40 | 5 | 60 | 25 | 125 | 100 | 20 | (5) | 5 | 2 | 1 | 3 | 1000 | 2,5 | 1,67 | ||||
КТ819В | 10 | 15 | 60 | 5 | 60 | 25 | 125 | 100 | 15 | (5) | 5 | 2 | 1 | 3 | 1000 | 2,5 | 1,67 | ||||
КТ819Г | 10 | 15 | 80 | 5 | 60 | 25 | 125 | 100 | 12 | (5) | 5 | 2 | 1 | 3 | 1000 | 2,5 | 1,67 | ||||
КТ819АМ | 15 | 20 | 25 | 5 | 100 | 25 | 125 | 100 | 15 | 5 | 5 | 2 | 1 | 3 | 1000 | 2,5 | 1 | ||||
КТ819БМ | 15 | 20 | 40 | 5 | 100 | 25 | 125 | 100 | 20 | 5 | 5 | 2 | 1 | 3 | 1000 | 2,5 | 1 | ||||
КТ819ВМ | 15 | 20 | 60 | 5 | 100 | 25 | 125 | 100 | 15 | 5 | 5 | 2 | 1 | 3 | 1000 | 2,5 | 1 | ||||
КТ819ГМ | 15 | 20 | 80 | 5 | 100 | 25 | 125 | 100 | 12 | 5 | 5 | 2 | 1 | 3 | 1000 | 2,5 | 1 | ||||
2Т819А | 15 | 20 | 80 | 100 | 5 | 100 | 25 | 150 | 125 | 20 | (5) | 5 | 1 | 3 | 1000 | 2,5 | 1,25 | ||||
2Т819Б | 15 | 20 | 60 | 80 | 5 | 100 | 25 | 150 | 125 | 20 | (5) | 5 | 1 | 3 | 1000 | 2,5 | 1,25 | ||||
2Т819В | 15 | 20 | 40 | 60 | 5 | 100 | 25 | 150 | 125 | 20 | (5) | 5 | 1 | 3 | 1000 | 2,5 | 1,25 | ||||
2Т819А2 | 15 | 20 | 80 | 100 | 5 | 40 | 25 | 150 | 100 | 20 | (5) | (5) | 1 | 3 | 700 | 2000 | 1,2 | 3,13 | |||
2Т819Б2 | 15 | 20 | 60 | 80 | 5 | 40 | 25 | 150 | 100 | 20 | (5) | (5) | 1 | 3 | 700 | 2000 | 1,2 | 3,13 | |||
2Т819В2 | 15 | 20 | 40 | 60 | 5 | 40 | 25 | 150 | 100 | 20 | (5) | (5) | 1 | 3 |
700
2000
1,2
3,13
КТ818 , 2Т818 (кремниевый транзистор, p-n-p)
КТ818(А…Г), 2Т818(А-2…В-2) КТ818(АМ…ГМ), 2Т818(А…В)
Основные технические характеристики транзисторов КТ818
Прибор | Предельные параметры | Параметры при T = 25°C | RТ п-к, °C/Вт | ||||||||||||||||||
при T = 25°C | |||||||||||||||||||||
IК, max, А | IК и, max, А | UКЭ0 гр, В | UКБ0 max, В | UЭБ0 max, В | PК max, Вт | TК, °C | Tп max, °C | TК max, °C | h21Э | UКЭ(UКБ),В | IК (IЭ), А | UКЭ нас, В | IКБ0, мА | fгр, МГц | Кш, дБ | CК, пФ | CЭ, пФ | tвкл, мкс | tвыкл, мкс | ||
КТ818А | 10 | 15 | 25 | 5 | 60 | 25 | 125 | 100 | 15 | (5) | 5 | 2 | 1 | 3 | 1000 | 2,5 | 1,67 | ||||
КТ818Б | 10 | 15 | 40 | 5 | 60 | 25 | 125 | 100 | 20 | (5) | 5 | 2 | 1 | 3 | 1000 | 2,5 | 1,67 | ||||
КТ818В | 10 | 15 | 60 | 5 | 60 | 25 | 125 | 100 | 15 | (5) | 5 | 2 | 1 | 3 | 1000 | 2,5 | 1,67 | ||||
КТ818Г | 10 | 15 | 80 | 5 | 60 | 25 | 125 | 100 | 12 | (5) | 5 | 2 | 1 | 3 | 1000 | 2,5 | 1,67 | ||||
КТ818АМ | 15 | 20 | 25 | 5 | 100 | 25 | 125 | 100 | 20 | 5 | 5 | 1 | 3 | 1000 | 2,5 | 1 | |||||
КТ818БМ | 15 | 20 | 40 | 5 | 100 | 25 | 125 | 100 | 20 | 5 | 5 | 1 | 3 | 1000 | 2,5 | 1 | |||||
КТ818ВМ | 15 | 20 | 60 | 5 | 100 | 25 | 125 | 100 | 20 | 5 | 5 | 1 | 3 | 1000 | 2,5 | 1 | |||||
КТ818ГМ | 15 | 20 | 80 | 5 | 100 | 25 | 125 | 100 | 20 | 5 | 5 | 1 | 3 | 1000 | 2,5 | 1 | |||||
2Т818А | 15 | 20 | 80 | 100 | 5 | 100 | 25 | 150 | 125 | 20 | (5) | (5) | 1 | 3 | 1000 | 2,5 | 1,25 | ||||
2Т818Б | 15 | 20 | 60 | 80 | 5 | 100 | 25 | 150 | 125 | 20 | (5) | (5) | 1 | 3 | 1000 | 2,5 | 1,25 | ||||
2Т818В | 15 | 20 | 40 | 60 | 5 | 100 | 25 | 150 | 125 | 20 | (5) | (5) | 1 | 3 | 1000 | 2,5 | 1,25 | ||||
2Т818А2 | 15 | 20 | 80 | 100 | 5 | 40 | 25 | 150 | 100 | 20 | (5) | (5) | 1 | 3 | 1000 | 2000 | 1,2 | 3,13 | |||
2Т818Б2 | 15 | 20 | 60 | 80 | 5 | 40 | 25 | 150 | 100 | 20 | (5) | (5) | 1 | 3 | 1000 | 2000 | 1,2 | 3,13 | |||
2Т818В2 | 15 | 20 | 40 | 60 | 5 | 40 | 25 | 150 | 100 | 20 | (5) | (5) | 1 | 3 | 1000 | 2000 | 1,2 | 3,13 |
Характеристики биполярного транзистора.
Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач. И первая на очереди — входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:
I_{б} = f(U_{бэ}), \medspace при \medspace U_{кэ} = const
В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_{кэ}):
Входная характеристика, в целом, очень похожа на прямую ветвь . При U_{кэ} = 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_{кэ} ветвь будет смещаться вправо.
Переходим ко второй крайне важной характеристике биполярного транзистора — выходной. Выходная характеристика — это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы
I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const
Для нее также указывается семейство характеристик для разных значений тока базы:
Видим, что при небольших значениях U_{кэ} коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения — изменение тока очень мало и фактически не зависит от U_{кэ} (зато пропорционально току базы). Эти участки соответствуют разным .
Для наглядности можно изобразить эти режимы на семействе выходных характеристик:
Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.
Для управления током базы мы увеличиваем напряжение U_{бэ}, что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано.
Небольшое дополнение. На этом участке выходной характеристики ток коллектора все-таки незначительно зависит от напряжения U_{кэ} (возрастает с увеличением напряжения). Это связано с процессами, протекающими в биполярном транзисторе. А именно — при росте напряжения на коллекторном переходе его область расширяется, а соответственно, толщина слоя базы уменьшается. Чем меньше толщина базы, тем меньше вероятность рекомбинации носителей в ней. А это, в свою очередь, приводит к тому, что коэффициент передачи тока \beta несколько увеличивается. Это и приводит к увеличению тока коллектора, ведь:
I_к = \beta I_б
Двигаемся дальше
На участке 2 транзистор находится в режиме насыщения. При уменьшении U_{кэ} уменьшается и напряжение на коллекторном переходе U_{кб}. И при определенном значении U_{кэ} = U_{кэ \medspace нас} напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина — эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.
В этом режиме основные носители заряда начинают двигаться из коллектора в базу — навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_{кэ} ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.
Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора.
И, наконец, область 3, лежащая ниже кривой, соответствующей I_{б} = 0. Оба перехода смещены в обратном направлении, протекание тока через транзистор прекращается. Это так называемый режим отсечки.
Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_{FE}) от тока коллектора для биполярного транзистора BC847:
Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды. Разным значениям температуры соответствуют разные кривые.
Транзисторы серии КТ825, 2Т825
По своим техническим характеристикам транзисторы серии КТ825 подходят для использования в различных усилительных и коммутационных схемах. Встречаются в старых стабилизаторах напряжения, безконактных системах зажигания и управления двигателями. Кремниевые, изготавливаются по мезапланарной технологии и имеют p-n-p-структуру. Являются составными, т.е. сделанными по схеме Дарлингтона, имеющими большой статический коэффициент усиления по току (H21э до 25000) и способность прогонять через себя большие напряжения и токи. Основные свойства этого популярного полупроводникового прибора, разработанного еще в советские времена, примерно в конце 80-х, приведены в данной статье.
Полевые транзисторы
Так же очень распространенные на сегодняшний день компоненты. Их применяют даже чаще, чем биполярные. К примеру, инверторы теперь в основном только с полевыми, то есть биполярные приборы они уже стеснили. И если у вас возникает вопрос, можно ли заменить полевой транзистор биполярным, то ответ будет положительным. Однако в полевом плюсов намного больше, чем в биполярном.
Полевые усилители поглощают энергии намного меньше, чем биполярные, так как полевые управление фокусируют на напряжении и электрическим полем заряда, в то время когда биполярные же держатся на токе базы. Поэтому их предпочитают больше. Полевые транзисторы даже переключаются в разы быстрее, чем биполярные. К тому же они имеют хорошую термоустойчивость. И для того, чтобы переключить направления электрического тока, полевые транзисторы вправе соединяться параллельно и без резисторов, просто нужен драйвер, подходящий для этого.
Если же говорить о замене полевых триодов, то и здесь есть способ поиска их аналогов. В принципе в поиске с биполярными не сильно отличается, можно сказать даже, что будет практически таким же. Но разница небольшая есть: нет той проблемы с передачей тока, как у биполярного транзистора. Нельзя забывать о сток-исток, нужно помнить о запасе.
К тому же у полевого есть такой параметр, как сопротивление открытого канала. Вот от него легко определить, что будет с мощностью, и как она будет рассеиваться
Ну и, конечно же, очень важно рассчитывать это сопротивление открытого канала, так как можно потерять много энергии и напряжении при переходе не будет слишком высоким
Чем можно заменить полевые транзисторы?
Крутизна S также очень важна при поиске аналога. Данный параметр будет показывать состояние тока стока при напряжении затвора. Это позволит определить, сколько понадобится напряжения для коммутации.
Помните, что выбирать важно и исходя от порогового напряжения затвора, если напряжение будет в разы меньше порогового, то нормального функционирования от вашего аналога ждать не придется. Цепь при получении напряжения не получит нужного и вся мощность, точнее ее рассеивание останется на приборе, а для него этого нежелательно, ведь может случиться перегрев
В даташите еще говорится, что мощность рассеяния обоих приборов одинакова: и зависит это от корпуса. Если корпус большой, то получение тепловой мощности будет безопаснее рассеиваться.
Емкость затвора так же очень важна в случае данного предмета
Очень важно, чтобы затвор не был крайне тяжелым, и необходимо помнить об этом при выборе. Будет очень хорошо, если он будет меньше в разы, так как это принесет удобство и легкость в использовании данного механизма
Однако если вам нет необходимости перепаивать, то спокойно можно выбрать размер, который идеально подойдет, схожий с оригиналом.
К примеру, сейчас довольно часто меняют IRFP460 на более новую и современную 20N50, так как у него затвор крайне легкий. Опять-таки даташит скажет то же самое, указав на массу схожести, несмотря на преимущество второго.
Технические характеристики
Семейство кремниевых биполярных транзисторов КТ819, в зависимости от модификации, могут иметь следующие предельные эксплуатационные характеристики:
- напряжение между: коллектором и базой от 25 до 60 В; коллектором и эмиттером (при RБЭ ≤ 100 Ом) от 40 до 100 В; базой и эмиттером – 5 В;
- постоянный ток на коллекторе от 10 до 15 А; проходящий через базу – 3 А;
- импульсный ток (при tи ≤ 10 мс, Q ≥ 100): коллектора от 15 до 20 А; базы– 5 А;
- максимальная рассеиваемая мощность (при ТК ≤ 25 oC) с теплоотводом от 60 до 100 Вт и без него от 1,5 до 3 Вт;
- температура p-n перехода от +125 до +150 oC;
- диапазон рабочих температур от -45 до +150 oC;
Основные параметры представлены в документации от производителя. Значения приводятся с учетом температуры окружающей среды не более +25 oC. Рассмотрим их подробнее, в зависимости от классификации устройств.
В связи с тем, что транзистор устарел, современные производители указывают в его техописании только минимальный набор параметров. Более подробную информацию по серии можно найти в старой версии даташит. Там данные приведены вместе с графиками передаточных характеристик, зависимостями статического коэффициента усиления от тока эмиттера и др.
Маркировка
Изучая параметры КТ819, стоит знать и другую маркировку этой серии транзисторов. Выполняя условия отраслевого стандарта ОСТ 11.336.919-81 различные отечественные производители обозначали его так — 2Т819. Первые символы «2T» указывают на кремневые биполярные транзисторы. В старых технических описаниях данные об этих устройствах приводят вместе с рассматриваемыми в этой статье.
КТ819 — применение
Сразу стоит упомянуть, что КТ819 имеет комплементарную пару — транзистор КТ818 с p-n-p структурой. Параметры КТ818 аналогичны параметрам КТ819 с совпадающими буквами. И вот в паре с КТ818, КТ819 часто применялся в оконечных каскадах звуковоспроизводящей аппаратуры. Также благодаря своей дешевизне нашел применение в ключевых и линейных стабилизаторах постоянного напряжения. КТ819 имеет серьезные минусы:
- низкий коэффициент усиления по току (от 12 до 20 в зависимости от подтипа), и это требует серьезной раскачки на предварительном каскаде;
- плохая повторяемость параметров от экземпляра к экземпляру, из-за этого чтобы подобрать две пары транзисторов по коэффициенту усиления может потребоваться перебрать целое ведро КТ819
Так что если потребуется отремонтировать отечественный усилитель, то лучше сразу покупать импортные аналоги. Например вместо КТ819 и КТ818 в корпусе КТ-9, поставить зарубежную пару в корпусе TO-3: MJ15001 и MJ15002 или MJ15003 и MJ15004.
В принципе аналогов много и в интернете много информации на этот счет, только вот не факт, что конкретно в этом усилителе замена подойдет. Поэтому перед заменой необходимо свериться с документацией производителя, транзистор которого собираетесь устанавливать так как от производителя к производителю у одного и того же типа транзистора могут отличатся параметры.
Вот ещё аналоги:
- КТ818ГМ — 2N2955
- КТ819ГМ — 2N3055
- 2Т819А — 2N5068
8 thoughts on “ КТ819 параметры ”
Не считаю, что низкий коэффициент передачи тока, данных транзисторов, являлся серьезным минусом, при использовании в выходных каскадах УМЗЧ. Скорее наоборот, особенно в экономичном режиме усиления АБ, когда часть работы выходного каскада брал на себя предварительный. К тому-же, многокаскадность позволяет использовать разнообразные цепи коррекции АЧХ. А для любых биполярных транзисторов, в таком применении, без этого никак не обойтись. А для простых, но мощных УНЧ (мегафонных, сиренных…), да, не очень подходят. Только для схематично-сложных Hi-Fi. Разброс КПТ, при его изначальной малости, тоже довольно мал, так что подобрать пару несложно, не путайте с 825-ми и 827-ми. По настоящему хороши 2Т818ГМ, 2Т819ГМ и их аналоги 2N2955, 2N3055.
Много «дохлых» попадается среди непользованных 818/819, с утечкой, звонящихся между коллектором и эмиттером.
Для пары КТ819 и КТ818 небольшие начальные утечки тока почти норма, и при их прямой замене на зарубежные аналоги, придется провести тщательную перенастройку всех предыдущих каскадов, включенных в обратную связь по току. Паразитная проводимость обязательно учитывается при проектировании схем, и даже в некоторых случаях предотвращает самовозбуждение. И если речь идет о замене транзистора в высококлассном многокаскадном УМЗЧ, то лучше будет после этого сделать настройку с помощью осциллографа и генератора низкой частоты.
Транзисторы с утечкой в выходном каскаде — ни ток покоя, ни ноль на выходе уже не выставишь без плясок с бубном.
Помню времена , когда за пару 818-819 нужно было отвалить чуть-ли не ползарплаты инженера.Зато усилители радовали. Сегодня вытеснила интегральная электроника — дискретную. Но для тренировки ума и рук — очень полезная деталь. Я, кстати, просто как ленивый радиолюбитель рассуждаю.
Ну, те что в железе, действительно, были дороговаты… Правда, у радиоинженера были возможности их просто выписать на складе, сдав взамен сгоревшие, для отчетности ) А те, что пошли попозже и были одеты в пластик, дорого уже не стоили. И не потому, что так уж хуже были по параметрам, а потому, что технология производства гораздо проще и дешевле. Сегодня ситуация не изменилась — один и тот же кристалл одетый в железо стоит на порядок (!) дороже аналогичного в пластике. Это касается и отечественных и зарубежных транзисторов.
Ребята, используйте 2Т819 и никакой 2N3055 вам не понадобится!
Ну. Всё захаили всё советское это не так,это не то,всё гавно -а. забугорное не гавно- это сладость. Как ламповые уселители так и транзисторные. Радиотехника… Бердский радиозавод. и т.д. Что-то все хотели купить 1 класса . и 0 высшего. А кто знает какого параметра была ихняя электроника ?Вы кто-то производил снятия характеристик?Я давно выписываю журнал Радио. И не надо хаить советскую радиопромышленность. Что то сейчас в тренде опять советские ламповые уселители.
Проверка КТ815
Не всегда покупаемые элементы оказываются в рабочем состоянии. Пусть бракованные элементы попадаются не так часто, но любой радиолюбитель или просто покупатель обязан знать, как проверить такой прибор.
Во-первых, проверить работоспособность КТ815 можно специальным пробником, но рассмотрим проверку обычным мультиметром, так как предыдущий прибор есть далеко не у всех.
Для проверки при помощи мультиметра, прибор нужно перевести в режим прозвонки. Сначала прикладываем отрицательный щуп к базе, а положительный к коллектору. На дисплее должно отобразиться значение от 500 до 800 мв. Затем меняем щупы, поставив на базу положительный, а на эмиттер отрицательный. Значения должны примерно равны прошлым.
Затем нужно проверить обратное падение напряжение. Для этого поставим сначала отрицательный щуп на базу, а положительный на коллектор. Должны получится единица. В случае с замером на базе и эмиттере, произойдёт то же самое.
Распиновка
Цоколевка КТ819 зависит от его назначения. В советские времена устройство выпускали в двух вариантах корпусов: пластиковом КТ-28 (аналог зарубежного ТО-220) и металлостеклянном КТ-9(ТО-3). В настоящее время такое разделение продолжается и встречается в некоторых технических описаниях. Рассмотрим поподробней расположение выводов у указанного транзистора в пластмассовой упаковке КТ-28, cлева на право у него: эмиттер (Э), коллектор (К), база (Б).
Подобные устройства, особенно в металлическом корпусе, встречаются на российском рынке с каждым годом все реже. Это происходит из-за практически полного сокращения их производства в нашей стране и наличия в большом количестве недорогих аналогов от зарубежных компаний. Вот так выглядит КТ819 в корпусе КТ-9.
Если смотреть на него снизу, то база расположена слева, эмиттер справа. Металлическая подложка-корпус — это коллектор. Рассмотрим другие данные этой серии полупроводниковых триодов.
Технические характеристики
Разброс величин предельно допустимых режимов эксплуатации у КТ825 достаточно широк. Например, максимальное напряжение между выводами К и Э находится в диапазоне от 30 до 100 В. Также эта серия, вместе с большими коэффициентами усиления, славится высокой мощностью и пропускаемым током. Рассмотрим значения этих параметров подробнее:
- предельное напряжение К-Э от 30 до 100 В;
- постоянное напряжение Б-Э до 5 В;
- коллекторный ток: постоянный от 15 до 30 А; импульсный от 30 до 40 А;
- рассеиваемая мощность на коллекторе: от 30 до 125 Вт (с радиатором); от 1 до 3 Вт (без теплоотвода); у кристалла до 40 Вт;
- температура: p-n-перехода от +150 до +175 °С; окружающей среды от -60 до +100 °C.
Электрические параметры
Электрические параметры транзистора из серии кт825 представлены в таблице
Обратите внимание, что все данные представлены с учетом температуры окружающей среды не более + 25 °C. Стоит заметить, что H21э в схеме с общим эмиттером имеет наибольшее значение при нагреве корпуса близком к максимальному значению (ТК ≈ макс.)
Комплементарная пара
Комплементарной парой, для рассматриваемой серии, является отечественный составной транзистор с n-p-n-структурой — КТ827.
Техническое описание
Транзистор выпускается с гибкими выводами в пластмассовом корпусе КТ-26 (ТО-92), либо в металлостеклянном корпусе КТ-17. Цоколевка выводов кт3102 следующая: 1 – эмиттер, 2 – база, 3 –коллектор.
Характеристики
Все нижеуказанные характеристики для транзисторов в пластиковом корпусе КТ3102 (А-Л) идентичны соответствующим параметрам в металлостекленном (АМ- ЛМ).
- принцип действия – биполярный;
- корпус: пластик для КТ26 (ТО-92); металлостеклянный у КТ-17;
- материал – кремний (Si);
- npn-проводимость (обратная);
предельно допустимые электрические эксплуатационные данные (при температуре окружающей среды от +25 °C):
основные электрические параметры:
- IКБО (ICBO) не более 50 нА (nA), при UКБ макс. (VCB max) = 50 В (V) и IЭ (IE)=0;
- IЭБО (IEBO) не более 10 мкА (µA), при UEБ макс. (VEB max ) = 5 В (V);
- fгр норм.(ftTYP) от 100 до 300 МГц (MHz), при UКб (VCB) = 5 В (V), IЭ (IE)= 10 мА (mA);
- емкость коллекторного перехода СК (СС) 6 пФ (pF) при UКБ (VCB) = 5 В (V), f= 10 МГц (MHz);
- коэффициент шума КШ (Noise Figure) NF от 4 до 10 Дб (dB), при UКЭ(VCE) =5 В (V), IK (Ic) = 0.2 мА (mA);
- cтатический коэффициент усиления по току h21E находится в диапазоне от 100 до 1000, при UКЭ(VCE) =5 В (V), IK (Ic) = 2 мА (mA), f=50 Гц(Hz).
- тепловое сопротивление переход- среда 0,4 °C/мВт (°C/mW);
- Токр от -40 до +85 °C.
При выборе транзистора обратите внимание на дату выпуска и его предельно допустимые напряжения и токи, определите возможность его использования в схеме. Более новые модели имеют преимущества перед старыми, так как производители непрерывно работают над улучшением характеристик в своих продуктах
Не стоит забывать, что у некоторых из них (например КТ3102Г, КТ3102Е) предельные значения по напряжению не превышают 20 В. Ниже приведена классификация КТ3102.
По мнению радиолюбителей, несмотря на идентичность характеристик заявленных производителем, транзистор в пластиковом корпусе немного уступает металлостеклянному. Так, при работе на предельно допустимых параметрах, пластик расширяется и сжимается, что нередко приводит к отрыву выводов от кристалла. Это основная причина, из за которой стоит подумать о применении устройства в пластиковом корпусе. Кроме того пластик иногда становится не герметичен и вдоль выводов к кристаллу может проникать влага. Считают, что в металлопластиковом корпусе кристалл рассеивает большую мощность. Так же у него будет меньшее тепловое сопротивление, а следовательно устройство будет меньше греться и в свою очередь схема будет работать более стабильней.
Зарубежными аналогами, с похожими техническими характеристиками считаются: BC 174, 2S A2785, BC 182, BC 546, BC 547, BC 548, BC 549. Прототипами для разработки некоторых серий КТ3102 были: BC 307A, BC 308A BC 308B, BC 309B, BC 307B, BC 308C, BC 309C. Из российских аналогов КТ-3102, в качестве замены может подойти КТ 611 или популярный КТ315 с группой Б, Г, Е.
Маркировка
Транзисторы маркируются на боковой стороне корпуса. КТ3102 разных годов выпуска могут встречается с различной маркировкой. До 1995 года производители использовали цветовую и кодовую (буквенно-цифровая и символьно-цветовая) маркировку. Советские транзисторы КТ3102 до 1986 года, изготовленные в корпусе КТ-26, можно узнать по темно-зеленой точке на передней части корпуса. По цвету точки, нанесенной на корпусе сверху, определить принадлежность транзистора конкретной к группе. Дата выпуска при цветовой обозначении могла не указываться.
Маркировать транзистор кт3102 с использованием стандартного метода начали с 1986 года. Согласно кодовой метки он узнаваем по белой фигуре прямоугольного треугольника, размещенного на передней части корпуса (слева сверху), обозначающему его тип (модель). Правее указывается групповая принадлежность, а в нижней части год и месяц даты выпуска. В стандартной кодовой маркировке так же указывался год и месяц выпуска транзистора.
Иногда встречается нестандартные цветовые и кодовые маркировки. Как правило, в них не хватает информации о дате выпуска или групповой принадлежности. Современные производители, уже не используют фигуры в обозначении, а указывают на корпусе полное название типа и группы транзистора. Кроме этого на корпусе можно увидеть знак, указывающий на производителя устройства.
Как уже писалось ранее, транзистор встречается в пластиковом и металлическом корпусе. Устройства с пластиковым корпусом КТ-26 содержат в конце символ “М”. Например КТ3102ВМ это транзистор в пластиковом корпусе КТ-26, а КТ3102В в металлическом КТ-17.
Возможные аналоги
Транзистор КТ819 нельзя назвать дефицитной деталью. Тем не менее, встречаются случаи, когда по тем или иным причинам необходимо подобрать его аналог – то есть транзистор, который больше всего соответствует его характеристикам. В целом при подборе аналога для любого отечественного или импортного транзистора основополагающими характеристиками являются:
- допустимое напряжение между выводом коллектора и выводом эммитера;
- допустимый ток коллектора;
- коэффициент усиления;
- рабочая частота.
Чем можно заменить КТ819? Рассмотрим возможную замену теми или иными отечественными и зарубежными транзисторами.
Заменить КТ819 можно следующими отечественными транзисторами:
- КТ834;
- КТ841;
- КТ844;
- КТ847.
Зарубежные аналоги
Заменить КТ819 можно следующими зарубежными полупроводниковыми приборами:
- 2 N6288 ;
- BD705 ;
- TIP41 ;
- BD533 .
Отдельно стоит сказать об аналоге для КТ819ГМ. Все дело в том, что в большинстве схем усилителей звуковой частоты используются именно КТ819ГМ. Чем заменить КТ819ГМ? Полного аналога этого транзистора не существует. Однако наиболее близким по параметрам является зарубежный транзистор – 2 N 3055. Кроме этого, некоторые схемы на КТ819ГМ могут успешно работать с В D 183, 2 N 6472, КТ729.
Проверка транзистора
Проверить КТ819 можно обыкновенным тестером. Для проверки измерительный прибор переводится в режим измерения сопротивлений. Согласно схеме КТ819ГМ (расположению выводов) или другого компонента этой серии подключаем плюсовой щуп прибора к выводу базы, а минусовой – к выводу коллектора. Измерительный прибор должен показать пробивное напряжение. Далее, не отсоединяя плюсовой щуп от базы, подключаем минусовой щуп к выводу эмиттера. В данном случае прибор должен показать практически то же значение, что и при измерении перехода база-коллектор.
После описанной выше процедуры следует проверить переходы при обратном включении. Согласно схеме КТ819 (расположению выводов) подключаем минусовой щуп тестера к выводу базы, а плюсовой – к выводу коллектора. Каких-либо показаний на приборе быть не должно. После этого, не отключая минусовой щуп от базы, подключаем плюсовой щуп к эмиттеру – как и в случае с переходом база-коллектор, показаний на тестере быть не должно. Проверку можно считать успешной, а транзистор – исправным, если переходы не повреждены.
Важный момент: проверять любой полупроводниковый элемент следует исключительно при демонтаже его из схемы. Проще говоря – проверка элемента, соединенного с другими компонентами схемы, может быть некорректной.
Усилитель на КТ819
В качестве «бонуса» приведем простую схему усилителя, в котором используется КТ819 и его комплементарная пара КТ818. Схема простейшего усилителя показана на рисунке 2.
Отличительной особенностью усилителя, изображенного на рисунке 2, является питание его от двухполярного источника. Благодаря такому схемотехническому решению обеспечивается возможность подключения нагрузки непосредственно между выходом усилительного каскада и общим проводом. Также стоит отметить и то, что входной каскад является дифференциальным и обладает высокой термостабильностью.
При использовании элементов, указанных на схеме, при питании напряжением ±40 В и при нагрузке сопротивлением 4 Ом выходная мощность может достигать 55 Вт. Коэффициент нелинейных искажений – 0,07%.
После сборки усилителя каких-либо операций по его настройке не требуется. Для облегчения теплового режима выходные элементы усилителя ( VT 6 и VT 7) должны быть установлены на радиаторах. Если будет использован один общий радиатор, транзисторы должны быть закреплены к нему через изоляционные прокладки.