Терморегулятор на операционном усилителе lm358

Усилитель на кт808а своими руками

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/quote

Hudgun
ino53
Мощные высокоскоростные силовые модули семейства XM3 на базе карбид-кремниевых MOSFET разработаны компанией Wolfspeed в первую очередь для применения в выпрямителях зарядных станций автомобилей. Их главное преимущество – минимальные значения паразитных индуктивностей.
Hudgun
При проектировании устройств работающих в автономном режиме очень важна оценка энергопотребления. Тесты от компании ЕEMBC помогают наиболее объективно оценить энергопотребление. В статье рассмотрен практический пример универсального способа расчета оценки энергоэффективности для новых микроконтроллеров STM32L5 с помощью отладочной платы ST.
Страница 1 из 1

Часовой пояс: UTC + 3 часа

Технические характеристики

7812 ещё называют регулятором с фиксированным напряжением в 12 В. При этом на вход микросхемы должно подаваться питание на 2-3 В больше, чем на выходе, иначе на нём не будет заявленных 12 В. Максимальный выходной ток может достигать 1,5 А с применением хорошего радиатора. Устройство технологически защищено: от теплового пробоя, короткого замыкания и превышения режимов безопасной работы (SOA). Что делает его практически «неубиваемым».

Максимальные параметры

Максимальными значениями характеристик для LM7812 считаются:

  • предельное напряжение на входе микросхемы не более 35 В;
  • сила тока на выходе до 1.5 А;
  • температура кристалла при работе может достигать +150 ОС;
  • температура хранения от -65 до +150 ОС;
  • допустимый нагрев припоя не более +230ОС, с интервалом до 10 сек.

Рассеиваемая мощность ограничена внутренней защитой (Internally limited), корпусным исполнением изделия и применением теплоотвода.

При расчёте максимальной рассеиваемой мощности работающего устройства применяют стандартную формулу PDmax = (TJmax — ТА) / θJA. Где TJmax – предельная температура кристалла, а ТА – предполагаемая для окружающего воздуха. θJA – это тепловое сопротивление к внешней среде, которое напрямую зависит от корпусного исполнения.

Например, для распространенных устройств в пластиковых ТО-220 θJA=54ОC/Вт. В случае использования радиатора, необходимо учитывать величину теплового сопротивления кристалла (θJC), которая составляет порядка 4ОC/Вт для такого корпуса.

Электрические параметры

Несмотря на то, что рассеиваемая мощность не приводится производителями в даташит вместе с максимальными параметрами, её рекомендованное значение прослеживается в электрических характеристиках LM7812. В столбце «условия тестирования» указана допустимая величина PD не более 15 Вт, при изменении напряжения на входе до 27 В и токе на выходе до 1 А. Температура кристалла, при этом, должна находится в диапазоне от 0 до +125ОС.

Данные представленные в этой таблице получены путем тестирования с двумя сглаживающими конденсаторами на входе (до 0,22 мкФ) и выходе (до 0,1 мкФ).

Основные характеристики драйвера BA6208:

  • мощные выходные транзисторы могут выдерживать ток до 1,6 А;
  • обязательный режим торможения при останове двигателя;
  • встроенные диоды для защиты от бросков тока;
  • наличие вывода управления скоростью двигателя;
  • низкий ток потребления в режиме standby (типовое значение Vcc=12 В, Io=5,5 мА);
  • идентичные характеристики при изменении направления вращения;
  • КМОП-уровни управления.


Рис. 5. Схема включения драйвера BA6209
Таблица 4. Максимальные значения (Ta=25 °С) BA6209

Параметр Обозн. Макс. Ед.
Напряжение питания VCC 18 8
Мощность расс. BA6209 Pd 2200* мВт
BA6208N Pd 1000** мВт
Входное напряжение Vin –0,3~VCC B
Рабочая температура Topr –40 +60 °C
Температура хранения Tstg –55+125 °C
Макс. выходной ток Iout 1.6*** мА
* понижается на 22 мВт на каждый 1 °С выше 25 °С
** понижается на 10 мВт на каждый 1 °С выше 25 °С
*** изменяется на 1% при изм. длительности имп. на 3500 мкс.

Таблица 5. Описание выводов драйвера BA6209

Номер вывода Обозначение Назначение
1 GND Общий провод
2 OUT1 Вывод подключения двигателя
3 VZ1 Вывод подключения конденсатора для предотвращения одновременного включения вых. транзисторов
4 Vref Вывод установки уровня «высокий».
5 FIN Логический вход
6 RIN Логический вход
7 VCC1 Питание внутреннего блока управляющей логики
8 VCC2 Питание выходного силового драйвера
9 VZ2 Вывод подключения конденсатора для предотвращения одновременного включения вых. транзисторов
10 OUT2 Вывод подключения двигателя

Рис. 6. Входной управляющий сигнал

Для уменьшения мощности, рассеиваемой микросхемой, и в целях защиты от пробоя необходимо к выводу питания силового драйвера обязательно подключать последовательно резистор величиной 3–10 Ом. Время нарастания и спада управляющего логического сигнала (рис. 7) должно быть менее 5 мс, иначе возможна некорректная работа и выход из строя микросхемы.


Рис. 7. Схема включения драйвера BA6218

Потенциал общего вывода микросхемы должен быть всегда ниже потенциала других выводов. На входы нельзя подавать напряжение, пока микросхема не запитана. После подключения питания к выводу Vcc, на другие выводы не может быть подан потенциал выше, чем на Vcc.


Рис. 8. Схема включения драйвера BA6219B

Драйвер BA6218 рассчитан на максимальный выходной ток 0,7 А. Логическая часть и силовая имеют отдельные «земляные» выводы. При подключении электронного регулятора микросхема может использоваться для управляемого реверса и в режиме регулятора скорости. Управление режимами осуществляется по двум входам логическими сигналами с ТТЛ-уровнями.

Драйверы BA6219B и BA6219BFP-Y позволяют управлять скоростью вращения двигателя, изменяя прикладываемое напряжение. Выходной ток может достигать 2,2 А. Имеется встроенная защита от перегрева.


Рис. 9. Схема включения драйвера BA6229

Драйвер BA6229 потребляет в статическом режим всего 1 мА при напряжении питания Vcc=12 В. Диапазон питающих напряжений составляет 8–23 В. Входные управляющие уровни — КМОП.

Рис. 10. Блок-схема драйвера BA6229

Рис. 11. Схема включения драйвера BA6238A

BA6950FS (рис. 12) является драйвером реверсируемого коллекторного двигателя. Два логических входа позволяют управлять четырьмя возможными режимами работы. Скорость вращения задается произвольно, и управлять ею можно по отдельному выводу микросхемы. Встроенная схема температурной защиты срабатывает при достижении 175 °С и возврат в рабочий режим происходит при снижении температуры на 20 °С. Встроенная функция стабилизации частоты вращения реализована посредством контроля и коррекции потребляемого тока. Контроль тока осуществляется измерением падения напряжения на последовательном шунте и усилением сигнала рассогласования.


Рис. 12. Схема включения драйвера BA6950FS
Таблица 6. Режимы работы драйвера двух реверсируемых двигателей постоянного тока

Описание работы

Работа микросхемы lm324n основана на функционировании внутри неё одновременно четырех ОУ. Все усилители запитываеются от одного источника питания, имеют инвертирующий, не инвертирующий входы и одни выход. Источник питания может быть однополярным или двухполярным.

Рассмотрим внутреннюю схему одного из операционных усилителей c однополярным питанием. Возьмем её прямо из даташит на LM324.

Функционально каждый операционный усилитель состоит из: дифкаскада, а так же каскадов промежуточного и выходного усиления.

Дифференциальный каскад, выполняет функции усиления разности подаваемых на вход напряжений (V+ и V—) и нейтрализации синфазных сигналов. Обеспечивает высокое сопротивление на входе.

Промежуточный каскад обеспечивает балансировку операционника (установку на выходе нулевого напряжения при замкнутых входах), согласование сопротивлений дифференциального и выходного каскадов, а так же частотную коррекцию (защиту от самовозбуждения).

Выходной каскад обеспечивает низкое выходное сопротивление, требуемую мощность в нагрузке, ограничение тока и защиту при коротком замыкании.

Маркировка

Серия LM основана на интегральных микросхемах производства National Semiconductor. Приставка LM изначально означала linear monolithic (линейный, монолитный) и применялась для обозначения усилителей общего назначения (General Purpose) к которым не предъявлялись жестких требований. Цифры “324” указывают на серийный номер микросхемы. «-N», в конце серийника, обозначаются устройства, приобретенные Texas Instruments у National Semiconductor. В сентябре 2011 году National Semiconductor была передана Texas Instruments, которая не изменила приставку LM в своей продукции. Поэтому в настоящее время маркировка LM является кодом производителя Texas Instruments, но её широко используют другие производители при выпуске своих аналогов этой микросхемы.

Микросхемы LM324 и такая же с буквой N имеют одинаковые физические и электрические характеристики. У многих производителей символы “-N” , в конце маркировки, указывает на пластиковый тип корпуса микросхемы — DIP14.

Следует также отметить, что фирмы-производители постоянно совершенствуют свою продукцию. В настоящее время появились превосходящие по ряду функций модификации, например: LM324K, LM324KA с внутренней защитой от электрического разряда (HBM ESD); микромощные LP324 с током потребления 21 мкА; низковольтные LMV324, с напряжением питания от 2,7 В до 5,5 В; LPV324, изготавливаемые по технологии BiCMOS и током потребления 9 мкА и др. Усилители с символом «А» в маркировке, например “ LM324A-N ”, будут иметь лучшие характеристики по VIO по сравнению c другими (без «A»).

Простая схема усилителя на LM324

Рассмотрим одну из простейших схем на LM324 с отрицательной обратной связью (ООС) -повторитель напряжения. Как правило, изучение темы по ОУ начинают с повторителя напряжения. Эту схему еще называют усилитель у которого имеет коэффициент усиления по напряжению равен единице. В идеале это означает, что операционный усилитель не обеспечивает какого-либо усиления сигнала и напряжение выходного сигнала совпадает с входным. То есть, если 5 В подается на вход операционного усилителя, то 5 В будет на его выходе.

Но это утверждение справедливо для идеального операционного усилителя, а не для рассматриваемого в статье LM324. Так как это не виртуальная, а реальная микросхема ее характеристики отличаются от идеальных. Рассмотрим график зависимости выходного напряжения от входного для lm324.

На графике, в области «A» показано изменение фазы на выходе. Такое может произойти при появлении отрицательного напряжения на входе микросхемы и может привести к нежелательным последствиям – выводу её из строя.

Так же, на графике видно, что напряжение на выходе усилителя растет с увеличением входного. Но оно не может расти бесконечно, и ограничено напряжением питания микросхемы 5 В и особенностями её работы. Так, напряжения на входах незначительно разнятся, через них течёт небольшой по величине ток, поэтому напряжение на выходе будет немного отличаться от подаваемого. На графике, в области “С”, видно предельное выходное напряжение 3.8 В для рассматриваемой схемы усиления, запитанной от 5 В.

На практике, повсеместно приходится работать с активными электронными компонентами, которые имеют достаточно слабый выходной ток. Например, такими как микрофон. Подключение к нему элемента с маленьким сопротивлением приведет к  снижению напряжения выходного сигнала, создаваемого с его помощью. В таких случаях можно использовать повторитель напряжения, который имеет большое входное и низкое выходное сопротивление, соответственно не будет уменьшать или искажать подаваемый на вход сигнал.

Повторитель напряжения далеко не самая распространенная типовая схема применения для этой микросхемы. На основе данного ОУ создаются и продолжают совершенствоваться другие типовые решения, на основе которых работают современные электронные устройства.

INA138 и INA168

— высоковольтные, униполярные мониторы тока. Широкий диапазон входных напряжений, низкий потребляемый ток и малые габариты — SOT23, позволяют использовать эту микросхему во многих схемах. Напряжение источника питания от 2.7 В до 36 В для INA138 и от 2.7 В до 60 В для INA168. Входной ток — не более 25мкA, что позволяет производить измерение падения напряжения на шунте с минимальной ошибкой. Микросхемы являются преобразователями ток — напряжение с коэффициентом преобразования от1 до 100 и более. INA138 и INA168 в корпусах SOT23-5 имеют диапазон рабочих температур -40°C к +125°C. Типовая схема включения взята из документации на эти микросхемы и показана на рисунке 4.

↑ Список источников

1. LM386 — Low Voltage Audio Power Amplifier . 2. Дайджест КВ+УКВ // Радиоаматор, 2009, №2, с. 56 (Как получить усиление 74 дБ от микросхемы LM386). 3. Мосягин В. Узконаправленный микрофон // Радио, 2002, №5, с. 54, 55. 4. Merryfield T. Super-Ear Audio Telescope // Everyday Practical Electronics, 2005, №6, p. 388 – 392. 5. Stewart J. The Big Ear // Nuts & Volts, 2008, №10, p. 34 – 39. 6. Фолкенберри Л. Применения операционных усилителей и линейных ИС. – М.: Мир, 1985. 572 с. (с. 250 — 254). 7. Дайджест (Тест микрофонного эффекта конденсаторов) // Радиохобби, 2000, №5, с. 25. 8. Большая статья о маленьком усилителе на микросхеме TDA2822M. Датагорская статья. 9. Справочник. Микросхема УМЗЧ LA4525. Микросхема УМЗЧ LA4534M // Радиоконструктор, 2008, №9, с. 20 — 22. 10. Мосягин В.В. Юному радиолюбителю для прочтения с паяльником. (Серия «СОЛОН – радиолюбителям», выпуск 17). – М.: СОЛОН – Пресс, 2003. – 208 с. 11. Мосягин В.В. Секреты радиолюбительского мастерства. (Серия «СОЛОН – радиолюбителям) – М.: СОЛОН – Пресс, 2005. – 216 с.

Параллельное включение

При параллельном включении четырёх микросхем LM317 максимальный выходной ток может достигать 6 А. При токе покоя 2.2 А максимальный ток через верхнее плечо усилителя составляет 4,4 А и 2,2 А через нижнее плечо, что в пределах безопасной работы.

Входное сопротивление определяется номиналом резистора R11 и составляет 10 K (относительно низкое, так как усилитель инвертирующий). Коэффициент усиления можно регулировать путем изменения номинала резистора R10. Рассчитывается по формуле: A=–R10/R11.

Ёмкость конденсатора С1 определяет верхнюю граничную частоту и предотвращает возбуждение усилителя на высоких частотах. При указанном на схеме значении 100 пкФ верхняя граничная частота усиления составляет 100 кГц. Но вы можете экспериментировать с этим значением на свой страх и риск (контролируйте наличие возбуждения усилителя).

Так как усилитель инвертирующий, автор предлагает подключать акустические системы наоборот, то есть плюсовую клемму акустики следует подключать к общему выводу усилителя, а минусовую — к выходу усилителя. При использовании инвертирующего предварительного усилителя акустику следует подключать обычным способом.

Импортные и отечественные аналоги

LM358 весьма популярна в промышленной и любительской электронной технике. Она активно используется в различных сравнивающих и генерирующих устройствах, активных фильтрах, усилителях различного назначения. Неудивительно, что многие производители радиоэлектронных компонентов включили в перечень своей продукции аналоги LM358 или близкие ей по своим параметрам микросхемы.

Ниже в таблице приведены элементы, которыми можно заменить LM358. По корпусу и распиновке они идентичны LM358. Но по электрическим параметрам они могут немного отличаться (в допустимых пределах) от оригинала.

Перед установкой подменных элементов рекомендуется свериться с даташит производителя.

Производители Аналоги
Импортные GL358, NE532, OP295, OP290, OP221, OPA2237, TA75358P, UPC1251C, UPC358C
Отечественные КР1040УД1, КР1053УД2, КР1401УД5

Характеристики аналогов

По datasheet LM358 и ее аналогам можно узнать следующие характеристики:

  1. LM158 – работает в диапазоне температур от -55 до +125 градусов. Напряжение питания может колебаться в интервале 3…32В.
  2. LM258 – диапазон рабочих температур -25…+85, питающего напряжения – 3…32В.
  3. LM358 – температура 0…+70, напряжение – 3…32В.

В том случае, если недостаточно диапазона температур 0…+70, имеет смысл подыскать аналог операционному усилителю. Неплохо показывает себя LM2409, у него шире диапазон рабочих температур. Вот только для питания он немного меньше. Это существенно снижает возможность использования устройства в радиолюбительских конструкциях. Схема включения LM358 такая же, как и у большинства ее аналогов.

В том случае, если необходимо установить только один операционный усилитель, стоит обратить внимание на аналоги типа LMV321 или LM321. У них пять выводов, и внутри корпуса SOT23-5 заключен всего один ОУ

А вот в том случае, если необходимо большее количество операционников, можно использовать сдвоенные элементы – LM324, у которых корпус имеет 14 выводов. С помощью таких элементов можно сэкономить на пространстве и конденсаторах в цепи питания.

Чипы-усилители

Все привыкли к тому, что усилители звука зависят от множества отдельных компонентов или от энергоёмких электронных ламп, чтобы звучание было качественным. Как и в других отраслях, появление интегральных микросхем вызвало прорыв в мире аудиосистем, позволив использовать любое количество операционных усилителей, созданных для звуковых систем.

Такие интегральные схемы называют усилитель аудиосигнала на ИС, чипы усиления звука или чиповые усилители. Обычно они требуют несколько дополнительных компонентов, схемы с ними просты по своей конструкции, и потребляют чипы-усилители меньше тока, чем их дискретные и ламповые аналоги.

Все это подводит нас к усилителю ЛМ386, созданным «Texas Instruments» в 1983 году. Его можно найти в низковольтных аккумуляторных устройствах по всему миру.

Его характеристики:

  • легко питать (использует одностороннее электропитание)
  • низкая теплоотдача (не требует теплоотвода)
  • производительный/эффективный
  • существует вариант с двухрядным расположением выводов/существует двухрядный вариант

А это значит, что этот чип в фаворе у любителей мастерить по всему миру и является отличным полигоном для экспериментов с чиповыми усилителями. И не забывайте о его низкой стоимости. Сегодня мы с вами попробуем собрать простой мини усилитель звука для колонок на основе этого чипа.

Запуск и настройка схемы

При первом запуске не вставляйте в панельки операционные усилители и после включения питания проверьте, что на каждой панельке имеются правильные напряжения питания. Потом уже можно всунуть их по местам. Потенциометр громкости должен быть закручен на минимум (до упора влево), а на вход надо подать сигнал с mp3-плеера или компьютера. Усилитель хорошо работает как с динамиками (колонками акустических систем) с сопротивлением 4, так и 8 Ом.

В роли выходных усилителей мощности работают микросхемы TDA2050, TDA2030 или TDA2040, обеспечивая выходную мощность, соответственно 14, 20 или 30 Ватт на канал. Не обязательно все микросхемы усилители должны быть одинаковые. Вы можете установить те что слабее в роли УНЧ стерео, а более мощный усилитель оставить для сабвуфера.

Стабилизаторы напряжения U1 и U2 обеспечивают симметричное двухполярное напряжение на уровне +/-15 В. Можно с успехом применить стабилизаторы на напряжение 12 В или даже 9 В. Это не вызовет изменений в работе предусилителя. Такая процедура будет необходима в случае, если мы хотим питать усилитель меньшим напряжением, чем +/- 18 В. Стабилизаторы 7815 и 7915 могут не хотеть нормально работать с малым падением напряжения. Скачать файлы печатных плат можно тут.

Форум по аудио

Характеристики аналогов

По datasheet LM358 и ее аналогам можно узнать следующие характеристики:

  1. LM158 – работает в диапазоне температур от -55 до +125 градусов. Напряжение питания может колебаться в интервале 3…32В.
  2. LM258 – диапазон рабочих температур -25…+85, питающего напряжения – 3…32В.
  3. LM358 – температура 0…+70, напряжение – 3…32В.

В том случае, если недостаточно диапазона температур 0…+70, имеет смысл подыскать аналог операционному усилителю. Неплохо показывает себя LM2409, у него шире диапазон рабочих температур. Вот только для питания он немного меньше. Это существенно снижает возможность использования устройства в радиолюбительских конструкциях. Схема включения LM358 такая же, как и у большинства ее аналогов.

В том случае, если необходимо установить только один операционный усилитель, стоит обратить внимание на аналоги типа LMV321 или LM321. У них пять выводов, и внутри корпуса SOT23-5 заключен всего один ОУ

А вот в том случае, если необходимо большее количество операционников, можно использовать сдвоенные элементы – LM324, у которых корпус имеет 14 выводов. С помощью таких элементов можно сэкономить на пространстве и конденсаторах в цепи питания.

Описание работы

Работа микросхемы lm324n основана на функционировании внутри неё одновременно четырех ОУ. Все усилители запитываеются от одного источника питания, имеют инвертирующий, не инвертирующий входы и одни выход. Источник питания может быть однополярным или двухполярным.

Рассмотрим внутреннюю схему одного из операционных усилителей c однополярным питанием. Возьмем её прямо из даташит на LM324.

Функционально каждый операционный усилитель состоит из: дифкаскада, а так же каскадов промежуточного и выходного усиления.

Дифференциальный каскад, выполняет функции усиления разности подаваемых на вход напряжений (V+ и V—) и нейтрализации синфазных сигналов. Обеспечивает высокое сопротивление на входе.

Промежуточный каскад обеспечивает балансировку операционника (установку на выходе нулевого напряжения при замкнутых входах), согласование сопротивлений дифференциального и выходного каскадов, а так же частотную коррекцию (защиту от самовозбуждения).

Выходной каскад обеспечивает низкое выходное сопротивление, требуемую мощность в нагрузке, ограничение тока и защиту при коротком замыкании.

Маркировка

Серия LM основана на интегральных микросхемах производства National Semiconductor. Приставка LM изначально означала linear monolithic (линейный, монолитный) и применялась для обозначения усилителей общего назначения (General Purpose) к которым не предъявлялись жестких требований. Цифры “324” указывают на серийный номер микросхемы. «-N», в конце серийника, обозначаются устройства, приобретенные Texas Instruments у National Semiconductor. В сентябре 2011 году National Semiconductor была передана Texas Instruments, которая не изменила приставку LM в своей продукции. Поэтому в настоящее время маркировка LM является кодом производителя Texas Instruments, но её широко используют другие производители при выпуске своих аналогов этой микросхемы.

Микросхемы LM324 и такая же с буквой N имеют одинаковые физические и электрические характеристики. У многих производителей символы “-N” , в конце маркировки, указывает на пластиковый тип корпуса микросхемы — DIP14.

Следует также отметить, что фирмы-производители постоянно совершенствуют свою продукцию. В настоящее время появились превосходящие по ряду функций модификации, например: LM324K, LM324KA с внутренней защитой от электрического разряда (HBM ESD); микромощные LP324 с током потребления 21 мкА; низковольтные LMV324, с напряжением питания от 2,7 В до 5,5 В; LPV324, изготавливаемые по технологии BiCMOS и током потребления 9 мкА и др. Усилители с символом «А» в маркировке, например “ LM324A-N ”, будут иметь лучшие характеристики по VIO по сравнению c другими (без «A»).

В каких корпусах выпускаются микросхемы

Корпус может быть как DIP8 – обозначение LM358N, так и SO8 – LM358D. Первый предназначен для реализации объемного монтажа, второй – для поверхностного. От типа корпуса не зависят характеристики элемента – они всегда одинаковы. Но существует немало аналогов микросхемы, у которых параметры немного отличаются. Всегда есть плюсы и минусы. Обычно, если у элемента большой диапазон рабочих напряжений например, страдает какая-либо другая характеристика.

Существует еще металлокерамический корпус, но такие микросхемы используют в том случае, если эксплуатация устройства будет происходить в тяжелых условиях. В радиолюбительской практике удобнее всего использовать микросхемы в корпусах для поверхностного монтажа

Они очень хорошо паяются, что имеет важное значение при работе. Ведь намного удобнее оказывается работать с элементами, у которых ножки имеют большую длину

Аналоги LM358

Полные аналоги LM358 от разных производителей NE532, OP04, OP221, OP290, OP295, OPA2237, TA75358P, UPC358C. Для LM358D — KIA358F, NE532D, TA75358CF, UPC358G.

Вместе с LM358 выпускается большое количество похожих операционных усилителей. Например LM158, LM258, LM2409 имеют аналогичные характеристики, но разный температурный диапазон работы.

Тип Минимальная температура, °C Максимальная температура, °C Диапазон питающих напряжений, В
LM158 -55 125 от 3(±1,5) до 32(±16)
LM258 -25 85 от 3(±1,5) до 32(±16)
LM358 70 от 3(±1,5) до 32(±16)
LM358 -40 85 от 3(±1,5) до 26(±13)

Если диапазона 0..70 градусов не хватает, то стоит применить LM2409, однако следует учитывать что у неё диапазон питания уже:

Кстати если нужен только один операционный усилитель в компактном 5 выводном корпусе SOT23-5 то вполне можно применить LM321, LMV321 (аналоги AD8541, OP191, OPA337). Наоборот, если нужно большое количество рядом расположенных операционных усилителей, то можно применить счетверенные LM324 в 14 выводном корпусе. Можно вполне сэкономить пространство и конденсаторы по цепям питания.

Аналоги

Аналогами LM358 можно считать микросхемы в которых указываются идентичные характеристики. К таким относятся: LM158, LM258, LM2904, LM2409. Эти микросхемы незначительно отличаются от описываемой своими тепловыми параметрами и подойдут в качестве замены для большинства проектов.

Для ее замены можно использовать: GL 358, NE 532, OP 04, OP 221, OP 290, OP 295, OPA 2237, TA7 5358-P, UPC 358C, AN 6561, CA 358E, HA 17904. Отечественные аналоги lm358: КР 1401УД5, КР 1053УД2, КР 1040УД1.

Для замены также может подойти аналог по электрическим параметрам, но уже c четырьмя ОУ в одной микросхеме — LM324.

LM358 DataSheet на русском, описание и схема включения

Микросхема LM358 как написано в его DataSheet является универсальным решением, так как схема включения большинства популярных устройств весьма проста, в случаях отсутствия жестких требований к высокому быстродействию, рассеиваемой мощности и нестандартному питающему напряжению. Небольшая стоимость, отсутствие необходимости подключения дополнительных элементов частотной коррекции, возможность использования во всем диапазоне стандартных питающих напряжений (до +32В) и низкий потребляемый ток, делают его кандидатом номер один для электронных проектов с ОУ.

LM358 цоколевка

LM358 состоит из двух ОУ, каждый имеет по 4 вывода, имеющих свое назначение. Всего получается 8 контактов. Производятся в нескольких видах корпусного исполнения, для объемного DIP и поверхностного монтажа на плату SO. Так же могут встречается в усовершенствованных корпусах SOIC, VSSOP, TSSOP.

Назначение контактов для всех видов корпусов совпадает: 2,3, 5,6, — входы, 1,7 – выходы, 4 – минус источника питания, 8 – плюс источника питания.

Технические характеристики

Ниже указаны предельные допустимые значения условий эксплуатации для диапазона рабочих температур окружающей среды TA от 0 до +70 °C, если не указано иное.

Основные электрические характеристики, при температуре окружающей среды TA = 25 °C.

Рекомендуемые условия эксплуатации в диапазоне рабочих температур окружающей среды, если не указано иное:

Подверженность устройства повреждению от электростатического разряда (ESD):

Также у данного устройства есть тепловые характеристики:

Схемы подключения

Ниже приведем несколько простых схем включения lm358 которые могут вам пригодится. Все они являются ознакомительными, так что обязательно проверяйте все перед внедрением в производственной сфере.

Схема в мощном неинвертирующим усилителе.

Преобразователь напряжения — ток.

Схема с дифференциальным усилителем.

Неинвертирующий усилитель средней мощности.

Аналоги

Аналогами LM358 можно считать микросхемы в которых указываются идентичные характеристики. К таким относятся: LM158, LM258, LM2904, LM2409. Эти микросхемы незначительно отличаются от описываемой своими тепловыми параметрами и подойдут в качестве замены для большинства проектов.

Для ее замены можно использовать: GL 358, NE 532, OP 04, OP 221, OP 290, OP 295, OPA 2237, TA7 5358-P, UPC 358C, AN 6561, CA 358E, HA 17904. Отечественные аналоги lm358: КР 1401УД5, КР 1053УД2, КР 1040УД1.

Для замены также может подойти аналог по электрическим параметрам, но уже c четырьмя ОУ в одной микросхеме — LM324.

Маркировка

Префикс LM сначала использовался при маркировке общего назначения компанией National Semiconductor. Цифры “358” это ее серийный номер. В 2011 году эта компания была приобретена другим производителем электроники Texas Instruments. С этого года префикс “LM” является кодом производителя Texas Instruments, но несмотря на это, этот код используют и другие производители при маркировке своей продукции. Микросхемы LM358, LM358-N и LM358-P имеют одинаковые технические параметры. У большинства компаний-производителей символами “-N” , “-P” обозначаются пластиковые корпуса PDIP.

В технических описания встречается такие виды: LM358A, LM358B, LM358BA. Так указывается версии следующего поколения промышленного стандарта LM358. Устройства «B» могут быть доступны в более современных микрокорпусах TSOT и WSON.

Применение

Lm358 широко используется в:

  • устройствах типа «мигающий маяк»;
  • блоках питания и зарядных устройствах;
  • схемах управления двигателем;
  • материнских платах;
  • сплит системах внутреннего и наружного применения;
  • бытовой технике: посудомоечные, стиральные машины, холодильные установки;
  • различных видах инверторов;
  • источниках бесперебойного питания;
  • контроллерах и др.

Возможности применения микросхемы производители обычно указывают в технических описаниях на свои устройства.

↑ Усилительные схемы на ИС LM386

↑ Усилитель с коэффициентом усиления 200

Принципиальная схема усилителя с коэффициентом усиления Ku=200 (46 дБ), изображена на рис. 2 а, б. На первом из них (рис. 2 а) показана функциональная схема ИС LM386, позволяющая лучше понять работу усилителя, а на втором (рис. 2 б) микросхема изображена в виде «чёрного ящика», по ней легче выполнять разводку печатной платы и проверку правильности установки смонтированных на ней элементов.

Рис. 2. Усилитель с коэффициентом усиления 200

Резистор R1 служит регулятором громкости, конденсатор C1 является фильтрующим

Конденсатор C2 шунтирует выводы 1 и 8 микросхемы DA1 по переменному току, благодаря чему достигается максимальный коэффициент усиления; конденсатор C4 служит для развязки по питанию, что важно в условиях работы с разряженной батареей, когда её внутреннее сопротивление увеличивается

Цепочка C3, R2 предназначена для повышения стабильности при работе усилителя на ёмкостную нагрузку. Иногда её установкой пренебрегают, что не является преступлением, но нежелательно, поскольку может преподнести «сюрприз» в самый неподходящий момент. Нагрузка ВА1 подключена к выходу ИС через разделительный конденсатор С5.

↑ Усилитель с минимальным количеством внешних элементов и коэффициентом усиления 20

На рис. 3 показана схема с минимальным количеством элементов, имеющая коэффициент усиления по напряжению Ku=20 (26 дБ). Здесь выводы 1 и 8 микросхемы оставлены свободными, исключён из схемы фильтрующий конденсатор, подключаемый к выводу 7. В результате весь усилитель содержит всего семь элементов, включая и динамическую головку ВА1.

Рис. 3. Усилитель с минимальным количеством внешних элементов и коэффициентом усиления 20

↑ Усилитель с коэффициентом усиления 50

Ещё один вариант схемы приведён на рис. 4. При значениях элементов, показанных на этой схеме, обеспечивается усиление по напряжению Ku=50 (34 дБ).

Рис. 4. Усилитель с коэффициентом усиления 50

По сравнению с предыдущей схемой добавлено три элемента: два конденсатора и резистор. В табл. 2 приведены значения резистора R2 для получения других коэффициентов усиления по напряжению.

↑ Усилитель с подъёмом низких частот

Примером усилителя, в котором производится формирование требуемой частотной характеристики, является схема, показанная на рис. 5. Здесь усиление по напряжению изменено шунтированием внутреннего резистора обратной связи (R6), доступного через выводы 1 и 5 микросхемы LM386. Шунтирование цепочкой R2, C2 позволяет получить подъем частотной характеристики около 6 дБ на частоте 85 Гц, что может быть использовано для улучшения звучания малогабаритных акустических систем.

Коэффициент усиления по напряжению усилителя на частоте 1 кГц составляет Ku=10 (20 дБ).

Рис. 5. Усилитель с подъёмом низких частот

↑ Принципиальная схема усилителя для АМ радиоприёмника

Ещё один пример применения ИС в качестве усилителя для малогабаритного АМ радиоприёмника показан на 6. В этой схеме радиовещательный сигнал после детектора поступает через конденсатор С1, устраняющий передачу постоянной составляющей на регулятор громкости R1.

Рис. 6. Принципиальная схема усилителя для АМ радиоприёмника

Сигнал со среднего вывода R1 поступает на неинвертирующий вход микросхемы DA1 через развязывающую цепочку – фильтр нижних частот R2, C2, устраняющий попадание остатков высокочастотного напряжения. Для этих же целей на выходе усилителя включена цепочка L1, C7. Дело в том, что усилитель на микросхеме DA1 довольно широкополосный (полоса пропускания составляет около 300 кГц) и без принятия подобных мер служит отличным источником радиоизлучений в длинноволновом и средневолновом диапазонах волн.

Резистор R3, включённый параллельно катушке L1, служит для устранения нежелательных резонансов в звуковом диапазоне частот. Коэффициент усиления по напряжению усилителя максимален (Ku=200).

Наряду с оксидным конденсатором С6 включён керамический конденсатор С5, используемый для высокочастотной развязки по цепи источника питания; не забыт в этой схеме и фильтрующий конденсатор, подключаемый к выводу 7 микросхемы (С3).

Катушка L1 представляет собой ферритовую бусинку с пропущенным проводом внутри (Ferrite Bead).

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: