Возможные проблемы и нюансы
Описанный процесс изготовления из трансформатора бесперебойника блока питания имеет, однако, существенные недостатки. В частности, они связаны с типовым напряжением, ограниченным на выходе до 15 В. При подключении к получившемуся блоку питания определенной нагрузки оно точно должно «просесть».
В связи с этим, придется экспериментальным путем подбирать вольтаж, необходимый на выходе, что потребует определенных навыков и знаний, а также сопряжено с определенными рисками.
Таким образом, хотя из трансформатора старого бесперебойника блок питания по вышеприведенной инструкции изготовить совершенно несложно, важно обладать хотя бы элементарными знаниями в физике и электронике, а также неукоснительно соблюдать технику безопасности, поскольку любые работы с электричеством потенциально связаны с серьезными рисками для жизни и здоровья
Как можно использовать трансформатор?
У трансформатора от бесперебойника несколько вариантов применения.
Предварительно, в качестве подготовительного этапа следует разобрать устройство, оставив только корпус и трансформатор, или же сделать новый корпус под трансформатор.
Важно: ИБП и его составные части очень часто применяются не по прямому назначению. Из них также изготавливают преобразователи напряжения, зарядные устройства и т
д., однако эти устройства, помимо трансформатора, потребуют также использования других составных частей ИБП (для большинства самодельных устройств потребуется аккумулятор).
Варианты использования
Наиболее простой и потому распространенный вариант использования трансформатора старого бесперебойника — самостоятельное изготовление на его основе блока питания.
Разберемся с инструкцией по изготовлению, схемой подключения и возможными проблемами и нюансами.
Схемы подключения и распиновка
Изготовление блока питания из трансформатора старого бесперебойника происходит по следующей схеме:
- с использованием омметра определяется обмотка с наивысшим сопротивлением (черные и белые провода, которые будут служить в качестве входа в блок питания) — при использовании устройства со стандартным корпусом этот шаг необязателен, поскольку гнездо в торце бесперебойника уже можно использовать в качестве входа;
- на трансформатор подается переменный ток 220 В;
- снимается напряжение с остальных контактов;
- производится поиск пары, для которой разность потенциалов составит 15 В (белый и желтый провода), — будущие выходы из блока питания;
- из проводов образуется вход в блок питания (с одной стороны от положения сердечника);
- из проводов с противоположной стороны по тому же принципу устраивается выход блока питания;
- на выходе устанавливается диодный мост;
- контакты диодного моста соединяются с потребителями.
Преимущества
Блоки питания с импульсным устройством обладают массой достоинств перед аналоговыми приборами. Именно по этой причине их подавляющее большинство изготавливается по представленной схеме.
Трансформаторы импульсного типа отличаются следующими преимуществами:
- Малый вес.
- Низкая цена.
- Повышенный уровень КПД.
- Расширенный диапазон напряжения.
- Возможность встроить защиту.
Меньшим весом конструкция обладает из-за увеличения частоты сигнала. Конденсаторы уменьшаются в объеме. Схема их выпрямления наиболее простая.
Сравнивая обычные и импульсные блоки питания, видно, что в последних потери энергии сокращаются. Они наблюдаются при переходных процессах. КПД при этом может составлять 90-98%.
Меньшие габариты агрегатов позволяют снизить затраты на производство. Материалоемкость конечного продукта значительно уменьшается. Запитывать представленные аппараты можно от тока с различными характеристиками. Цифровые технологии, которые применяются при создании малогабаритных моделей, позволяют применять в конструкции специальные защитные блоки. Они предотвращают появление короткого замыкания, прочие аварийные ситуации.
Особенности намотки импульсных трансформаторов.
Намотка импульсных трансформаторов, а особенно трансформаторов на кольцевых и тороидальных магнитопроводах имеет некоторые особенности.
Дело в том, что если какая-либо обмотка трансформатора будет недостаточно равномерно распределена по периметру магнитопровода, то отдельные участки магнитопровода могут войти в насыщение, что может привести к существенному снижению мощности БП и даже привести к выходу его из строя.
Казалось бы, можно просто рассчитать расстояние между отдельными витками катушки так, чтобы витки обмотки уложились ровно в один или несколько слоёв. Но, на практике, мотать такую обмотку сложно и утомительно.
Мы же пытаемся мотать «ленивую обмотку». А в этом случае, проще всего намотать однослойную обмотку «виток к витку».
Что для этого нужно?
Нужно подобрать провод такого диаметра, чтобы он уложился «виток к витку», в один слой, в окно имеющегося кольцевого сердечника, да ещё и так, чтобы при этом число витков первичной обмотки не сильно отличалось от расчётного.
Если количество витков, полученное в калькуляторе, не будет отличаться более чем на 10-20% от количества, полученного в формуле для расчёта укладки, то можно смело мотать обмотку, не считая витков.
Правда, для такой намотки, скорее всего, понадобится выбрать магнитопровод с несколько завышенной габаритной мощностью, что я уже советовал выше.
1 – кольцевой сердечник.
2 — прокладка.
3 – витки обмотки.
D – диаметр по которому можно рассчитать периметр, занимаемый витками обмотки.
На картинке видно, что при намотке «виток к витку», расчетный периметр будет намного меньше, чем внутренний диаметр ферритового кольца. Это обусловлено и диаметром самого провода и толщиной прокладки.
На самом же деле, реальный периметр, который будет заполняться проводом, будет ещё меньше. Это связано с тем, что обмоточный провод не прилегает к внутренней поверхности кольца, образуя некоторый зазор. Причём, между диаметром провода и величиной этого зазора существует прямая зависимость.
Не стоит увеличивать натяжение провода при намотке с целью сократить этот зазор, так как при этом можно повредить изоляцию, да и сам провод.
По нижеприведённой эмпирической формуле можно рассчитать количество витков, исходя из диаметра имеющегося провода и диаметра окна сердечника.
Максимальная ошибка вычислений составляет примерно –5%+10% и зависит от плотности укладки провода.
w = π(D – 10S – 4d) / d, где:
w – число витков первичной обмотки,
π – 3,1416,
D – внутренний диаметр кольцевого магнитопровода,
S – толщина изолирующей прокладки,
d – диаметр провода с изоляцией,
– дробная черта.
Как измерить диаметр провода и определить толщину изоляции – рассказано .
Для облегчения расчётов, загляните по этой ссылке: Как подружить Блокнот с Калькулятором Windows, чтобы облегчить расчёты?
Несколько примеров расчёта реальных трансформаторов.
● Мощность – 50 Ватт.
Магнитопровод – К28 х 16 х 9.
Провод – Ø0,35мм.
D = 16мм.
S = 0,1мм.
d = 0,39мм.
w= π (16 – 10*0,1 – 4*0,39) / 0,39 ≈ 108 (витков).
Реально поместилось – 114 витков.
● Мощность – 20 Ватт.
Магнитопровод – К28 х 16 х 9.
Провод – Ø0,23мм.
D = 16мм.
S = 0,1мм.
d = 0,25мм.
w = π (16 – 10*0,1 – 4*0,25) / 0,25 ≈ 176 (витков).
Реально поместилось – 176 витков.
● Мощность – 200 Ватт.
Магнитопровод – два кольца К38 х 24 х 7.
Провод – Ø1,0мм.
D = 24.
S = 0,1мм.
d = 1,07мм.
w = π (24 – 10*0,1 – 4*1,07) / 1,07 ≈ 55 (витков).
Реально поместилось 58 витков.
В практике радиолюбителя нечасто выпадает возможность выбрать диаметр обмоточного провода с необходимой точностью.
Если провод оказался слишком тонким для намотки «виток к витку», а так часто бывает при намотке вторичных обмоток, то всегда можно слегка растянуть обмотку, путём раздвигания витков. А если не хватает сечения провода, то обмотку можно намотать сразу в несколько проводов.
Конструкция (виды) импульсных трансформаторов
В зависимости от формы сердечника и размещения на нем катушек, ИТ выпускаются в следующих конструктивных исполнениях:
- стержневом; Конструкция стержневого импульсного трансформатора
- броневом; Конструкция импульсного трансформатора в броневом исполнении
- тороидальном (не имеет катушек, провод наматывается на изолированный сердечник); Конструктивные особенности бронестержневого импульсного трансформатора
На рисунках обозначены:
- A — магнитопроводный контур, выполненный из марок трансформаторной стали, изготовленной по технологии холодного или горячего металлопроката (за исключением сердечника тороидальной формы, он изготавливается из феррита);
- В — катушка из изолирующего материала
- С — провода, создающие индуктивную связь.
Заметим, что электротехническая сталь содержит мало добавок кремния, поскольку он становится причиной потери мощности от воздействия вихревых токов на контур магнитопровода. В ИТ тороидального исполнения сердечник может производится из рулонной или ферримагнитной стали.
Пластины для набора электромагнитного сердечника подбираются толщиной в зависимости от частоты. С увеличением этого параметра необходимо устанавливать пластины меньшей толщины.
Устройство электронного трансформатора
Привычные нам массивные трансформаторы не так давно стали заменяться на электронные, которые отличаются дешевизной и компактностью. Размеры электронного трансформатора настолько малы, что его встраивают в корпуса компактных люминесцентных ламп (КЛЛ).
Все такие трансформаторы сделаны по одной схеме, различия между ними минимальны. В основе схемы лежит симметричный автогенератор, иначе называемый мультивибратором.
Состоят они из диодного моста, транзисторов и двух трансформаторов: согласующего и силового. Это основные части схемы, но далеко не все. Кроме них, в схему входят различные резисторы, конденсаторы и диоды.
Принципиальная схема электронного трансформатора.
В этой схеме постоянный ток из диодного моста поступает на транзисторы автогенератора, которые накачивают энергию в силовой трансформатор. Номиналы и тип всех радиодеталей подобраны так, чтобы на выходе получалось строго определённое напряжение.
Если включить такой трансформатор без нагрузки, то автогенератор не запустится и напряжения на выходе не будет.
Разновидности материалов
Представленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:
- Электротехническая сталь.
- Пермаллой.
- Феррит.
Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта.
Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки.
Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление.
Трансформатор ТН46
Сердечник: ШЛ 20 х 25. Мощность: 58 Ватт. Ток первичной обмотки: 0,53/0,32 Ампер. Масса: 1,45 кг
Выпуск накальных трансформаторов ТН46 на 220 Вольт начат в 1979 году. Обозначаются они как ТН46-220-50. Трансформаторы ТН46-220-50 имеют одну первичную обмотку и такую же нумерацию выводов, как и трансформаторы ТН46-127/220-50, имеющие возможность подключения к сетям 127 Вольт и 220 Вольт. В отличие от трансформаторов ТН46-127/220-50 у трансформаторов ТН46-220-50 сетевая обмотка не имеет многочисленных отводов.
Электрические параметры, габаритные и установочные размеры и масса трансформаторов ТН46 на 220 В точно такие же, как у соответствующих трансформаторов ТН46, рассчитанных на подключение к обоим стандартам сети 127 и 220 Вольт.
Электрические параметры трансформаторов ТН46
Выводы вторичных обмоток | Напряжение, Вольт | Допустимый ток, Ампер |
7-8 | 6,3 | 2,3 |
9-10 | 6,3 | 2,3 |
11-12(13) | 5(6,3) | 2,3 |
14-15(16) | 5(6,3) | 2,3 |
Напряжения на отводах первичных обмоток трансформаторов ТН46-127/220 Вольт составляют:
Между выводами 1 и 1а, 4 и 4а — 3,2 Вольт;
Между выводами 1 и 1б, 4 и 4б — 6,3 Вольт;
Между выводами 1 и 2, 4 и 5 — 110 Вольт;
Между выводами 1 и 3, 4 и 6 — 127 Вольт.
Выбор типа магнитопровода.
Наиболее универсальными магнитопроводами являются Ш-образные и чашкообразные броневые сердечники. Их можно применить в любом импульсном блоке питания, благодаря возможности установки зазора между частями сердечника. Но, мы собираемся мотать импульсный трансформатор для двухтактного полумостового преобразователя, сердечнику которого зазор не нужен и поэтому вполне сгодится кольцевой магнитопровод. https://oldoctober.com/
Для кольцевого сердечника не нужно изготавливать каркас и мастерить приспособление для намотки. Единственное, что придётся сделать, так это изготовить простенький челнок.
На картинке изображён ферритовый магнитопровод М2000НМ.
Идентифицировать типоразмер кольцевого магнитопровода можно по следующим параметрам.
D – внешний диаметр кольца.
d – внутренний диаметр кольца.
H – высота кольца.
В эти размеры обычно указываются в таком формате: КDxdxH.
Пример: К28х16х9
Переделка электронного трансформатора в более мощный
При сборке той или иной конструкции иногда встает вопрос источника питания, особенно если устройство требует мощного блока питания, а без переделки его не обойтись. В наши дни найти железные трансформаторы с нужными параметрами не трудно, они довольно дорогие, к тому же большие размеры и вес – их основной недостаток. Хорошие импульсные источники питания сложны в сборке и наладке, поэтому многим они недоступны. В своем выпуске видеоблогер Aka Kasyan покажет процесс постройки мощного и особо простого блока питания на базе электронного трансформатора. Хотя в большей мере этот видеоролик посвящен переделке и увеличению его мощности. У автора ролика нет цели доработать или улучшить схему, он просто хотел показать, как можно простым способом увеличить выходную мощность. В дальнейшем, если пожелаете, могут быть показаны все способы доработки таких схем с защитой от короткого замыкания и других функций.
Купить электронный трансформатор можно этом китайском магазине.
В качестве экспериментального выступил электронный трансформатор с мощностью 60 ватт, из которого мастер намерен вытянуть целых 300 ватт. В теории все должно работать.
Трансформатор для переделок был куплен всего за 100 рублей в строймагазине.
Перед вами классическая схема электронного трансформатора типа taschibra. Это простой двухтактный полумостовой автогенераторный инвертор с цепью запуска на базе симметричного динистора. Именно он подает начальный импульс, в следствие чего схема запускается. Имеются два высоковольтных транзистора обратной проводимости. В родной схеме стояли mje13003, два конденсатора полумоста на 400 вольт, о,1 Мкф, трансформатор обратной связи с тремя обмотками, две из которых является задающим или базовыми обмотками. Каждая из них состоит из 3 витков провода 0,5 миллиметров. Третья обмотка является обратной связи по току.
На входе небольшой резистор на 1 ом в качестве предохранителя и диодный выпрямитель. Электронный трансформатор несмотря на простую схему работает безотказно. Этот вариант не имеет защиты от коротких замыканий, поэтому, если замкнуть выходные провода, будет взрыв – это как минимум.
Летние скидки до 50% — Электроника для самоделок вкитайском магазине.
Нет никакой стабилизации выходного напряжения, поскольку схема предназначена для работы с пассивной нагрузкой в лице офисных галогенных ламп. Основной силовой трансформатор имеет две обмотки – первичная и вторичная. Последняя рассчитана на выходное напряжение 12 вольт плюс минус пару вольт.
Первые испытания показали, что трансформатор имеет довольно большой потенциал. Потом автор нашел в интернете запатентованную схему сварочного инвертора, построенного почти по такой схеме и сразу создал плату для более мощного варианта. Сделал две платы, поскольку в начале хотел построить аппарат для контактной сварки. Все заработало без каких-либо проблем, но потом решил перемотать вторичную обмотку, чтобы заснять этот ролик, поскольку начальная обмотка выдавала всего 2 вольта и колоссальный ток. А делать замеры таких токов на данный момент нет возможности за отсутствием нужного измерительного оборудования.
Перед вами уже более мощная схема. Деталей стало даже меньше. С первой схемы взяты пара мелочей. Это трансформатор обратной связи, конденсатор и резистор в цепи запуска, динистор.
Дальше из старых компьютерных блоков питания были выбраны все остальные компоненты. Это силовой трансформатор, транзисторы и входной диодный мост. Емкости были куплены отдельно.
Начнем с транзисторов. На родной плате стояли mje13003 в корпусе to-220. Были заменены на более мощные mje13009 из той же линейки. диоды на плате стояли типа n4007 в один ампер. Заменил сборку с током 4 ампер и с обратным напряжением 600 вольт. Подойдут любые диодные мосты аналогичных параметров. Обратное напряжение должно быть не менее 400 вольт а ток не менее 3 ампер. Конденсаторы полумоста пленочные с напряжением 400 вольт.
Продолжение на видео с 4 минуты.
Получение исходных данных для простого расчёта импульсного трансформатора.
Напряжение питания.
Помню, когда наши электросети ещё не приватизировали иностранцы, я строил импульсный блок питания. Работы затянулись до ночи. Во время проведения последних испытаний, вдруг обнаружилось, что ключевые транзисторы начали сильно греться. Оказалось, что напряжение сети ночью подскочило аж до 256 Вольт!
Конечно, 256 Вольт, это перебор, но ориентироваться на ГОСТ-овские 220 +5% –10% тоже не стоит. Если выбрать за максимальное напряжение сети 220 Вольт +10%, то:
242 * 1,41 = 341,22V (считаем амплитудное значение).
341,22 – 0,8 * 2 ≈ 340V (вычитаем падение на выпрямителе).
Индукция.
Определяем примерную величину индукции по таблице.
Пример: М2000НМ – 0,39Тл.
Частота.
Частота генерации преобразователя с самовозбуждением зависит от многих факторов, в том числе и от величины нагрузки. Если выберите 20-30 кГц, то вряд ли сильно ошибётесь.
Граничные частоты и величины индукции широко распространённых ферритов.
Марганец-цинковые ферриты.
Параметр | Марка феррита | |||||
6000НМ | 4000НМ | 3000НМ | 2000НМ | 1500НМ | 1000НМ | |
Граничная частота при tg δ ≤ 0,1, МГц | 0,005 | 0,1 | 0,2 | 0,45 | 0,6 | 1,0 |
Магнитная индукция B при Hм = 800 А / м, Тл | 0,35 | 0,36 | 0,38 | 0,39 | 0,35 | 0,35 |
Никель-цинкове ферриты.
Параметр | Марка феррита | |||||
200НН | 1000НН | 600НН | 400НН | 200НН | 100НН | |
Граничная частота при tg δ ≤ 0,1, МГц | 0,02 | 0,4 | 1,2 | 2,0 | 3,0 | 30 |
Магнитная индукция B при Hм = 800 А / м, Тл | 0,25 | 0,32 | 0,31 | 0,23 | 0,17 | 0,44 |
Трансформатор ТН46-127/220-50
• Типоразмер магнитопровода — ШЛ 20×25
Наибольшие отклонения напряжений вторичных обмоток трансформаторов типа ТН, измеренные в номинальном режиме при нормальных климатических условиях, составляют ± 5% для основных обмоток.
Наибольшие отклонения напряжений вторичных обмоток трансформаторов, измеренные в условиях повышенной (+85°C) и пониженной(-60°С) температур составляют -6 + -9% для основных и -13 + -23% для компенсационных обмоток. Характер зависимостей изменения напряжения вторичных обмоток трансформаторов в режиме номинальной нагрузки от температуры окружающей среды изображен на рис. 2.
Сопротивление изоляции трансформаторов при температуре + 85°С составляет 20 МОм. При кратковременном воздействии в течение 10 суток повышенной влажности воздуха при + 40°С сопротивление изоляции для трансформаторов исполнения В 50 МОм и выше, для трансформатора исполнения УХЛ 20 МОм и выше.
Электрические параметры трансформатора ТН46-127/220-50 в номинальном режиме
Область применения
Задача импульсного трансформатора заключается в защите электрического прибора от короткого замыкания, чрезмерного увеличения значения напряжения, нагрева корпуса. Стабильность блоков питания обеспечена импульсными трансформаторами. Подобные схемы применяются в триодных генераторах, магнетронах. Импульсник применяется при работе инвертора, газового лазера. Данные приборы устанавливают в схемах в качестве дифференцирующего трансформатора.
Радиоэлектронная аппаратура основана на трансформаторной способности импульсных преобразователей. При использовании импульсного блока питания организовывается работа цветного телевизора, обычного компьютерного монитора и т. д. Помимо обеспечения потребителя током требуемой мощности и частоты, трансформатором выполняется стабилизация значения напряжения при работе оборудования.
Как рассчитать число витков первичной обмотки?
Вводим исходные данные, полученные в предыдущих параграфах, в форму калькулятора и получаем количество витков первичной обмотки. Меняя типоразмер кольца, марку феррита и частоту генерации преобразователя, можно изменить число витков первичной обмотки.
Нужно отметить, что это очень-очень упрощённый расчёт импульсного трансформатора.
Но, свойства нашего замечательного блока питания с самовозбуждением таковы, что преобразователь сам адаптируется к параметрам трансформатора и величине нагрузки, путём изменения частоты генерации. Так что, с ростом нагрузки и попытке трансформатора войти в насыщение, частота генерации возрастает и работа нормализуется. Точно также компенсируются и мелкие ошибки в наших вычислениях.
Я пробовал менять количество витков одного и того же трансформатора более чем в полтора раза, что и отразил в ниже приведённых примерах, но так и не смог обнаружить никаких существенных изменений в работе БП, кроме изменения частоты генерации.
Размеры трансформаторов ТН46-127/220-50 и ТН46-220-50
В трансформаторах ТН46, как и во всех накальных трансформаторах серии ТН, возможно параллельное согласное соединение вторичных обмоток для увеличения их нагрузочной способности. Для получения выходных напряжений, больших чем 6,3 Вольт, вторичные накальные обмотки можно соединять последовательно в согласном включении.
Внимание! Не у всех накальных трансформаторов серии ТН вторичные обмотки имеют одинаковое значение допустимого тока. Поэтому при последовательном включении обмоток с разными допустимыми токами ток нагрузки не должен превышать ток обмотки с наименьшим его значением
Источник
Трансформатор ТН-46-127/220-50
Трансформаторы ТН46 на 220 В выпускаются начиная с 1979 г. (обозначаются как ТН46-220-50), они имеют одну первичную обмотку и такую же нумерацию выводов, как у трансформаторов на 127/220 В.
Электрические параметры, габаритные и установочные размеры, а также масса трансформаторов ТН46 на 220 В такие же, как у соответствующих трансформаторов ТН46 на 127/220 В.
Напряжение на отводах первичных обмоток трансформаторов ТН46 на 127/220 В составляют:
- между выводами 1 и 1а, 4 и 4а — 3,2 В;
- между выводами 1 и 1б, 4 и 4б — 6,3 В;
- между выводами 1 и 2, 4 и 5 — 110 В;
- между выводами 1 и 3, 4 и 6 — 127 В.
При использовании трансформаторов ТН46-127/220 на 127 В необходимо:
При использовании трансформаторов ТН46-127/220 на 220 В необходимо:
В трансформаторах ТН46 возможно параллельное согласное соединение вторичных обмоток для увеличения их нагрузочной способности.
Для получения выходных напряжений, больших чем 6,3 В, вторичные накальные обмотки можно соединять последователь в согласном включении. При последовательном согласном включении обмоток с разными допустимыми токами ток через обмотки не должен превышать минимального допустимого.
Источник
Расчет
Чтобы создать и намотать трансформаторные контуры самостоятельно, потребуется произвести расчет импульсного трансформатора. Применяется специальная методика. Сначала определяют ряд исходных характеристик оборудования.
Например, на первичной обмотке установлено напряжение 300 В. Частота преобразования равняется 25 кГц. Сердечник выполнен из ферритового кольца типоразмером 31 (40х25х11). Сначала потребуется определить площадь сердечника в поперечном сечении:
П = (40-25)/2*11 = 82,5 мм².
Далее можно просчитать минимальное количество витков:
На основе полученных данных можно найти диаметр сечения провода, который потребуется для создания контуров:
Д = 78/181 = 0,43 мм.
Площадь сечения в этом случае равняется 0,12 м². Максимально допустимый ток на первичной катушке при таких параметрах не должен превышать 0,6 А. Габаритную мощность можно определить по следующей формуле:
ГМ = 300 * 0,6 = 180 Вт.
На основе полученных показателей можно самостоятельно рассчитать параметры всех составляющих будущего прибора. Создать трансформатор этого типа станет увлекательным занятием для радиолюбителя.
Подобный аппарат является надежным и качественным при правильной последовательности всех действий. Расчет проводится для каждой схемы индивидуально. При изготовлении подобного оборудования вторичная обмотка должна замыкаться на нагрузку потребителя. В противном случае прибор не будет считаться безопасным.
От типа сборки, материалов и прочих параметров зависит работа трансформатора. Качество схемы напрямую зависит от импульсного блока. Поэтом расчетам, выбору материалов уделяется высокое значение.
Интересное видео: Импульсный трансформатор своими руками
Рассмотрев особенности импульсных трансформаторов, можно понять их важность для многих радиоэлектронных схем. Создать подобное устройство самостоятельно можно только после соответствующего расчета
«>
Как выбрать ферритовый кольцевой сердечник?
Выбрать примерный размер ферритового кольца можно при помощи калькулятора для расчета импульсных трансформаторов и справочника по ферритовым магнитопроводам. И то и другое Вы можете найти в .
Вводим в форму калькулятора данные предполагаемого магнитопровода и данные, полученные в предыдущем параграфе, чтобы определить габаритную мощность срдечника.
Не стоит выбирать габариты кольца впритык к максимальной мощности нагрузки. Маленькие кольца мотать не так удобно, да и витков придётся мотать намного больше.
Если свободного места в корпусе будущей конструкции достаточно, то можно выбрать кольцо с заведомо бо’льшей габаритной мощностью.
В моём распоряжении оказалось кольцо М2000НМ типоразмера К28х16х9мм. Я внёс входные данные в форму калькулятора и получил габаритную мощность 87 Ватт. Этого с лихвой хватит для моего 50-ти Ваттного источника питания.
Запустите программу. Выберете «Pacчёт тpaнcфopмaтopa пoлумocтoвoго пpeoбpaзoвaтeля c зaдaющим гeнepaтopoм».
Чтобы калькулятор не «ругался», заполните нолями окошки, неиспользуемые для расчёта вторичных обмоток.
Увеличение мощности электронного трансформатора ЭТ
Электронный трансформатор является сетевым импульсным блоком питания с весьма хорошими показателями. Такие блоки питания лишены защиты от КЗ на выходе, но эту недоработку можно исправить. Сегодня решил представить весь процесс увеличения мощности электронных трансформаторов для галогенных ламп. Китайский ЭТ с мощностью 150 ватт, мы превратим в мощный ИБП, который может быть использован практически для любых целей. Вторичная обмотка импульсного трансформатора, в моем случае содержит всего один виток. Обмотка намотана 10-ю жилами провода 0,5мм. Блок питания умощнен до 300 ватт, следовательно, его можно использовать для питания мощных усилителей НЧ, таких как Холтон, Ланзар, Маршалл Лич и т.п. При желании, можно на основе такого ИБП собрать мощный лабораторный блок питания. Мы знаем, что многие ИБП такого типа не включаются без нагрузки, такой недостаток имеют электронные трансформаторы Tashibra с мощностью 105 ватт.
Наша схема не имеет такого недостатка, схема заводится без нагрузки и может работать с маломощными нагрузками (светодиоды и т.п.). Для умощнения нужно сделать несколько переделок. Нужно перемотать импульсный трансформатор, подобрать конденсаторы полумоста, заменить диоды в выпрямителе и использовать более мощные ключи. В моем случае использованы диоды на полтора ампера, которые я не заменил, но обязательно замените на любые диоды с обратным напряжением не менее 400 Вольт и с током 2 Ампер и более.
Для начала давайте переделаем импульсный трансформатор. На плате можно увидеть кольцевой трансформатор с двумя обмотками, обе обмотки нужно снять. Затем берем еще одно аналогичное кольцо (снял с такого же блока) и склеиваем их. Сетевая обмотка состоит из 90 витков, витки растянуты по всему кольцу.
Диаметр провода, которым намотана обмотка 0,5…0,7мм. Далее уже мотаем вторичную обмотку. Один виток дает полтора вольта, к примеру — для получения 12 Вольт выходного напряжения, обмотка должна содержать 8 витков (но бывают и другие значения).
Далее заменяем конденсаторы полумоста. В стандартной схеме использованы конденсаторы 0,22мкФ 630 Вольт, которые были заменены на 0,5мкФ 400 Вольт. Силовые ключи использованы серии MJE13007, которые были заменены на более мощные — MJE13009.
На этом переделка почти завершена и можно уже подключить в сеть 220 Вольт. После проверки работоспособности схемы идем дальше. Дополняем ИБП фильтром помех сетевого напряжения. Фильтр содержит из дросселей и сглаживающего конденсатора. Электролитический конденсатор подбирается с расчетом 1мкФ на 1 Вольт, для наших 300 Ватт подбираем конденсатор с емкостью 300мкФ с минимальным напряжением 400 Вольт. Дальше приступаем к дросселям. Дроссель у меня использован готовый, был выпаян с другого ИБП. Дроссель имеет две отдельные обмотки по 30 витков провода 0,4мм.
На входе питания можно поставить предохранитель, но в моем случае он уже был на плате. Предохранитель подбирают на 1,25 — 1,5Ампер. Вот теперь все готово, уже можно дополнить схему выпрямителем на выходе и сглаживающими фильтрами. Если планируете собрать на основе такого ИБП зарядное устройство для автомобильного аккумулятора, то на выходе хватит и одного мощного диода шоттки. К числу таких диодов относится мощный импульсный диод серии STPR40, который достаточно часто применяется в компьютерных блоках питания. Ток указанного диода 20Ампер, но для 300 ваттного блока питания и 20 Ампер маловато. Не беда! Дело в том, что указанный диод содержит в себе два аналогичных диода на 20 Ампер, нужно всего лишь подключить два крайних вывода корпуса друг к другу. Теперь у нас есть полноценный диод на 40 Ампер. Диод нужно будет установить на достаточно большой теплоотвод, поскольку последний будет перегреваться достаточно сильно, возможно понадобится небольшой кулер.