Эмиттерный повторитель

Общие понятия о повторителе

Повторитель эмиттерный — это усилитель сигнала по току, в котором включение транзистора происходит по схеме (ОК). Коэффициент усиления сигнала по напряжению практически равен единице, напряжение эмиттера равно входному сигналу, поэтому схема носит название эмиттерный повторитель. Принцип работы устройства рассмотрим ниже.

Несмотря на то что повторитель эмиттерный имеет коэффициент передачи по напряжению единицу, его можно отнести к классу усилителей, так как он дает усиление по току, а значит, и по мощности: ИЕ = (β +1) х ИБ , где ИЕ — ток эмиттера, ИБ — ток базы.

При малом сопротивлении источника питания, коллектор транзистора присоединяется к общей шине, а резистор, с которого происходит снятие выходного напряжения, подключается к эмиттерной цепи. Подключение входа и выхода к внешним цепям осуществляется с помощью конденсаторов С1 и С2. При маленьком коэффициенте увеличения по напряжению, коэффициент увеличения по току достигает своего пика в режиме короткого замыкания зажимов на выходе.

Налаживание

Налаживание усилителя сводится к установке тока покоя выходного каскада подстроечным резистором R8. Если ограничение сигнала наступает неодновременно (из-за неодинакового усиления плечей выходного каскада), подбирают резисторы R10, R11 (в плече, где ограничение наступает раньше, сопротивление резистора следует увеличить, а в другом —’настолько же уменьшить).

Из-за неизбежного при этом нарушения балансировки второго дифференциального каскада изменять сопротивления резисторов более чем на ± 20 % (от номиналов, указанных на схеме) не рекомендуется.

  1. Журнал Радио № 3 за 1980 г.
  2. Борноволоков Э. П., Фролов В. В. — Радиолюбительские схемы.

Источник

Принцип работы усилителя

Транзисторы Т4 (BC546) и T5 (BC546) работают в конфигурации дифференциального усилителя и рассчитаны на питание от источника тока, построенного на основе транзисторов T7 (BC546), T10 (BC546) и резисторах R18 (22 ком), R20 (680 Ом) и R12 (22 ком). Входной сигнал подается на два фильтра: нижних частот, построенный из элементов R6 (470 Ом) и C6 (1 нф) — он ограничивает ВЧ компоненты сигнала и полосовой фильтр, состоящий из C5 (1 мкф), R6 и R10 (47 ком), ограничивающий составляющие сигнала на инфранизких частотах.

Нагрузкой дифференциального усилителя являются резисторы R2 (4,7 ком) и R3 (4,7 ком). Транзисторы T1 (MJE350) и T2 (MJE350) представляют собой еще один каскад усиления, а его нагрузкой являются транзисторы Т8 (MJE340), T9 (MJE340) и T6 (BD139).

Конденсаторы C3 (33 пф) и C4 (33 пф) противодействуют возбуждению усилителя. Конденсатор C8 (10 нф) включенный параллельно R13 (10 ком/1 В), улучшает переходную характеристику УНЧ, что имеет значение для быстро нарастающих входных сигналов.

Транзистор T6 вместе с элементами R9 (4,7 ком), R15 (680 Ом), R16 (82 Ом) и PR1 (5 ком) позволяет установить правильную полярность выходных каскадов усилителя в состоянии покоя. С помощью потенциометра необходимо установить ток покоя выходных транзисторов в пределах 90-110 мА, что соответствует падению напряжения на R8 (0,22 Ом/5 Вт) и R17 (0,22 Ом/5 Вт) в пределах 20-25 мВ. Общее потребление тока в режиме покоя усилителя должен быть в районе 130 мА.

Выходными элементами усилителя являются МОП-транзисторы T3 (IRFP240) и T11 (IRFP9240). Транзисторы эти устанавливаются как повторитель напряжения с большим максимальным выходным током, таким образом, первые 2 каскада должны раскачать достаточно большую амплитуду для выходного сигнала.

Резисторы R8 и R17 были применены, в основном, для быстрого измерения тока покоя транзисторов усилителя мощности без вмешательства в схему. Могут они также пригодиться в случае расширения системы на еще одну пару силовых транзисторов, из-за различий в сопротивлении открытых каналов транзисторов.

Резисторы R5 (470 Ом) и R19 (470 Ом) ограничивают скорость зарядки емкости проходных транзисторов, а, следовательно, ограничивают частотный диапазон усилителя. Диоды D1-D2 (BZX85-C12V) защищают мощные транзисторы. С ними напряжение при запуске относительно источников питания у транзисторов не должно быть больше 12 В.

На плате усилителя предусмотрены места для конденсаторов фильтра питания С2 (4700 мкф/50 в) и C13 (4700 мкф/50 в).

Управление питается через дополнительный RC фильтр, построенный на элементах R1 (100 Ом/1 В), С1 (220 мкф/50 в) и R23 (100 Ом/1 В) и C12 (220 мкф/50 в).

Не требуется конденсатор связи

Моя любимая особенность мостового усилителя заключается в том, что он позволяет устранить постоянное напряжение смещения без устранения постоянного напряжения смещения… или что-то типа того. Допустим, у вас есть динамик, который вам необходимо подключить к вашей схеме с однополярным источником питания. Все аудиосигналы имеют смещение по постоянному напряжению, которое удерживает отрицательные участки синусоиды выше уровня земли. Но сигнал, который мы посылаем на динамик, должен быть чистым переменным напряжением; постоянное напряжение смещения в аудиосигнале уменьшает динамический диапазон и способствует искажению. Эта проблема часто решается с помощью конденсатора, блокирующего постоянный ток (также называемого разделительного конденсатора), но у этого подхода есть недостатки: во-первых, конденсатор может быть достаточно большим (часто сотни микрофарад), чтобы избежать ослабления низкочастотных составляющих сигнала; во-вторых, вам нужно беспокоиться о переходных эффектах, связанных с зарядом или разрядом разделительного конденсатора, таких как артефакты типа «щелчков» и «хлопков», которые мешают воспроизведению звука.

К счастью, если у вас есть мостовой усилитель, то отпадает необходимость в разделительном конденсаторе. Дополнительная особенность инвертированных и неинвертированных сигналов такова, что постоянное напряжение смещения одного сигнала может компенсировать постоянное напряжение смещения другого:

Рисунок 5 – Компенсация напряжения смещения

Характеристики

Теперь перейдём к рассмотрению технических характеристик микросхемы К157УД2:

  • Оптимальное напряжение питания Uпит= ± 15 В;
  • Диапазон питающих напряжений Uпит= от ± 3 до 18 В;
  • Наибольшее напряжение на выходе (при таких исходных параметрах Uпит= ± 15 В, Uвх= ± от 25 до 200 мВ) Uвых max≥ ±13 В;
  • Напряжение смещения (измерено при Uпит= ± 15 В, Uвых≤ 1,2 В) Uсм ≤ ±5 мВ;
  • Ток на входе (режимы измерения Uпит = ± 15 В, Uвых ≤ 2,2 В) Iвх.≤ 500 нА;
  • Разность токов входа (режимы измерения Uпит = ± 15 В, Uвых ≤|2,2| В) Iвх разн ≤ 150 нА;
  • Потребляемый ток ( измерено при Uпит = ± 15 В) I ≤ 7 мА;
  • Ток КЗ (режимы измерения Uпит = ± 15 В, Uвх = ± (от 20.до.180) мВ) Iкз ≤ 45 мА;
  • К-т усиления напряжения Uпит = ± 15 В:
    • Uвых = ±10 В, f= от 0 до 50 Гц — Ку ≥ 50*10³;
    • Uвых = ±7 В, f = 20 кГц Ку ≥ 300;
  • К-т ослабления напряжений на входе (режимы измерения Uпит = ± 15 В, Uвх = 1 В, f≤ 50 Гц) Косл≥ 70 дБ;
  • К-т проникания сигналов (режимы измерения  Uпит = ± 15 В, Uвых = 7 В, f= 1 кГц) Кпр≤ -80 дБ;
  • Среднее смешение нуля ( режимы измерения Uпит = ± 15 В, T= -25…+70 °C) меньше ±50 мкВ/°C;
  • Средняя разность токов на входе ( режимы измерения Uпит = ± 15 В, T= от -25.до.+70 °C) меньше ≤ ±5 нА/°C;
  • Частота усиления импульса ( режимы измерения Uпит = ± 15 В, Uвх= 9…10 мВ, Uвых= 9…10 мВ) fед ≥ 1 МГц;
  • Наибольшая скорость увеличения напряжения на выходе ( режимы измерения Uпит = ± 15 В, Uвых= +10…11 В, f= 5…10 кГц) больше 0,5 В/мкс.

Согласно справочникам в К157УД2 содержится 0,00398 г. золота.

Основные технические характеристики УМЗЧ, собранного по схеме на рис. 2 (с предварительным усилителем), следующие:

Полоса номинальной мощности: 20 – 200000 Гц

Номинальная выходная мощность: 50 Вт/4 Ом

Коэффициент гармоник: 0,15%

Коэффициент интермодуляционных искажений: 0,2%

Максимальная скорость нарастания выходного напряжения: 15 В/мкс

Выходное сопротивление: не более 0,43 Ом

Ток короткою замыкания выхода: 2,3 А

Отличие этого усилителя от предыдущего заключено в оконечном каскаде. Транзисторы VT13, VT14 работают без начального напряжения смещения. Резистор R17 линеаризует оконечный каскад. Его функции заключаются в том, что при малых выходных сигналах (менее 0,6 В) напряжение ЗЧ с предыдущего каскада (VT9 – VT12) поступает в нагрузку, минуя транзисторы VT13, VT14. С увеличением сигнала эти транзисторы включаются значительно плавнее при наличии резистора R17 (R17=2Rн), чем без него, и коэффициент гармоник оконечного каскада не превышает 15% (без резистора он в несколько, раз больше). К каскаду, предшествующему оконечному, предъявляются жесткие требования: низкое выходное сопротивление и хорошая линейность без цепи ООС. Невыполнение первого из этих требований в усилителе не позволило даже при глубине ООС 60 дБ получить коэффициент гармоник меньше 0,5 %.

Напряжения питания обоих вариантов усилителей могут быть снижены до ±6 В, при этом их работоспособность сохраняется.

Питать усилители можно нестабилизированными напряжениями.

Сборка УНЧ

Теперь сборка. На шасси пошла одна боковина от старого компьютерного корпуса, на днище – вторая. По задуманной конструкции, ламповые панели должны быть приподняты над шасси, поэтому в последнем были вырезаны прямоугольные отверстия, которые я закрыл платами из фольгированного стеклотекстолита со впаянными в них ламповыми панелями.

В первоисточнике было еще вот такое замечание.

Поэтому нужно было придумать задержку анодного напряжения. Ставить тумблер на анодное не захотел, поскольку не люблю резких переходных процессов в виде бросков анодных и сеточных токов. С учетом вышесказанного (и показанного), схема блока питания и софтстарта получилась вот такая.

↑ Конструкция и детали

Алюминиевые шасси 430×90×330 я приобрел у китайских братьев. Изготовлено хорошо, все детали подогнаны, отверстия совпадают, лицевые поверхности панелей, похоже, обработаны пескоструем. Материал легко обрабатывается.

Разметка отверстий и размещение элементов на шасси левого и правого каналов выполнены зеркально и приведено на рисунке 11.


Рисунок 11 — Разметка верхних панелей МУМ.


Разметка передних и задних панелей МУМ приведена на рисунке 12.

Анодный трансформатор, как я уже говорил, установлен вертикально на стальных уголках и вставлен в вырезанное в шасси прямоугольное окно. Рядом расположены два дросселя Д37. Все три элемента аккурат накрываются стальным колпаком.

Межкаскадный транс TZ10F установлен в подвале шасси.

Бумажные конденсаторы типа МБГО и МБГЧ выпотрошены из своих корпусов и вместе со слюдяными ССГ-1 уложены в бутерброды на текстолитовую плату, где скреплены кабельными стяжками. Там же установлены дроссель Д14 и электролиты.

Панельки драйверных ламп размещены рядом. Все контакты панелек соответствующих электродов ламп (кроме катодов) соединены параллельно. Катодная цепь у каждой лампы своя. Здесь же на катодных резисторах организована «звезда» для соединения всех общих проводов от входного гнезда, регулятора громкости, элементов катодной цепи и источника анодного питания первой лампы.

Схема задержки включения анодного питания собрана на печатной плате.

Стрелочный индикатор выходного сигнала (VU-Meter) имеет индивидуальную плату управления, что очень удобно при размещении приборов в разных корпусах.

Для лучшего теплоотвода панельки выходных ламп установлены сверху шасси и окружены цепочкой вентиляционных отверстий диаметром 4 мм.

На переменники ППБ-50 вместо маховиков я установил цанговые гайки, дабы исключить случайное вмешательство чьих-нибудь шаловливых ручек. Все-таки, это не оперативный регулятор, здесь после тщательного прогрева ламп необходимо выставить токи и зафиксировать оси.

Шасси установлены на акустические (хе-хе) шипы. Меня всегда веселят истории «экспертов-аудиофилов» из глянцевых журналов по поводу способности шипов поглощать вибрации и прочее бла-бла. Господа видимо плохо учили физику в средней школе. Вибрации гасят не шипы, а разница твердости (вязкости) контактирующих поверхностей, причем это могут быть абсолютно ровные и гладкие поверхности. См. видео А. Щербина https://www.youtube.com/watch?v=jcnrvKstKqg Я использовал «волшебные шипы» по трем, не связанным с акустикой, причинам: 1. Красиво; 2. Удобно брать руками за корпус при переноске; 3. Обеспечивается пространство для улучшения конвекции воздуха.

Усилители на МДП-транзисторах

Усилитель на полевых транзисторах, представленный на схеме, имеет множество аналогов. В том числе и с использованием биполярных транзисторов. Поэтому можно рассмотреть в качестве аналогичного примера конструкцию усилителя звука, собранную по схеме с общим эмиттером. На фото представлена схема, выполненная по схеме с общим истоком. На входных и выходных цепях собраны R-C-связи, чтобы устройство работало в режиме усилителя класса «А».

Переменный ток от источника сигнала отделяется от постоянного напряжения питания конденсатором С1. Обязательно усилитель на полевых транзисторах должен обладать потенциалом затвора, который будет ниже аналогичной характеристики истока. На представленной схеме затвор соединен с общим проводом посредством резистора R1. Его сопротивление очень большое – обычно применяют в конструкциях резисторы 100-1000 кОм. Такое большое сопротивление выбирается для того, чтобы не шунтировался сигнал на входе.

Усилитель Агеева (25 Вт/8 Ом)

Предлагаемый вниманию читателей усилитель мощности звуковой частоты (УМЗЧ) разработан на основе технических решений и объединяет их наиболее ценные качества. Кроме того, в нем нейтрализован характерный для УМЗЧ такого типа источник нелинейных искажений, каким является процесс перезарядки входных емкостей ОУ при больших синфазных сигналах. Напомним, что входная емкость ОУ (примерно 3 пФ) складывается из нескольких линейных и нелинейных компонентов. Один из них — емкость закрытого p-n-перехода затвор — сток полевого транзистора входного дифференциального каскада – существенно нелинеен. При работе УМЗЧ эта емкость (около 0,3 пФ) интенсивно перезаряжается и, если сигнал синусоидальный, в цепи затвора протекает значительный ток перезарядки (удвоенной частоты), создавая на элементах входной цепи ОУ соответствующее падение напряжения. Складываясь с входным сигналом, оно искажает его. Приведенное к входу значение второй гармоники U2, порождаемой процессом перезарядки емкости входного дифференциального каскада ОУ, как было установлено экспериментально, может быть оценено соотношением:

U2= А · ΔR · f · (Uсф/Uсф max)2, где:

  1. А= 0,5 х 10-12 Кл;
  2. ΔR – величина разбаланса сопротивлений цепей входов ОУ;
  3. f – частота синусоидального сигнала;
  4. Uсф – амплитуда синфазного сигнала.

Если, например, f=10 кГц, Uсф= Uсф max, ΔR = 100 кОм, то U2=0,5 мВ, а это значит, что при входном сигнале 1 УЗ коэффициент гармоник УМЗЧ, даже если нет других продуктов нелинейностей, составит 0,05%. Ограничив разбаланс сопротивлений ΔR пределом 1 кОм, можно пренебречь вкладом процесса перезарядки входных емкостей ОУ в коэффициент гармоник УМЗЧ.

Основные технические характеристики:

Номинальная выходная мощность на нагрузке сопротивлением 8 Ом: 25 Вт

Коэффициент гармоник в диапазоне частот 20 – 20000 Гц: не более 0,003 %

Скорость нарастания выходного напряжения: не менее 40 В/мкс

Номинальное входное напряжение: 0,7 В

Коэффициент гармоник измерялся анализатором спектра СК4-58, позволяющим регистрировать искажения, начиная с 0,03%. Для расширения его динамического диапазона использовались режекторные фильтры, что позволило довести нижний предел измерений до 0,001%. Точность измерений ограничивалась шумами испытательного генератора. Реальный коэффициент гармоник использованного генератора Г3-102 не превышал 0,003%.

УМЗЧ состоит из двухкаскадного усилителя напряжения (ОУ DA1, DA2) и собственно усилителя мощности (VT1 – VT4). Каскады на ОУ DA1, DA2 питаются от идентичных источников, образованных элементами VD1, VD2, R6, R7, С6, С7 и VD3, VD4, R14, R15, С13, С14. Средние точки этих источников питания соединены с низкоомным делителем напряжения R5R12R20, подключенным к выходу УМЗЧ, чем обеспечивается подача отслеживающих потенциалов в каскады усилителя напряжения. Цепи R16C8 и R19C10 фильтруют напряжения, питающие первые каскады, от порождаемых сигналом нелинейных пульсаций в цепях питания выходного каскада.

Каскад на ОУ DA1 охвачен местной ООС (R2, R4) и усиливает сигнал в 10 раз. Поскольку на выходе каскада имеется постоянное напряжение около 1 В, он отделен от входа ОУ DA2 конденсатором С5.

Второй каскад (DA2) совместно с выходным (VT1—VT4) усиливает напряжение сигнала только в 2 раза. Коэффициент усиления этого ОУ «расходуется», таким образом, только на линеаризацию выходного каскада. Последний представляет собой известный параллельный усилитель. Резисторы R17, R18, R25, R26 корректируют его АЧХ в области высших частот.

Активные сопротивления входных цепей ОУ DA1 согласованы с точностью около 1 кОм, т.е. ΔR=|R3—R2llR4|»0 (предполагается, что источник сигнала обладает низким выходным сопротивлением). Так же согласованы сопротивления входных цепей и второго каскада ( ΔR=|R11 — R9||R13|»0). Элементы R3, С2 образуют входной фильтр нижних частот с частотой среза 110 кГц. Конденсатор СЗ улучшает переходную характеристику первого каскада. Элементы С4, R10 и С9, С11, С12 корректируют АЧХ усилителя напряжения.

Коэффициенты усиления каскадов и коэффициенты передачи делителя R5R12R20 выбраны таким образом, чтобы амплитуды синфазных входных и выходных напряжений каждого из ОУ (относительно соответствующих средних точек их «плавающих» источников питания) были равны примерно четверти амплитуды выходного напряжения. В описываемом УМЗЧ амплитудпые характеристики ОУ используются менее чем наполовину, в то время как уровень ограничения усилителя напряжения равен ±50 В. И это. вообще говоря, не предел: вполне реальным представляется четырехкаскадный усилитель напряжения с уровнем ограничения ±100 В.

Варианты выходных каскадов усилителя

Автором предлагается еще два варианта выходных каскадов усилителя, работающих в разных режимах и позволяющих снизить коэффициент гармоник мощного УМЗЧ. Их упрощенные электрические схемы показаны на рис. 1а и рис.16.

Скорость нарастания выходного напряжения на эквиваленте нагрузки при замкнутой накоротко катушке индуктивности, В/мкс — 10.

Рис. 1. Упрощенные электрические схемы УМЗЧ.

Каждый из усилителей состоит из двух выходных каскадов — основного и вспомогательного, включенных параллельно. Причем основной каскад работает в режиме В, а вспомогательный — в режиме АВ.

Основной каскад усилителя, показанный на рис. 1а, выполнен на транзисторах VT1, VT2, включенных по схеме комплементарного эмиттерного повторителя, работающего в режиме В. Транзисторы VТ3, VТ4 и резисторы R6. R9 образуют вспомогательный каскад,который работает в режиме АВ.

Резисторы R1 . R5 и диоды VD1, VD2 обеспечивают необходимое смещение на базах транзисторов и задают режим работы обоих каскадов.

Как видно из схемы, напряжение смещения на базах транзисторов вспомогательного каскада всегда больше, чем на базах основного каскада на величину падения напряжения на диодах VD1, VD2.

В результате с помощью изменения сопротивления резистора R4 задается напряжение смещения на базах транзисторов VТ1, VТ2, при котором каскад будет работать в режиме В. Резисторы R8, R9 создают необходимую термостабилизацию вспомогательного каскада, а резисторы R6, R7 ограничивают базовый ток транзисторов VТ3, VТ4.

При малых уровнях входного сигнала транзисторы основного каскада VТ1, VТ2 закрыты, и при этом работает только вспомогательный каскад. При этом переменный ток, поступающий в нагрузку, мал, мало и падение напряжения на резисторах R8, R9.

С ростом входного напряжения начинают открываться транзисторы VТ1, VТ2 и увеличивается ток, поступающий в нагрузку от включенных параллельно выходных каскадов. Увеличение тока, протекающего через резисторы R8, R9, приводит к росту падения напряжения на них и ограничению тока транзисторов VТ3 и VТ4.

При максимальном выходном токе, например, при положительной полуволне входного напряжения, транзистор VТ1 полностью открыт, а через транзистор VТ3 при этом протекает в нагрузку гораздо меньший ток, ограниченный в основном резистором R8 и частично R6.

Таким образом, чем больше будет сопротивление резисторов R8, R9, тем на «меньшем уровне будет ограничен максимальный ток транзисторов вспомогательного каскада, а значит, и максимальная мощность в режиме АВ, отдаваемая в нагрузку.

Как показало макетирование, сопротивление резисторов R8, R9 порядка 2. 10 Ом ограничивает максимальный ток транзисторов вспомогательного каскада на уровне 200. 40 мА.

Более сложен выходной каскад, изображенный на рис. 16. Он обеспечивает усиление как по току, так и по напряжению. В основном каскаде (VТ3, VТ4) предусматривается использование мощных составных транзисторов КТ825, КТ827. Вспомогательный каскад VТ5. VТ8 также должен быть собран на составных транзисторах.

Резисторы R1. R11, стабилитроны VD1, VD2, диоды VD3, VD4 и транзисторы VТ1, VТ2 определяют режим работы выходных каскадов, который не меняется при изменении напряжения питания в значительных пределах.

Объясняется это тем, что напряжение смещения на базах транзисторов VТ1, VТ2 поддерживается постоянными стабилитронами VD1, VD2. Работа транзисторов выходного каскада в режиме усиления тока и напряжения обеспечивает максимальный КПД выходного каскада, поскольку в этом случае напряжение насыщения транзисторов минимально, и максимальное значение амплитуды выходного сигнала приближается к напряжению питания.

Как и при коррекции искажений с использованием прямой связи, усилитель мощности, построенный по предложенным схемам, должен иметь достаточно глубокую ООС, обеспечивающую малые нелинейные искажения в широком динамическом диапазоне выходных сигналов.

Очевидно, что наилучшим образом решить эту задачу позволяют современные быстродействующие ОУ. Применив в предварительном каскаде УМЗЧ быстродействующий ОУ и построив его выходной каскад по схеме, указанной на рис. 16, удалось сконструировать усилитель.

Основные параметры

Если внимательно посмотреть на электрические характеристики К157УД2, то можно заметить, что по быстродействию данная микросхема не для использования в аудиоустройствах. Так, наибольшая скорость нарастания напряжения на её выходе 0,5 В/мкс, что сопоставимо выходному сигналу на уровне примерно до 10 В/8 кГц. В реальной жизни он будет еще ниже. Но для своего времени это был тоже неплохой показатель.

Максимальные значения

Приведём основные предельные значения параметров:

  • максимальное питание (Uпит) до ±18 В;
  • выходное напряжение (Uвых макс.) до ± 13 В (при Uпит = ± 15 В);
  • напряжение смещения нуля (U см) до ± 13 В;
  • ток потребления (I пот) до 7 мА;
  • ток короткого замыкания (I кз) до 45 мА;
  • частота среза (f срз) от 1 МГц;
  • коэффициент усиления (KуU): не менее 50000 (при f =0… 50 Гц) и 800 (при f =20 кГц);
  • скорость нарастания на выходе (VUвых) не менее 0,5 В/мкс.

Типовая величина напряжения шумов, используемых на входе данного ОУ (в диапазоне частот от 20 до 20000 Гц) составляет не более 1,6 мкВ.

Аналоги

Считается, что импортный аналог у К157УД2 — это LM301. Но, во первых, у данной микросхемы 8 выводов, вместо 14. Поэтому для замены придётся искать два таких устройства. Во вторых, их будет очень трудно найти в наших магазинах.

Чем еще можно заменить К157УД2 ? Хорошей альтернативой для этого устройства можно cчитать новые микросхемы серии LME49XXX. Если точнее, то в большинстве случаев подойдут: LME49720, LME49860 и LM4562. Они очень похожи по своим характеристикам с рассматриваемой, имеют неплохую линейность и полосу пропускания (до 90 Гц), не только при коэффициенте усиления 1, но и значительно более высоком (1000 и выше).

Типовое напряжение шумов в диапазоне частот от 20 до 20000 Гц находится в пределах 0,4 мкВ. Отечественные аналоги: КР1434УД1А и обновленная модификация К157У Д3. Проблема в том, что сейчас их трудно найти на российских прилавках и они более дорогие.

Детали

Источник тока выполнен на стабилизаторе напряжения КР142ЕН5В (5 В). Вход стабилизатора подключен к выводам катодов ламп, а к его выходу подключен токозадающий резистор R11. При номинале этого резистора, равном 43-47 Ом, суммарный ток катодов обеих ламп устанавливается около 120 мА, т. е. по 60 мА на каждую. Лампы рекомендуется подобрать максимально одинаковые по току.

По такой схеме (с источниками тока в катодах) было сделано несколько усилителей на лампах 6П14П. Лампы при макетировании конструкции работали стабильно при анодном напряжении Uа = 370 В и токе Iк = 60 мА.

При этих же значениях напряжения и тока Uа и Ік, но без источника тока (с фиксированным смещением), сразу начинался разогрев анодов После этих экспериментов в металле был сделан усилитель по двухтактной схеме на 6П14П при Uа = 305 В и Ік = 60 мА, как вариант описываемого здесь. Применение источника тока позволило улучшить линейность частотной характеристики усилителя.

Энергетический запас блока питания позволил применить в усилителе электронно-световые индикаторы уровня напряжения 6Е1П — VL6 и VL7. Наличие этих двух зеленых «глазков» «оживило” переднюю панель усилителя Помимо контроля уровня сигнала усилителя, по ним также можно судить о работоспособности блока питания.

Цепь, состоящая из резисторов R18, R19, диодов VD1, VD2 выполняет функции регулятора уровня и детектора огибающей а элементы С18 R22 определяют время восстановления чувствительности индикатора. Узел из этих деталей собран на отдельной небольшой плате которая установлена на основной плате усилителя.

В усилителе использованы только готовые моточные изделия от бытовой теле-радиоаппаратуры. Сетевой трансформатор ТС-160 и дроссель — от черно-белого телевизора «Рекорд-312″ или другого подобного. Выходные трансформаторы — от радиолы ”Урал-114».

При их отсутствии можно изготовить выходные трансформаторы самостоятельно на броневом или витом разрезном магнитопроводе сечением примерно 4..5 см. Индуктивность первичной обмотки — не менее 30 Гн. Для самостоятельной намотки выходного трансформатора полезны следующие сведения.

Первой на катушку наматывают часть вторичной обмотки — 20 витков провода ПЭВ-1 0,5, затем после слоя изоляции кабельной бумагой наматывают первичную обмотку проводом ПЭВ-1 0.112 с отводами от 1280 витков, далее от 1590, 1900 витков, после этого еще добавляют 1280 витков. После прокладки изоляции наматывают вторую часть вторичной обмотки — 37 витков ПЭВ-1 0,5. Коэффициент трансформации — 0,0175.

Остальные детали также могут быть позаимствованы из старых телевизоров — резисторы МЛТ, конденсаторы БМТ, МБМ и др. Однако оксидные конденсаторы целесообразно устанавливать новые отечественные или импортные, например, фирмы JAMICON.

Схемы подключения транзисторов

Существует три разновидности включения биполярных транзисторов – с общей базой (ОБ), с общим эмиттером (ОЭ) и общим коллектором (ОК).

Наиболее распространено подключение (ОЭ), так как дает большое усиление по напряжению и току. Одной из особенностей такого подключения является инвертирование входного напряжения на 180. Недостатком подключения является маленькое входное (сотни Ом) и большое выходное (десятки кОм) сопротивление.

При подаче входного напряжения, транзистор открывается и ток проходит через базу на эмиттер, при этом коллекторный ток увеличивается. Ток эмиттера суммируется из тока базы и тока коллектора: ИЕ = ИБ + ИК

В цепи коллектора, на резисторе, появляется напряжение намного большее входного сигнала, что приводит к увеличению выходного напряжения, а соответственно, и силы тока.

Включение транзистора по схеме (ОБ) дает усиление по напряжению и позволяет работать с более широким частотным диапазоном, чем схема с (ОЭ), поэтому часто используется на антенных усилителях. Эта схема позволяет в полной степени использовать способность транзистора к усилению высоких частот сигнала (частотные характеристики). Чем выше частота усиливаемого сигнала, тем меньше усиление по напряжению. Данный каскад имеет маленькое входное и выходное сопротивление.

Включение транзистора с (ОК) дает усиление по току и часто используется как переходник между высокоомным источником питания и низкоомной нагрузкой. Также, данное включение можно использовать при согласовании различных каскадных схем, оно не изменяет полярность входного сигнала.

Как рассчитать величину тока, который должен обеспечивать ОУ ?

Очень просто! Допустим, что в роли нагрузки выступает резистор сопротивлением в 10 Ом. На повторитель приходит напряжение в 5 вольт, которое он должен передать нагрузке. В таком случае, применяя закон ома (I=U/R), выясняем, что для поддержания 5 вольт на резисторе операционнику требуется обеспечивать ток в 0.5 ампера. (Это грубая прикидка, но вполне применимая на практике)

Обычные ОУ не смогут справиться с такой задачей. Конечно выход можно умощнить транзистором, но тогда применение повторителя на ОУ становится менее оправданным.

Для таких целей предлагается использовать TDA2030, TDA2040 или TDA2050 включенных по схеме повторителя. Микросхемы представляют собой уже готовые, умощненые транзисторами, операционные усилители, которые между собой отличаются максимальной выходной мощность.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: