Индикаторы уровня сигнала: схема светодиодной шкалы

Стрелочный индикатор уровня

Порядок вывода комментариев: По умолчанию Сначала новые Сначала старые

0 Спам 19 Denis_K   (02.02.2013 22:56) Вот взял бы сам и подумал для чего он там стоит… да и думать даже не нужно… всего лишь стоит открыть даташит на СН и все готово и понятно. 0,1-0,33мкф…
0 Спам 17 CheckPoint   (28.08.2011 14:45) Автору статьи привет и огромное спасибо за схему! У меня вопросец (сам что-то не разобрался). Спаял я схему (не на печатной плате, а на картоночке. Провода разводил в соотв. с печатной схемой), воткнул в центр (в AV OUT), настроил сопротивление на подстроечниках (настраивал на МОНО звуке) — все красиво, все просто супер! Но на обычных стерео записях стрелки дергаются так же, как и при моно звуке — одинаково. Если выдернуть один из штекеров, то одна стрелка дергается правильно (если в канале пауза, то стрелка не дергается итд). Т.е. у меня получается некое усреднение — визуально все правильно и красиво, но одинаково (что не верно) Где может быть подвох? ЗЫ: сопротивление R330 не ставил
0 Спам 18 SITH   (28.08.2011 19:20) Может быть и косяк в монтаже.. вы фотку не показали — я сказать ничего не могу.. а может быть проблема в самом сигнале, в любом случае вам на форум, в х такие вопросы не решают..
0 Спам 14 серый1   (26.08.2011 22:31) а у вас есть майл?? а то можно если что ещё по контролёрам не понятно будет спросить пообщатся
0 Спам 16 SITH   (26.08.2011 22:37) Мэил есть, и аська есть, но я в ней вам не отвечу, так как нет времени заниматься обучением работы с контроллерами, для этого есть огромное количество литературы и материалов в интернете, гугл вам в этом поможет, пишите вопросы на форум, там вам тоже помогут чем смогут.
0 Спам 9 серый1   (26.08.2011 21:59) тоесть к источнику сигнала на входе усилителя ??? на видио на вашь усилитель где эти индикаторы сверху мигают светодеоды помоему под музыку можите дать схему как подключить эти свветодеоды чтоб так ж мигали ??по какой вы делали ?? и плату пожалуйсто тогда на них если можно
0 Спам 10 SITH   (26.08.2011 22:09) Все эти схемы что вы просите (светодиодов под музыку) на микроконтроллерах, а вы, судя по вопросам, их программировать не умеете, по этому ищите простенькие схемы на дискретных компонентах! Почитайте что такое «Линейный выход» в гугле.. У вас на компьютере есть линейный выход, это круглый разъем зеленого цвета, вы в него вставляете колонки или наушники! Так вот к этому разъему и подключается данный стрелочный индикатор! Можно подключить индикатор параллельно с наушниками например, или с усилителем…
0 Спам 11 серый1   (26.08.2011 22:16) спасибо всё понял я это и знал уточнить толькл хотел а у вас в усилителе он подключон ко входу сигнала или на предварительный усил тоесть со входа сигнал идёт на индикаторы и на усилитель на микроконтролёрах увы делатьне умею проблема одна нету програматора а стоит он 8 тыщь пока не потенуть его Стабелизатор на схеме датчиков нудно посадить на радиатор но помойму он греься не должен потребление маленькое
0 Спам 12 SITH   (26.08.2011 22:22) Напишу в десятый раз: Этот стрелочный индикатор подключается параллельно с усилителем к линейному выходу компьютера! нету там предварительных усилителей, и тому подобных промежуточных устройств! Про 8 тысяч — это бредятина, так как программатор (к примеру для AVR контроллеров) собирается в ручную с затратами порядка 20 гривен. (в переводе на рубли это около 100 рублей).
0 Спам 13 серый1   (26.08.2011 22:28) ого чёто дёшево ну тот который я видил универсальный написано было и для всех видов контролёров подходит Спасибо за советы !! какие вопросы будут если буду спрашивать))
0 Спам 15 SITH   (26.08.2011 22:35) Вам не нужен универсальный программатор, т.к. максимум в своих радиолюбительских конструкциях вам придется сталкиваться с всего несколькими основными видами, которые можно прошить подручными средствами.
0 Спам 7 серый1   (26.08.2011 08:52) и последний вопрос а эту схему нужно подключать к входу умзч перед источником сигнала или к выходу умзч ??? если к выходу к динамикам когода я звук прибавлю она ж должна зашкаливать
0 Спам 8 SITH   (26.08.2011 17:43) К линейному выходу конечно! Для того чтобы подключать к выходу усилителя, вам и схема другая нужна.
0 Спам 5 серый1   (26.08.2011 00:33) а скольки ватные резисторы нужны ?
0 Спам 6 SITH   (26.08.2011 00:49) Вообще то для данной схемы это неуместный вопрос! Самые обычные резисторы 0.125w подойдут!
0 Спам 3 серый1   (25.08.2011 22:20) здравствуйте отличная схема хорошо сделана а её зеркалить надо ????
0 Спам 4 SITH   (25.08.2011 23:42) Плату зеркалить не надо!
0 Спам 1 олег0401   (28.01.2011 17:05) SITH можно вопрос? Что за аудиопроцессор в твоём уселителе?
0 Спам 2 SITH   (28.01.2011 17:07) TDA8425

Стрелочные индикаторы выходного сигнала

Стрелочные индикаторы выходного сигнала в настоящее время пользуются большой популярностью, особенно для использования их в модернизации раритетной аппаратуры. Многие радиолюбители прекрасно помнят советский усилитель мощности Radiotehnika У-101 Рижского одноименного завода.

В начале 80-х завод приступил к выпуску новой модели, международного стандарта (габаритные) музыкального комплекса «Radiotehnika K-101 stereo». В целом это комбайн был очень даже неплохим комплексом.

Но вот усилитель, вернее встроенный в нем индикатор выходной мощности толи был несовершенным или присутствовали ошибки в конструкции.

Тем не менее, когда аппарат был новый то никаких нареканий не вызывал, но со временем он начинал доставлять некоторые неудобства своим не четким и тусклым свечением шкалы или вообще в схеме управления выходил из строя какой-либо элемент. С недавнего времени я тоже стал обладателем такого усилителя.

Конечно у меня не было желания восстанавливать штатный индикатор, а изначально я уже предполагал установить в аппарат стрелочные. Тем более у меня в запасе было несколько штук таких, да и на рынках радиотоваров их найти по моему не сложно.

Но как бы там ни было я приступил к реставрации и частичной модернизации с целью установить стрелочные индикаторы выходного сигнала Radiotehnika У-101 на К157ДА1.

Вначале взял трех миллиметровый пластик и вырезал из него 3 заготовки прямоугольной формы, а затем при помощи дихлорэтана склеил индикаторы друг с другом. Пластиковые полоски следует подогнать так, чтобы они по ширине были одинаковы с индикаторами и не выступали за периметр. Здесь на фото показана конструкция с натуральным размером окошка в передней панели усилителя мощности.

  Cхема линейного стабилизатора напряжения

В стекле от штатного индикатора сделал окошки и одел на новые стрелочные индикаторы. Стекло желательно обработать маленьким мелким напильником или надфелем, чтобы плотно село на свое место. Далее склеил все это опять же дихлорэтаном. Конечно всю эту операцию нужно проделывать очень аккуратно, так как это фронтальная панель и должна смотреться соответственно.

Теперь нужно припаять провода к светодиодам и посадить их в то зазор, который между индикатором и стеклом на небольшое количество супер-клея.

Вырезал еще из пластика полосу и прикрепил ее к боковым стенкам. После того как она будет еще посажена на клей, то конструкция обретет еще большую жесткость и будет являться основой для установки на нее управляющей платы.

На этом фото стандартное место установки индикатора. Там же виден красный коннектор с проводами он предназначен для подачи питания на плату управления. Он конечно будет нужен в дальнейшем.

На этом этапе необходимо собранный модуль примерить, как он становиться. Дело в том, что эта конструкция никакими винтами не крепится, а просто прижимается передней панелью к шасси усилителя мощности. Поэтому нужно обеспечить максимально плотную посадку. Под провода идущих от светодиодов следует круглым надфилем сделать небольшой пропил в шасси.

Принципиальная схема и печатная плата модуля управления

Здесь можно скачать чертеж Layout для печатной платы: scaler_indicator-Layout

Теперь необходимо установить плату на устройстве с индикаторами, закрепить в усилителе и можно делать подключение.

Коннектор схемы управления индикаторами имеется питающее напряжение 24v, но это нормально, потому что на стабилизатор напряжения КРЕН 7809 можно спокойно подавать до 36v, а на выходе получить нужные 9v. А также выходной сигнал обоих каналов. Провода я паял непосредственно к разъему, затем заизолировал, а провода стянул капроновым хомутиком.

  Вентилятор вытяжной для ванной

Завершающий этап монтажа

Прежде чем устанавливать корпус на шасси усилителя необходимо подстроить переменным резистором, установленном на управляющей плате, нужный предел значения стрелочных индикаторов. И после этого ставим на место корпус и можно приступать к испытанию.

Схема индикатора уровня сигнала на AN6884.

Схема индикатора уровня сигнала на AN6884.

Предлагаем вашему вниманию простейшую схему светодиодного индикатора уровня сигнала, реализованную на двух микросхемах AN6884.

Используемые в схеме элементы:

● Резисторы R1 и R3 — МЛТ-0,25 10 кОм;● Резисторы R2 и R4 — МЛТ-0,5 68 Ом;● Конденсаторы С1 и С3 — 2,2 мкФ х 16 В;● Конденсаторы С2 и С4 — 10 мкФ х 16 В;● Микросхемы IC1 и IC2 — AN6884;● Подстроечные резисторы Р1 и Р2 — 10 кОм

При питании 8. 12V номиналы резисторов R2, R4 — 47R.При питании 10. 14V номиналы резисторов R2, R4 — 68R.При питании 12. 16V номиналы резисторов R2, R4 — 91R.

Печатная плата рассчитана на два канала индикации и применима для использования в стереофонической аппаратуре. Внешний вид платы LAY6 формата показан на рисунке ниже:

Схема проста для сборки, содержит минимум радиодеталей, проста для повторения, регулировка заключается только в подстройке уровня входного сигнала с помощью резисторов Р1 и Р2.

Вариант подключения индикатора к усилителю на TDA7294:

Возможно применение аналогов микросхемы AN6884, они перечислены на следующем изображении:

Схема и печатная плата в формате LAY6 находятся в архиве, который доступен для скачивания. Размер файла — 0,35 Mb.

Схема LED индикатора

Данная схема достаточно хорошо описана на просторах интернета. Здесь лишь вкратце расскажу (перескажу) о ее работе. Индикатор выходной мощности собран на микросхеме LM3915. Десять светодиодов подключены к мощным выходам компараторов микросхемы. Выходной ток компараторов стабилизирован, поэтому отпадает необходимость в гасящих резисторах. Напряжение питания микросхемы может находиться в пределах 6…20 В. Индикатор реагирует на мгновенные значения звукового напряжения. У микросхемы LM3915 делитель рассчитан так, что включение каждого последующего светодиода происходит при увеличении напряжения входного сигнала в v2 раз (на 3 дБ), что удобно для контроля мощности УМЗЧ.

Сигнал снимается непосредственно с нагрузки — акустической системы УМЗЧ — через делитель R*/10k. Указанный на схеме ряд мощностей 0,2-0,4-0,8-1,6-3-6-12-25-50-100 Вт соответствует действительности, если сопротивление резистора R*=5,6 кОм для Rн=2 Ом, R*= 10 кОм для Rн=4 Ом, R*= 18 кОм для Rн=8 Ом и R*=30 кОм для Rн=16 Ом. LM3915 дает возможность легко менять режимы индикации. Достаточно лишь подать на вывод 9 ИМС LM3915 напряжение, и она перейдет с одного режима индикации в другой. Для этого служат контакты 1 и 2. Если их соединить, то ИМС перейдет в режим индикации «Светящийся столбик», если оставить свободными — «Бегущая точка». Если индикатор будет эксплуатироваться с УМЗЧ с иной максимальной выходной мощностью, то нужно подобрать лишь сопротивление резистора R*, чтобы светодиод, подключенный к выводу 10 ИМС, светился при максимальной мощности УМЗЧ.

Как видите, схема проста и не требует сложной настройки. Благодаря широкому диапазону питающих напряжений для ее работы использовал одно плечо импульсного двухполярного блок питания УМЗЧ +15 вольт. На входе сигнала вместо подбора отдельных резисторов R* установил переменное сопротивление номиналом 20 кОм, что сделало индикатор универсальным для акустики разного сопротивления.

Для смены режимов индикации предусмотрел установку перемычки или кнопки с фиксацией. В финале замкнул перемычкой.

Сам усилитель Солнцева рассчитан на выходную мощность 70 Ватт на канал при 4 Омах нагрузки. В качестве акустических систем использую югославские HZK 12031 номинальной мощность 100 Ватт. Переменные сопротивления установил в значения 10 кОм для мощности 100 Ватт.

Печатные платы выполнены методом ЛУТ. Травление проводилось перекисью водорода, лимонной кислотой и поваренной солью из расчета 50 мл перекиси, 2 ч.л. кислоты и чайная ложка соли.

На плату, где размещены светодиоды, добавил светодиоды и их ограничительные резисторы для индикации аварии питания усилителя мощности. В случае нештатной ситуации по + 27 Вольт будут загораться верхние 11 и 12 светодиоды в верхнем ряду (красные), по -27 Вольт 23 и 24 светодиоды нижнего ряда (жаль не нашел светодиодов синего цвета для наглядности).  

В случае, если эта часть индикатора не требуется, то всегда можно прибегнуть к услугам Sprint-Layout и убрать лишнее. Для удобства монтажа и главное доступности в случае ремонта разделил индикатор на две платы. 

Как показали испытания и дальнейшая эксплуатация – схема проста, надежна и достойна рекомендаций к повторению.

Печатная плата и детали сборки

Печатную плату индикатора уровня звука в формате lay можно скачать . Она имеет размеры 65×28 мм. Для сборки требуются прецизионных деталей. Резисторы типа МЛТ-0,125Вт:

  • R1, R5 R8 – 1 кОм;
  • R2 – 100 Ом;
  • R3 – 10 кОм;
  • R4 – 50 кОм, любой подстроечный;
  • R6 – 560 Ом;
  • R7 – 10 Ом;
  • R9 – 20 кОм.

Конденсаторы С1, С2 – 0,1 мкФ. ИМС LM3915 рекомендуется запаивать не напрямую, а через специальную панельке для микросхемы. В нагрузке можно применить ультраяркие LED любого цвета свечения, вплоть до фиолетового. Но это уже личные эстетические предпочтения. Для отображения стереосигнала потребуются две одинаковые платы с независимыми входами. Более подробные данные о LM3915 можно найти в техническом описании здесь.

Работоспособность данного индикатора доказана на практике многими радиолюбительскими кружками и по-прежнему выпускается в виде наборов МастерКит.

Читайте так же

Для визуализации уровня сигнала широко используют светодиодные индикаторы, построенные на архитектуре специализированных микросхем. Они применяются в самых разнообразных устройствах: индикаторы уровня входящего сигнала радиоприёмной аппаратуры, индикация уровня на усилителе звука, тестеры для отладки схем, в которых используется частотно-импульсный принцип управления нагрузками.

Все индикаторы уровня построены на основе многокаскадных компараторов.

Компаратор – логический элемент, сравнивающий параметры двух входящих сигналов
.

На один канал компаратора подаётся анализируемый сигнал, на второй – опорное напряжение сравнения. Если амплитуда первого выше опорного напряжения – на выходе появляется логическая единица, если ниже – логический ноль.

Работу простейшего компаратора можно продемонстрировать на микросхеме К155ЛН1, единичным кластером которой является элемент «НЕ».

Такая микросхема является простейшим логическим компаратором. При напряжении на входе от 0В до 2,4В (что соответствует логическому нулю) на выходе 2,7В, как только напряжение на входе превысит 2,4В, сигнал на выходе упадёт до ноля вольт.

Существует несколько микросхем для визуализации уровня. Наиболее многофункциональные схемы, на мой взгляд, позволяют создавать микросхемы на архитектуре lm39xx. В эту линейку входит три микросхемы: lm3914, lm3915 и lm3916. Минимальная развязка без труда позволяет создать светодиодный индикатор уровня звука своими руками даже без глубоких познаний в радиоэлектронике.

Все они представляют десяти диапазонный анализатор. Различаются способом дифференциации входного сигнала. У lm3914 это 1В, у lm3915 – 3Дб, у lm3916 — 1Дб.

Индикатор напряжения автомобильного аккумулятора на микросхеме AN6884

Напряжение на аккумуляторе автомобиля, — очень важная характеристика. позволяющая на раннем этапе выявить некоторые неисправности, а так же, предотвратить перегрузку бортовой сети автомобиля. У большинства современных и даже не современных автомобилей вольтметра нет.

Его заменяет пороговый индикатор с изображением аккумулятора, который зажигается если прекращается зарядка аккумулятора Но важны и другие состояния. Например, повышенное напряжение приводит к вскипанию электролита, а пониженное, но «не критическое» приводит к тому, что большая часть электрооборудования работает за счет аккумулятора, а не генератора, и аккумулятор разряжается.

Здесь приводится описание простого светодиодного вольтметра, измеряющего напряжение в пределах от 9V до 15V, выполненного на микросхеме AN6884.

Особенность именно в примененной микросхеме, потому что обычно аналогичные приборы делают на LM3914 или её аналогах, потому что LM3914 позволяет регулировать чувствительность за счет различных способов подключения цепи опорного наряжения компараторов.

А вот AN6884 не имеет выводов цепи опорного напряжения компараторов, и её чувствительность не регулируется, и номинально равна 200 mV. А1 — AN6884, микросхема предназначенная для работы в индикаторах уровня сигнала в аудиотехники.

Микросхема рассчитана на питание от источника 5. 15.5V, это соответствует тем напряжениям. которые могут быть в низковольтных цепях автомобиля. Здесь схема измерителя питается от того же источника, напряжение которого она измеряет.

Рис. 1. Принципиальная схема индикатора напряжения автомобильного аккумулятора на AN6884.

Тот факт, что питающее напряжение меняется одновременно с измеряемым, на достоверность измерения влияния не оказывает, разве что только немного влияет на яркость свечения индикаторных светодиодов.

Компараторы микросхемы AN6884 сравнивают входное напряжение с опорным, полученным от внутреннего стабилизатора напряжения микросхемы.

Поэтому, напряжение питания влияет только на яркость индикаторных светодиодов. но не на точность измерения, так как опорное напряжение стабилизировано.

Рис. 2. Печатная плата для схемы индикатора напряжения автомобильного аккумулятора.

Минимальное напряжение, которое может измерить прибор 9V. При таком напряжении горит HL5. Светодиод HL1 загорается при напряжении более 15V. Для того чтобы индикация начиналась с 9V в схеме есть цепь VD1-R2. А напряжение на вход микросхемы снимается с R2.

Поэтому, пока напряжение между нижним выводом R2 и катодом VD1 меньше 7.5V (меньше напряжения стабилизации стабилитрона), сопротивление VD1 велико, а напряжение на R2 очень мало.

При превышении напряжения стабилизации стабилитрона он начинает пропускать ток, и с дальнейшим увеличением напряжения, на R2 напряжение будет пропорционально увеличиваться.

Подстроечным резистором R2 устанавливают чувствительность прибора, таким образом, чтобы при напряжении 15V загорались все светодиоды линейки HL1-HL5. Все детали прибора размещены на печатной плате из фольгированною стеклотекстолита с односторонним монтажом.

Источник

5-разрядный двухканальный светодиодный индикатор на AN6884

Комментарии (10): #1 Dinar Март 11 2012 +3

схема (рис 1.10) НЕ РАБОЧАЯ!!!! контакты 12346 выдают -.

#2 root Март 11 2012 +3

Спасибо за Ваш комментарий. Мы сравнили схему с той что в даташите, схема в данной публикации действительно была нарисована неверно. Исправили все принципиальные схемы, а также внесли изменения в рисунок печатной платы. Также приводим схему типового включения из даташита:

На схеме из даташита добавлен гасящий резистор R, он служит для ограничения тока через светодиоды и делает мерцание светодиодов более плавным. При питании схемы от 5В сопротивление этого резистора должно быть порядка 40 Ом на мощность 0,5 Вт. Если же питнаие больше то придется подбирать екпериментально.

#3 Динар Март 12 2012 +2

А вы можете сделать рисунок печатнои платы и выложить файлом? думаю многим эта плата пригодится. спасибо заранее)

#4 Dinar Март 15 2012 +1

на схеме 1.10 переменник расключен не как на даташите. правильно ли это? у меня лично все пошло как на даташите, а как у вас, нет тех эффектов которого ожидал.

#5 root Март 15 2012 +2

Могу, но делать это смысла не вижу, печатная плата уже есть рисунком, который можно сохранить на компьютер и распечатать его на принтере в нужном маштабе, притом схема предельно проста и разводку платы может сделать без труда почти любой радиолюбитель под нужные ему размеры.

Спасибо вам, Dinar, за замечание, действительно неверно включены переменные резисторы на всех схемах, не обратил особо внимания на них когда исправлял схему, хотя на печатной плате они разведены верно. Исправил на всех схемах.

Я заметил что на очень многих схемах из книг-собраний схем Баширова и других некоторых авторов, просто масса элементарных ошибок, складывается такое впечатление что они были сделаны нарочно чтобы нечерта не работало…если я прав то зачем такое делать никак не пойму… Создал тему на форуме: Ошибки в схемах из популярных зборников

#6 Dinar Март 15 2012 +3

Печатная плата для рис 1.10 лежит здесь. сделана на SL 5.0

10_led_indicator_layout_by_Dinar.zip

#7 root Март 15 2012 +1

Спасибо за разработку печатной платы, пригодиться!

#8 Dinar Март 15 2012 0

забыл уточнить, R1- это переменник. индикатор предназначался для усилителя. переменник выодится в корпус, для регулировки индикатором. схема собирается с навесными деталями с рис 1.10

#9 Николай Август 29 2013 +2

Помогите пожалуйста: собрал схему на двух микросхемах в параллели, а диоды просто горят, причем даже без звука-сами по себе

#10 root Август 29 2013 0

Я так понял что вы собирали по схеме Рис. 1.10. Проверить правильность монтажа, качество питания и т.п. я думаю что вы и сами знаете. Насчет качества питания добавлю — попробуйте запитать схему батарейками (4х1.5В = 6В), возможно в источнике питания что вы используете очень много помех и напряжение нестабильно. Резистор R1 и конденсатор C1 — обязательны, попробуйте установить R1 близко к крайнему положению (к общему контакту) и посмотреть как поведет себя схема. В вашем случае две идентичные схемы соединены параллельно через резистор R3, который ограничивает уровень входного сигнала 2й микросхемы когда уже на 1й он максимальный — получается эффект последовательного включения светодиодных индикаторов. Попробуйте отладить индикатор на каждой микросхеме отдельно. Крайний возможный вариант — вы спалили микросхемы подав сигнал очень завышенного уровня, например напрямую из усилителя, причем установив переменный резистор R1 в крайнее положение (противоположное от общего). Также есть вероятность что микросхемы перегреты при пайке или же подпалены высоким статическим напряжением. В любом случае включайте мышление и пробуйте разные варианты, скорее всего все работает только что-то не учтено.

Индикатор уровня звукового сигнала

Сейчас стало модным для визуальной индикации уровня сигнала использовать светодиоды и светодиодные матрицы, чему способствовал, в значительной степени, выпуск микросхем типа LM3915.

Но со временем мода проходит, и хочется чего-то оригинального, которого нет у других.

И тут вспоминается старая добрая схема на газоразрядном индикаторе ИН-13, способная создать такой красивый эффект, что любой светодиод побледнеет от зависти! ИН-13 представляет собой индикатор тлеющего разряда в виде стеклянной трубки длиной 130 мм.

   А – анод, Э – экран, К – катод, Кв – вспомогательный катод, А0 – анод нулевой, А1-А4 – группа анодов, Ап – анод последний.

Технические характеристики газоразрядных индикаторов

Существует 2 варианта схем индикатора звука с ИН-13 — простая, с питанием от сети 220 В, и посложнее — с DС-DC преобразователем и операционным усилителем на входе.

Первая схема довольна старая, но довольно простая и может пригодится начинающим радиолюбителям в качестве индикатора выходного сигнала усилителя. Можно использовать её и в качестве линейного вольтметра, немного изменив входную часть. Транзистор можно применить и какой-нибудь современный высоковольтный.

В своём случае решил собрать по более сложной, чтоб не связываться с небезопасным сетевым питанием. При кажущейся сложности, она заработала практически с первого включения.

Вся конструкция, включая повышающий инвертор 12-120 В для питания анодного напряжения, уместилась на одной небольшой плате. Это стало возможным благодаря применению SMD деталей.

Транзисторы MPSA42 должны быть высоковольтные, а не обычные КТ315. Заменимы на любые с напряжением коллектора от 200 В и более.

ОУ ставьте любые аналогичные — TL062, TL082 и так далее.

Настройка индикатора звука

Настройка сводится к установке уровня яркости света, с помощью подстроечного резистора Р5. Он определяет напряжение на аноде 120 В. Элементы Р1-4 нужны для установки нуля шкалы и максимального размаха.

Индикатор уровня сигнала

   Думаю многие согласятся, что стрелочные индикаторы в УМЗЧ смотрятся красиво и стильно, вот только где их найти… Выход есть — сделаем такой измеритель, в котором роль стрелки будут выполнять светоизлучающие диоды управляемые микросхемой. LM3916 — это специальная микросхема для LED индикаторов уровня.

   В отличие от LM3915, которая имеет фиксированный шаг между уровнями напряжения 3dB, LM3916 нелинейная: -20, -10, -7, -5, -3, -1, 0, +1, +2, +3db, подобно старым аналоговым VU-метрам. Предлагаемая схема имитирует движение стрелки в аналоговой головке. И для начала изучите datasheet на LM3916.

Схема стрелочно-светодиодного индикатора

   Светодиоды подключены через разъёмы J3 — J12 (показан на схеме только один ряд светодиодов). Схема индикатора потребует двухполярный источник питания для правильной работы. Положительный потенциал питания LED линейек должен быть ниже +25 В и в сочетании с напряжением отрицательного плеа не должен превышать 36 В.

Минимальный уровень вольтажа зависит от рабочего напряжения светодиодов. Например, если светодиод на 1.9 В, а у нас 7 светодиодов на один контакт, то минимальное положительное напряжение будет 7 х 1.9 В + 1.5 В (падение напряжения на LM3916) = 14,8 вольт. Зеленые светодиоды, как правило, имеют чуть выше напряжение — 2.2-2.

4 В, так что +18 В будет достаточно в большинстве случаев.

   Светодиодный ток определяется резистором R1_REF, и с сопротивлением 2,2 кОм будет 5 мА.Формула для расчёта: Iled = 10 х (1.2 V / R1_REF)

   В качестве двойного операционного усилителя на входе можете ставить — TL072, TL082, LM358. Выходной режим может быть установлен 3-х контактной перемычкой JP1. Максимальное входное напряжение для LM3916 имеет значение 1,2 В, и с помощью R8-R7 можно регулировать уровень входного сигнала.

Видео работы индикатора

   Цвет светодиодов на ваш выбор. Тут использованы зеленые светодиоды для отрицательных уровней, желтый — 0dB и красный для положительного уровня звукового сигнала. Для этого нужны прямоугольные светодиоды. Архив с рисунками печатных плат можно скачать здесь.

Прошивка

В сети дос­таточ­но руководств по сбор­ке при­емни­ков на SI4735, одна­ко боль­шинс­тво авто­ров дела­ют акцент на схе­мотех­нику и сбор­ку на макете, пос­ле чего туда залива­ют один из вари­антов готовой про­шив­ки. Мы же поп­робу­ем разоб­рать­ся, как написать такую про­шив­ку самос­тоятель­но поч­ти с нуля, поэто­му все нижес­казан­ное дос­таточ­но лег­ко перенес­ти на любой дру­гой мик­рокон­трол­лер, лишь бы у него хва­тало памяти для хра­нения пат­ча.

Итак, что же за зверь SI4734 и с чем его едят? Этот чип управля­ется по шине I2C, и каж­дая посыл­ка пред­став­ляет собой адрес мик­росхе­мы (с битом перек­лючения запись/чте­ние), 1 байт коман­ды и до 7 байт аргу­мен­тов. У каж­дой коман­ды свое количес­тво аргу­мен­тов, впро­чем, даташит говорит, что посыл­ки мож­но сде­лать и фик­сирован­ной дли­ны, если вмес­то неис­поль­зуемых аргу­мен­тов слать . Для наших целей понадо­бит­ся не так мно­го команд, поэто­му мы можем поз­волить себе написать для каж­дой свою фун­кцию. Резуль­татом выпол­нения коман­ды мож­но счи­тать ответ, сос­тоящий из бай­та ста­туса и до 7 байт собс­твен­но отве­та, при­чем и здесь допус­кает­ся уни­фика­ция дли­ны: мож­но читать по 8 байт, все неис­поль­зуемые будут .

Но тут есть нюанс: коман­да выпол­няет­ся не мгно­вен­но, а с задер­жкой, до исте­чения которой мик­росхе­ма будет отве­чать толь­ко нулями. Поэто­му, ког­да нам необ­ходим ответ, мы с некото­рой пери­одич­ностью будем его счи­тывать, пока пер­вый байт отве­та не будет равен , что сви­детель­ству­ет о завер­шении исполне­ния коман­ды. Сле­дом мож­но счи­тать бай­ты отве­та и/или отправ­лять сле­дующую коман­ду.

Для отправ­ки и чте­ния пакетов по I2C мы будем исполь­зовать уже извес­тную нам коман­ду биб­лиоте­ки LibopenCM3 , где  — исполь­зуемая шина I2C (I2C1), а  — семибит­ный адрес . О бите записи/чте­ния за нас позабо­тит­ся биб­лиоте­ка. В ито­ге работа с мик­росхе­мой вкрат­це будет пред­став­лять собой сле­дующую пос­ледова­тель­ность дей­ствий: ини­циали­зация, нас­трой­ка режима работы, нас­трой­ка на нуж­ную час­тоту. Все опи­сан­ное ниже опи­рает­ся на содер­жание докумен­тов AN332 «Si47XX Programming Guide» и AN332SSB.

Инициализация

Преж­де все­го SI4734 нуж­но ини­циали­зиро­вать. Сде­лать это мож­но в одном из трех режимов: AM, FM или SSB. Перед началом ини­циали­зации докумен­тация рекомен­дует выпол­нить сброс. Дела­ется это три­виаль­но: надо ненадол­го под­тянуть к зем­ле REST-пин SI4734. Для задер­жки исполь­зует­ся совер­шенно ленивая фун­кция, бла­го точ­ность тут не име­ет осо­бого зна­чения.

Для ини­циали­зации исполь­зует­ся коман­да , которая тре­бует два парамет­ра. Пер­вый вклю­чает так­тирова­ние и опре­деля­ет режим работы, а вто­рой нас­тра­ивает ауди­овы­ходы. Мы исполь­зуем часовой кварц и ана­лого­вые выходы, поэто­му для FМ при­меня­ются парамет­ры , , а для АM — , . Пос­ле отправ­ки коман­ды, опра­шивая чип, дожида­емся отве­та . Обыч­но на это ухо­дит один‑два зап­роса.

В ответ на коман­ду чип может выдать еще 8 байт, которые даташит рекомен­дует про­верять, одна­ко на это мож­но забить и даже их не счи­тывать. На дан­ном эта­пе уже мож­но про­верить качес­тво работы мик­росхе­мы: исправ­ная вер­нет ответ и запус­тит квар­цевый генера­тор, что про­веря­ется осциллог­рафом. Если коман­ды отправ­лены вер­но, а генера­тор не запус­тился, то, веро­ятно, чип битый.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: