Распространенные схемы двухполупериодных выпрямителей
Данные схемы лежат в основе многих источников питания, применяемых в радиоэлектронике и других технических областях. Таким образом, обеспечивается постоянное напряжение питания электронных устройств, технологических процессов, электромашинных приводов механизмов. Чтобы правильно эксплуатировать выпрямители, необходимо хорошо знать их основные свойства.
Двухполупериодный однофазный выпрямитель с выводом от средней точки
Основными преимуществами данной схемы считается более высокий коэффициент эксплуатации вентилей по току, сниженная расчетная мощность трансформатора, низкий коэффициент, определяющий пульсацию выпрямленного напряжения.
Однако в этой схеме вентили недостаточно используются по напряжению. Само устройство обладает высоким обратным напряжением, поступающим на выпрямительные диоды. В схеме используется более сложная конструкция трансформатора.
Двухполупериодный однофазный мостовой выпрямитель
Главным преимуществом мостового выпрямителя считается повышенный коэффициент применения вентилей по напряжению. В схеме используется трансформатор с меньшей расчетной мощностью и очень простой конструкцией. Данные выпрямители нашли широкое применение в установках малой и средней мощности.
Главным недостатком мостовой схемы является необходимость строгой симметрии напряжений на каждой обмотке и применение двух обмоток вместо одной. На диодах возникает большое обратное напряжение. В сравнении с предыдущей схемой выпрямителя, требуется в два раза больше диодов, однако значение общего сопротивления постоянному току во многих случаях оказывается меньше, чем сопротивление выпрямителя со средней точкой.
Двухполупериодный выпрямитель с удвоением напряжения
Данная схема используется в случае возникновения проблем с намоткой вторичной обмотки, состоящей из множества витков, или при обмотке действующего трансформатора с недостаточным напряжением. В схеме удвоения применяется нагрузочная характеристика с круто падающим графиком. Пульсации выпрямленного тока сглаживаются конденсаторами.
Серьезным недостатком считается возможный взрыв электролитического конденсатора под действием переменного напряжения в случае пробоя одного из диодов. Представленная схема не может быть использована для получения напряжения на выходе более 200-300В из-за возможного пробоя изоляции между нитью накала и катодами в кенотроне.
Двухполупериодный выпрямитель с умножением напряжения
Представленная схема дает возможность получать высокое напряжение без использования высоковольтного трансформатора. В ней используются конденсаторы с рабочим напряжением 2Ет, независимо от того, во сколько раз умножилось значение напряжения.
Данная схема двухполупериодного выпрямителя имеет недостаток в виде разрядки конденсаторов при включении нагрузочного сопротивления. С уменьшением сопротивления нагрузки увеличивается скорость разрядки конденсаторов, снижается их напряжение. Использование этой схемы нерационально при незначительных сопротивлениях нагрузок.
Принцип действия двухполупериодной схемы
Рассмотрим два варианта реализации двухполупериодного преобразователя (выпрямителя): балансный и мостовой. Схема первого показана на рисунке ниже.
Простейший неуправляемый балансный преобразователь на двух диодах с использованием трансформатора со средним выводом
Используемые элементы:
- Tr – трансформатор, у которого имеются две одинаковые вторичные обмотки (или одна с отводом по середине);
- DV1 и DV2 – вентили (диоды);
- Cf – емкостной фильтр;
- Rn – сопротивление нагрузки.
Приведем сразу для наглядности осциллограмму в контрольных точках.
Диаграмма прибора балансного типа
- U1 – осциллограмма на входе;
- U2 – график перед емкостным фильтром;
- Un – диаграмма на выходе устройства.
Данная схема — это два совмещенных однополупериодных преобразователя, то есть на два раздельных источника приходится одна общая нагрузка. Результат работы такого устройства наглядно демонстрирует график U2. Из него видно, что в процессе используются оба полупериода, что и дало название этим преобразователям.
Осциллограмма наглядно демонстрирует преимущества такого устройства, а именно, следующие факты:
- частота пульсаций на выходе устройства удваивается;
- уменьшение «провалов» между импульсами допускает использование меньшей фильтрующей емкости;
- двухтактный преобразователь обладает большим КПД, чем однополупериодный.
Теперь рассмотрим мостовой тип, он изображен на рисунке ниже.
Схема: Пример использования диодного моста
Осциллограмма устройства мостового типа практически не отличается от балансного, поэтому приводить ее нет смысла. Основное преимущество такой схемы – нет необходимости использовать более сложный трансформатор.
Видео: Двухполупериодный выпрямительный мост
Преобразователи, где используется полупроводниковый диодный мост, широко применяются как в электротехнике (например, в аппаратах для сварки, где номинальный ток может доходить до 500 ампер), так и радиоэлектронике, в качестве источника для слаботочных цепей.
Заметим, что помимо полупроводниковых можно использовать и вакуумные диоды – кенотроны (ниже показан пример схемы такого устройства).
Схема: преобразователь на двуханодном кенотроне 6Ц4П
Собственно, представленная схема – это классическая реализация балансного преобразователя двухполупериодного типа. На сегодняшний день вакуумные диоды практически не применяются, их заменили полупроводниковые аналоги.
Свойства двухполупериодного выпрямителя
Основным свойством этих устройств является протекание электрического тока через нагрузку за оба полупериода в одном и том же направлении.
В приборах такого типа используются, в основном, мостовые или полумостовые схемы. В последнем случае однофазный ток выпрямляется с использованием специального трансформатора. В качестве вывода используется средняя точка вторичной обмотки, а количество элементов, выпрямляющих ток – в два раза меньше. В настоящее время полумостовая схема используется довольно редко из-за высокой металлоемкости и высокого активного внутреннего сопротивления, с большими потерями при нагревании трансформаторных обмоток.
Чаще всего используются двухполупериодные устройства, в схемах которых имеется сразу два вентиля. Электрический ток в нагрузке всегда протекает в одном и том же направлении. В результате, выпрямление тока происходит с участием двух полупериодов напряжения. Благодаря высокой частоте пульсаций, фильтрация выпрямляемого напряжения существенно облегчается.
Двухполупериодные выпрямители получили широкое распространение во многих радиоэлектронных устройствах, обеспечивая их нормальное питание. Возможность преобразования постоянного тока из одного напряжения в другое, дает возможность создавать в схемах питания различные напряжения при одном и том же источнике энергии.
Недостатки мостового выпрямителя
Единственным недостатком мостового выпрямителя является то, что выходное напряжение меньше, чем входное напряжение на 1,4 В, в результате падения на двух диодах.
Этот недостаток ощутим только в источниках питания с очень низким напряжением. Например, если пиковое напряжение источника составляет всего 5 В, то напряжение нагрузки будет иметь только 3,6 В.
Но если пиковое напряжение источника составляет 100 В, напряжение нагрузки будет близко к идеальному двухполупериодному напряжению и влияние падения на диодах будет не значительным.
Тестер транзисторов / ESR-метр / генератор
Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…
Подробнее
Двухполупериодный выпрямитель, мостовая схема
Схема двухполупериодный выпрямитель мостовая схема
И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:
Диодный мост рисунок
Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому.
Объяснение работы диодного моста
Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:
График мостого выпрямителя
При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится
Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:
Еще одно изображение диодного моста
Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:
Фото импортного диодного моста
На фото далее изображен отечественный диодный мост КЦ405.
Фото диодный мост кц405
Работа мостовой схемы
Разбираемся с электроизмерительными приборами
Устройство состоит из четырех полупроводниковых вентилей, объединенных в мост. В таком случае вторичная обмотка трансформирующего устройства объединяется с противоположными плечами диодного моста. Нагрузочные резисторы подключат посредством других плеч. При этом выходные характеристики значительно выше, чем у двухпериодных, из-за течения через прибор всей волны напряжений переменного тока.
Во время положительной полуволны сигнал движется от отрицательной части вторичной обмотки трансформирующего устройства через вентили и нагрузочный резистор к положительной части совокупности витков трансформирующего устройства. При негативной полуволне процесс происходит в обратном порядке.
Механическое выпрямление напряжения
Определение выпрямления означает получение однонаправленного электрического тока. Его величина при этом будет зависеть от формы переменного напряжения в каждом полупериоде. Но однонаправленный электрический ток при этом получается, как при положительном полупериоде напряжения, так и при его отрицательном значении. При этом нагрузка при переходе напряжения через ноль должна отключаться от ненужной полуволны напряжения. Первые выпрямители выполняли эту задачу механическими контактами.
Они либо приводились в движение синхронным двигателем, либо перемещались достаточно быстродействующим соленоидом. В обеих схемах контакты, переключающие напряжение, перемещаются синхронно с напряжением. В схеме с двигателем они вращаются, замыкаясь в нужный момент времени. Узел, предназначенный для выпрямления напряжения, при вращении аналогичен коллектору двигателя постоянного тока. Количество ламелей – контактов определяется числом оборотов синхронного двигателя.
Схема получения повышенного напряжения.
При переходе синусоиды выпрямляемого напряжения через ноль обе щетки контактируют либо с началом, либо с концом ламели. Начало ламели совпадает с острием стрелки, указывающей направление вращения двигателя. Время контакта щеток с ламелью совпадает с длительностью половины периода выпрямляемого напряжения.
Синхронный двигатель вращается точно и кратно частоте питающего напряжения, которое он выпрямляет присоединенным к нему коллектором. Но его инерционность не позволит выпрямить скачкообразное изменение частоты питающего напряжения. Поэтому он эффективен только как выпрямитель напряжения электросети.
Таблица параметров популярных моделей выпрямителей напряжения с фото.
Выпрямитель на соленоиде замыкает контакт либо на время, когда сердечник втягивается, либо наоборот. Он может сработать только при некотором минимальном напряжении, которое достаточно для перемещения контактов. Поэтому часть полуволны вблизи перехода напряжения через ноль не будет обработана как следует.
Но зато такой выпрямитель может быть изготовлен довольно-таки небольшим. Поэтому он был широко распространен в свое время. Очевидно то, что без коммутации электрической цепи выпрямления напряжения не может быть. А возможности механического контакта ограничены мощностью искры, которая возникает в момент разрыва электрической цепи. Она постепенно уничтожает этот контакт тем быстрее, чем больше электрическая мощность при его размыкании.
Основные конструктивные элементы
В конструкцию статора входит корпус, внутри которого расположен сердечник, или пакет, собираемый из листов электротехнической стали особой формы. На качество электрического тока влияют такие факторы как: цельность листов в пакете (бывают цельными или составными), качество и материал обмотки. Для обмотки применяется медный эмаль-провод, а в дешевых устройствах возможна замена меди на алюминий.
Роторы изготавливаются явнополюсными или неявнополюсными.
- Явнополюсные роторы предназначены для синхронных генераторов, работающих с двигателями внутреннего сгорания с низкой частотой вращения — 1500 и 3000 об/мин.
- Неявнополюсные роторы востребованы в высокоскоростных (более 3000 об/мин) механизмах переменного электрического тока высокой мощности. Обычно их размещают на одном валу с паровыми турбинами. Такие СГ называют «турбогенераторы».
Схема включения синхронного генератора показана на рис. 1.
Синхронный генератор работает следующим образом. Ротор генератора приводится во вращение первичным двигателем с номинальной скоростью, которая поддерживается постоянной при помощи автоматического регулятора скорости первичного двигателя. Генератор возбуждают, подавая ток возбуждения/в в обмотку ротора.
Рекламные предложения на основе ваших интересов:
В синхронном генераторе, работающем под нагрузкой, магнитное поле статора, накладываюсь на основное магнитное поле ротора, создаваемое обмоткой возбуждения, ослабляет или усиливает его. Воздействие намагничивающей силы якоря на магнитное поле возбуждения ротора генератора называется реакцией якоря.
Реакция якоря может быть поперечной или продольной. При поперечной реакции поле статора размагничивает набегающий край полюсов и намагничивает сбегающий край полюсов. Продольная реакция может быть продольно-размагничивающей или продольно-намагничивающей. В первом случае магнитный поток якоря направлен навстречу потоку полюсов вдоль их оси, во втором случае согласно потоку полюсов также вдоль их оси.
Реакция якоря зависит от характера нагрузки и оказывает большое влияние на работу синхронного генератора. При чисто активной нагрузке реакция якоря будет поперечной, а при чисто индуктивной и чисто емкостной нагрузках — соответственно продольно-размагничивающей и продольно-намагничивающей. Обыч-нЪ генераторы работают на смешанную нагрузку, чаще всего на индуктивную и активную.
Необходимость регулирования тока возбуждения вызывается частыми изменениями характера и величины нагрузки.
Однополупериодный выпрямитель
Схема однополупериодный выпрямитель
Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:
Выпрямленный ток после однополупериодного выпрямителя
На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:
Электролитический конденсатор большой емкости
Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад
В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно
На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.
Выпрямленный ток в однополупериодном выпрямителе после конденсатора
Виды генераторов
Генераторы отличаются способами возбуждения. В автономных установках на транспорте, в авиации, на судах применяется самовозбуждение за счёт остаточного намагничивания. Способ отличается надёжностью и удобством применения. Распространённым вариантом здесь является отбор энергии от статорной обмотки, которая проходит через понижающий трансформатор и полупроводниковый преобразователь ПП, в результате чего на обмотку возбуждения через коллектор поступает постоянный ток (изображено на рисунке ниже – а).
Принцип самовозбуждения синхронного генератора
Другая схема реализует самовозбуждение также путём подачи переменного тока со статорной обмотки через выпрямительный трансформатор ВТ и тиристор ТП в обмотку возбуждения ОВ (изображено на рисунке выше – б). Тиристором автоматически управляет регулятор возбуждения АРВ по сигналам от входа генератора СГ через трансформаторы напряжения ТН и тока ТТ. Блок защиты БЗ не допускает образования на обмотке возбуждения повышенного напряжения и перегрузочного тока.
Система возбуждения с дополнительным генератором
Применяется также бесконтактная система возбуждения, где у СГ нет подвижных контактов для передачи энергии. Щётки с коллектором имеют только подвозбудитель ПВ, который питает пост
Бесконтактная система возбуждения синхронного генератора
оянным током обмотку I возбудителя В.
Назначение
Основное назначение однофазного двухполупериодного выпрямителя – это преобразование переменного тока в постоянный. Для того чтобы понять принцип действия такого выпрямителя, необходимо разобраться, что такое однополупериодное выпрямление
Однополупериодный выпрямитель представляет собой устройство, которое состоит из трансформатора и одного диода (вентиля), подключенного ко вторичной обмотке трансформатора. Работает устройство следующим образом:
- Синусоидальный ток представляет собой цикл из 2 периодов: положительного и отрицательного.
- При протекании по цепи положительного полупериода, диод открывается и пропускает его дальше по цепи.
- При протекании отрицательного полупериода, диод не открывается и обрезает этот цикл.
Таким образом по цепи пропускается только ток с высокой пульсацией. Для того чтобы сгладить этот эффект, схема дополняется конденсатором с высокой емкостью. Основной недостаток такой схемы – большая потеря тока и необходимость использования мощных сглаживающих конденсаторов. Подобное устройство применяется, например, для зарядных блоков мобильных телефонов.
Двухполупериодный однофазный выпрямитель построен примерно по схожей схеме. Главное отличие заключается в добавлении 2-х и более полупроводниковых диодов для сглаживания обоих полупериодов. Существуют следующие разновидности подобных элементов:
- Мостовой.
- Со средней точкой.
Каждое устройство использует различное количество преобразователей, а значит имеет различный принцип работы.
От абстрактных ключей к реальным
Вибратор это электромеханическое устройство, а значит обладает не самой высокой надежностью и долговечностью. Значит нам нужны электронные ключи.
Биполярные транзисторы не очень подходят, так как падение напряжения коллектор-эмиттер открытого транзистора сравнимо с падением напряжения на
открытом диоде. А вот полевые транзисторы весьма интересны. У них сопротивление канала можно сделать очень малым. Но тут возникает одна проблема.
Дело в том, что у полевых транзисторов кроме затвора есть внутренний паразитный диод. Именно паразитный, так как его не формируют специально,
это технологическая особенность. При этом у современных полевых транзисторов параметры этого диода нормируются и его вполне можно использовать с пользой.
Но дело в том, что этот диод при использовании полевого транзистора в качестве ключа и сам будет выполнять роль диода выпрямителя. Что бы диод не
мешался, полевые транзисторы в синхронных выпрямителях включают «наоборот». То есть, для N-канального транзистора на сток подают не
положительный потенциал (относительно истока), а отрицательный. При этом встроенный диод будет собственно выпрямительным диодом, а транзистор
будет шунтировать его при открывании. Снижая тем самым потери в выпрямителе.
Импульсный блок питания
Для обеспечения нагрузки майнеров применяются ИБП различной мощности. В данном материале подробно рассматривается БП применяемый для разных моделей асиков.
В конструкцию ИБП APW7 входит:
- корпус – из экранированной металлической коробки
- печатная плата ИБП имеет установленные радиотехнические компоненты
- система охлаждения состоит из принудительного вентилятора
- провода необходимые для подключения нагрузки
Основную функцию выполняет плата с расположенными на ней элементами.
Сторона монтажа APW7
Элементы расположенные на печатной плате ИБП:
- FUSE предохранитель
- Варистор
- Конденсатор сетевого фильтра
- Дросселя
- Блокировочные конденсаторы
- Конденсатор сглаживающий
- Фильтрующие конденсаторы
- Силовые транзисторы
- Разъем для подключения вентилятора
- Сглаживающие конденсаторы синхронного выпрямителя
- Выходной трансформатор
- Диод
- PFC транзистор
- Терморезисторы NTC
- Реле
- Дроссель схемы PFC
- Диодный мост
Сторона печати APW7
Выпрямительные схемы
Выпрямление электрических колебаний, это процесс, в результате которого переменное входное колебание преобразуется в выходное колебание только одного знака (рисунок 1.5). Процесс выпрямления используется в устройствах электропитания (блоках питания) и демодуляторах.
Выпрямление всегда осуществляется при использовании нелинейных элементов, обладающих свойством однонаправленного пропускания электрического тока. Благодаря таким свойствам на выходе выпрямляющего элемента получают ток одного знака.
Для выпрямления применяют полупроводниковые и вакуумные (кенотроны) диоды, газоразрядные диоды (газотроны), тиратроны, кремниевые и селеновые элементы, тиристоры и другие элементы с нелинейными свойствами в зависимости от применения, значений выпрямленных напряжений и токов, отбираемых нагрузкой. В маломощных электронных устройствах для выпрямления чаще всего применяют полупроводниковые диоды.
Название “выпрямитель” используется, прежде всего, для схем, преобразующих переменный ток в постоянный. Выпрямителем называется также и сам элемент с однонаправленными свойствами, используемые в процессе выпрямления.
Однополупериодным выпрямителем называется такой выпрямитель, на выходе которого после процесса выпрямления остаются колебания одного знака. Схема однополупериодного выпрямителя, возбуждаемого синусоидальным сигналом, представлена на рисунке 1.6.
Диод, включенный таким образом, что приводит ток только при положительных полупериодах входного колебания, т.е. когда напряжение на его аноде больше потенциала катода. Среднее значение колебания, полученного в результате выпрямления синусоидального напряжения с действующим значением и максимальным значением , равно
Например, при выпрямлении напряжения с действующим значением , после выпрямления получаем напряжение .
В отрицательный полупериод диод не проводит ток, и все подведенное к выпрямителю напряжение действует на диоде как обратное напряжение выпрямителя. При изменение направления включения диода он будет проводить в отрицательные полупериоды и не проводить в положительные.
Рассматриваемая схема выпрямителя называется последовательной. Название связано с тем, что нагрузка включается последовательно с нелинейным элементом (вентилем).
Двухполупериодным выпрямителем называют такой выпрямитель, в котором после процесса выпрямления остаются участки входного колебания, имеющие один знак. К ним после изменения знака добавляются участки, имеющие противоположный знак.
Принципиальная схема двухполупериодного выпрямителя, управляемого синусоидальным сигналом от трансформатора, показана на рисунке 1.7.
В периоды времени, когда на аноде диода Д1 действует положительное напряжение, на аноде диода Д2 присутствует отрицательное и наоборот. Это происходит потому, что средняя точка вторичной обмотки трансформатора заземлена, и, следовательно, она имеет нулевой потенциал. При положительной полуволне напряжения на вторичной обмотке диод Д1 пропускает ток, а диод Д2 не пропускает.
При отрицательной полуволне положительное напряжение действует на диоде Д2, который при этом проводит, а диод Д1, смещенный в обратном направлении, не проводит. Среднее значение напряжения, полученого на выходе двухполупериодного выпрямителя в 2 раза больше напряжения, полученного на выходе однополупериодного выпрямителя.
Технические параметры выпрямителя:
— Коэффициент пульсаций выпрямителя называется отношение максимального значения переменной составляющей напряжения на выходе выпрямителя к значению его постоянной составляющей на этом выходе. В большинстве применений желательно, чтобы коэффициент пульсаций был как можно меньше. Уменьшение пульсаций достигается путем применения соответствующих фильтров.
— Коэффициент использования трансформатора в выпрямительной схеме, определяется как отношение двух мощностей: выходной мощности постоянного тока и номинальной мощности вторичной обмотки трансформатора.
— Коэффициент полезного действия, это параметр, характеризующий эффективность схемы выпрямителя при преобразовании переменного напряжения в постоянное. КПД выпрямителя выражается отношением мощности постоянного тока, выделяемой в нагрузке, к входной мощности переменного тока. Коэффициент полезного действия определяется для резистивной нагрузки.
—
Частотная пульсация выпрямителя, это основная частота переменной составляющей, существующей на выходе выпрямителя. В случае однополупериодного выпрямителя частота пульсаций равна частоте входного колебания. Фильтрация пульсаций тем проще, чем выше частота пульсации.
Управляемые выпрямители
Однофазная двухполупериодная схема с общей точкой на тиристорах показана на рисунке. От аналогичной схемы на диодах она отличается присутствием системы управления (СУ), формирующей импульсы для открывания тиристоров.
От времени подачи этого импульса (точки t0, t1, t2 и t3 на рисунке) зависит, какую часть полуволны пропустит тиристор. Это время, в свою очередь, зависит от сдвига по фазе управляющих импульсов относительно входного напряжения (угол регулирования или управления), задаваемого пользователем.
Применяются управляемые выпрямители, например, для таких целей:
- регулирование частоты вращения двигателей постоянного тока;
- изменение яркости светильника;
- зарядка аккумуляторов.
Двухполупериодный выпрямитель
Для выпрямления обоих полупериодов синусоиды в двухполупериодном выпрямителе используются два диода, по одному на каждую половину цикла. Также в таком выпрямителе используется трансформатор, имеющий во вторичной обмотке центральный отвод.
Двухполупериодный выпрямитель похож на два полуволновых выпрямителя. На следующем рисунке показана двухполупериодная схема выпрямителя.
Работу этой схемы легко понять по одному полупериоду за раз. Рассмотрим первый полупериод, когда точка A положительна по отношению к C. В это время диод D1 смещен в прямом направлении, а диод D2 — в обратном. Следовательно, только верхняя половина вторичной обмотки трансформатора обеспечивает ток в течение этого полупериода. Это создает положительное напряжение на нагрузочном резисторе.
В течение следующего полупериода полярность напряжения источника меняется на противоположную. Теперь точка B положительна по отношению к C. На этот раз диод D2 смещен в прямом направлении, а диод D1 — в обратном. Как вы можете видеть, только вторая половина вторичной обмотки трансформатора обеспечивает ток. Это также создает положительное напряжение на нагрузочном резисторе, как и раньше.
Тестер транзисторов / ESR-метр / генератор
Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…
Подробнее
В результате выпрямленный ток нагрузки протекает в течение обоих полупериодов, благодаря чему мы получаем двухполупериодный сигнал на нагрузке.
Другие типы выпрямителей
Двухфазный двухполупериодный выпрямитель
Двухфазный двухполупериодный выпрямитель представляет из себя два
параллельно соединенных однофазных однополупериодных выпрямителя.
Характеризуется улучшенным использованием трансформатора и сглаживающего
фильтра. Другое название такого выпрямителя — выпрямитель со средней
точкой.
Рис. 4 — Схема двухфазного двухполупериодного выпрямителя
Однофазный выпрямитель с удвоением напряжения
Однофазный выпрямитель с удвоением напряжения представляет собой
последовательное соединение однополупериодных выпрямителей. В первом
полупериоде через диод VD1 заряжается конденсатор C1, а во втором полупериоде
через диод VD2 заряжается конденсатор C2. Выходное напряжение представляет
собой сумму напряжений на конденсаторах — удвоенную амплитуду напряжения
вторичной обмотки.
Рис. 5 — Схема однофазного выпрямителя с удвоением напряжения
Трехфазный выпрямитель с нулевой точкой
Трехфазный выпрямитель с нулевой точкой обладает значительно
меньшими пульсациями выходного напряжения и их утроенной частотой по сравнению
с однофазным двухполупериодным выпрямителем. Этой позволяет упростить фильтр а
иногда и вообще обойтись без него. Но такой схеме присуще подмагничивание
трансформатора постоянным током, что ухудшает его использование.
Рис. 6 — Схема трехфазного выпрямителя с нулевой точкой
Трехфазный мостовой выпрямитель
Трехфазный мостовой выпрямитель (схема Ларионова) по сравнению с
предыдущей схемой характеризуется отсутствием подмагничивания трансформатора,
еще меньшим коэффициентом пульсаций, и их вдвое большей частотой.
Рис. 7 — Схема трехфазного мостового выпрямителя
Таблица 1
Характеристика | Тип выпрямителя | ||
---|---|---|---|
Однофазный со средней точкой | Однофазный мостовой | Трехфазный с нулевой точкой | Трехфазный мостовой |
Действующее напряжение вторичной обмотки (фазное), | |||
Действующий ток вторичной обмотки, | |||
Действующий ток первичной обмотки, | |||
Расчетная мощность трансформатора, | |||
Обратное напряжение на диоде, | |||
Среднее значение тока диода, | |||
Действующее значение тока диода, | |||
Амплитудное значение тока диода, | |||
Частота основной гармоники пульсаций | |||
Коэффициент пульсаций выходного напряжения, |
- — расчетное значение напряжения на нагрузке
- — число последовательно включенных диодов
- — прямое падение напряжения на диоде
- — среднее значение выпрямленного напряжения
- — расчетное значение тока через нагрузку
- — коэффициент трансформации
- — расчетное значение мощности нагрузки
- — частота питающей сети
Трехфазные выпрямители
Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.
Фото трехфазного трансформатора
Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича, имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.
Вторая схема, известная как Схема Ларионова, нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.
Схема Ларионова может использоваться как «звезда-Ларионов” и «треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи — AKV.
Обсудить статью ВЫПРЯМИТЕЛИ
Предлагается схема с фотографиями готовой конструкции ручного металлодетектора.
Полноволновой выпрямитель с нулевым выводом
Выпрямляющий прибор с двумя диодами конвертирует обе полуволны подающегося на него сигнала в импульсный постоянный ток. Чтобы преобразовать ток, применяется трансформирующий прибор, у которого вторичная обмотка разделяется на две половины. Центральный участок присоединен к земле.
Принцип работы:
- При положительном полуцикле на одной части витков трансформатора возникает плюс, на второй – минус. Вентиль, который подключают к положительной части, проводит ток. Второй диод закрыт. Проходя через резистор, ток попадает на центральную точку;
- При отрицательном полуцикле состояние обмоток меняется. Второй диод проводит ток.
В итоге электричество пропускается во время обеих полуволн, и КПД достигает 90%.