Как сделать трансформатор своими руками

1.1. Используем светодиод.

Как Вы знаете, для того, что-бы светодиод светился, на него надо подать ток, чем ток больше — тем ярче светится светодиод, но тем более короткую жизнь он проживает. Обычно величину этого тока принимаю равным 5-10мА, для ярких соответственно 2-5мА. При этом они живут очень долго и счастливо. С учетом того, что светодиод работает на постоянном токе, а трансформатор этого категорически не любит — выходной ток трансформатора мы будем выпрямлять. Можно конечно включить встречно 2 светодиода — один горит на одной полуволне, второй на другой. Это выход, но напряжение стабилизации светодиодов немного разнится от экземпляра к экземпляру, поэтому мы имеем несимметричную нагрузку, а это нехорошо для трансформатора. В принципе, некоторый перекос он прощает, но если просто повесить на выход тр-ра один светодиод, то придется наблюдать за его слабеньким свечением.

Почему слабеньким? Да потому, что работая на одну полуволну, сердечник трансформатора постепенно намагнитится до режима насыщения и трансформатор перестанет правильно работать. Идеальный выход — включить на выходе трансформатора диодный мостик, например на КД522 (LL4148), стоит копейки, а пользу для трансформатора приносит громадную. Если на выход моста включить еще и конденсатор — то и нагрузка начнет ощущать себя поспокойней. Итак мы имеем трансформатор, диодный мост и конденсатор. Включим на выход моста красный светодиод. А для того, что бы он светился правильно — займемся предварительным расчетом и выбором трансформатора.

Для того, чтобы в нагрузку потек ток, трансформатор в нашем примере должен развить на выходе некоторую ЭДС (для преодоления напряжения открывания диодов моста и светодиода). Считаем эту ЭДС: падение напряжения на диоде LL4148 можно принять за 0.9в ( они слабенькие, падение напряжения при хорошем токе побольше чем 0.6в.), их у нас работает по 2 в каждой полуволне, на красном светодиоде — 1.7в. Итого имеем 0.9*2+1,7=3.5в.

Т.е. трансформатор должен уметь развивать на выходе ЭДС значительно больше 3.5 в. Теперь считаем ток на входе: Если на выходе нам нужно 5 мА, то при коэфф. трансформации 1:3000, первичный ток должен быть 5мА*3000=15А. Смотрим сколько нам надо: например ТЭН имеет мощность 1 кВт, т.е. ток = 1000Вт/220в=4.8А. А нам надо 15А! Что делать? Все просто — 15А/4.8А=3, т.е., нам надо трижды просунуть через центральное отверстие токоведущий проводник и мы получим практически искомую величину — 15А, которая нам и нужна. (т.е. получить фактический коэфф. трансформации 3:3000). Итак, ищем трансформатор, который может выдать на выходе ЭДС не менее 3.5в, при этом не уйти в насыщение при 15А на входе, а не вдаваясь в подробности — ищите с запасом в 2-3 раза.

С учетом того, что нам надо просунуть аж 3 витка — ищем трансформатор с подходящим отверстием. Возьмем например Т10-110А-90-З/0 (см фото)

Он имеет ЭДС не менее 10В, и что самое для нас главное — огромное отверстие (11мм), в которое легко просунем 3 витка сетевого провода (внимание-только один провод из двух, идущих на ТЭН!)

Проверим: сопр. обмотки у Т10-110А-90-З/0=190 Ом. При токе 5 мА, на обмотку придется 5мА*190 Ом=0,95в. Да еще 3.5в на нагрузке, итого имеем 3.5+0,95=4.45в. что меньше 10в. А это значит что все работает! Если отв. не нужно такое большое, например мотаем 3 витка проводом ПЭТВ2-1.05 и запаиваем его в плату (см примеры монтажа на печ. плату), то можно выбрать трансформатор поменьше и подешевле.

А что, если мы проверяем работу ТЭНа аж на 10 кВт? Коротко считаем: 10кВт/220в=48А. А надо всего 15А! Значит на сетодиод пойдет аж 16мА! Либо мы с этим миримся, либо надо отвести лишний ток от светодиода. Как это сделать? Поставим резистивный шунт параллельно светодиоду. Посчитаем шунт? Итак мы имеем 1.7в на нагрузке, и при этом лишний ток 11мА (5 мА съедает светодиод). Считаем 1.7в/11мА=0,15кОм. Ближайший 150 Ом. Считаем мощность = 1,7в*11мА=19мВт. Значит резистор ставим любой (берем обычный 0.125Вт). С учетом того, что особая точность нам не нужна (не измеряем, а просто светим), на этом расчет остановим.

Трансформаторы (с выпрямителем или без него)

Сердце трансформатора — сердечник. Он набирается из пластин трансформаторной стали, изготовить которые вручную довольно проблематично. Правдами и неправдами исходный материал добывается на заводах, в строительных бригадах, на пунктах сбора металлолома. Полученная конструкция (как правило, в виде прямоугольника) должна иметь сечение не меньше, чем 55 см². Это довольно тяжелая конструкция, особенно после укладки обмоток.

При сборке обязательно надо предусмотреть регулировочный винт, с помощью которого можно двигать вторичную обмотку относительно неподвижной первички.

Чтобы не вдаваться в сложности расчетов сечения проводов, возьмем типовые параметры:

  • сила тока на вторичке 100–150 А;
  • напряжение холостого хода 60–65 вольт;
  • рабочее напряжение при сварке 18–25 вольт;
  • сила тока на первичной обмотке до 25 А.

Исходя из этого, сечение провода первички должно быть не менее 5 мм², если делать с запасом — можно взять провод 6–7 мм². Изоляция должна быть жаростойкой, из материала, не поддерживающего горение.

Читать также: Как сделать бензопилу бесшумной своими руками видео

Вторичная обмотка набирается из провода (а лучше медной шины), сечением 30 мм². Изоляция тряпичная. Пусть толщина вас не пугает, количество витков на вторичке небольшое.

Количество витков первичной обмотки определяется по коэффициенту 0.9–1 виток на вольт (для наших параметров).

Формула выглядит так:

W(количество витков) = U(напряжение) / коэффициент.

То есть, при напряжении в сети 200–210 вольт, это будет порядка 230–250 витков.

Соответственно, при напряжении вторички 60–65 вольт, количество ее витков составит 67–70.

С технической точки зрения трансформатор готов. Для удобства использования рекомендуется выполнить небольшой запас по вторичной обмотке, с несколькими ответвлениями (на 65, 70, 80 витках). Это позволит уверенно работать в местах с пониженным напряжением сети.

Прятать агрегат в корпус, или оставлять открытым — это вопрос безопасности использования. Типовой изготовленный сварочный трансформатор своими руками выглядит так:

Оптимальный материал для корпуса — текстолит 10–15 мм.

Добавляем выпрямитель

Самодельный мощный сварочный трансформатор с точки зрения схемотехники — обычный блок питания. Соответственно выпрямитель устроен так же просто, как в сетевом заряднике для мобильного телефона. Только элементная база будет выглядеть на несколько порядков массивнее.

Как правило, в простую схему из диодного моста добавляют пару конденсаторов, гасящих импульсы выпрямленного тока.

Можно собрать выпрямитель и без них, но чем ровнее ток, тем качественней получается сварочный шов. Для сборки собственно моста применяются мощные диоды типа Д161–250(320). Поскольку при нагрузке на элементах выделяется много тепла, его нужно рассеивать с помощью радиаторов. Диоды крепятся к ним с помощью болтового соединения и термопасты.

Разумеется, ребра радиаторов должны либо обдуваться вентилятором, либо выступать над корпусом. Иначе вместо охлаждения они будут греть трансформатор.

Мини сварочный трансформатор

Если вам не нужно варить рельсы или швеллера из стали 4–5 мм, можно собрать компактный сварочник для спайки стальной проволоки (изготовление каркасов для самоделок) или сварки тонкой жести. Для этого можно взять готовый трансформатор от мощного бытового прибора (идеальный вариант — микроволновка), и перемотать вторичную обмотку. Сечение провода 15–20 мм², потребляемая мощность не более 2–3 кВт.

Расчет схемы производится также, как и для более мощных агрегатов. При сборке выпрямителя можно использовать менее мощные диоды.

Микросварочник

Если сфера применения ограничена спайкой медных проводов (например, при монтаже распределительных коробок), можно ограничиться конструкцией размером с пару спичечных коробков.

Выполняется на транзисторе КТ835 (837). Трансформатор изготавливается самостоятельно. Фактически — это высокочастотный повышающий преобразователь.

Трансформатор мотаем на ферритовом стержне. Две первичные обмотки: коллекторная (20 витком 1 мм), базовая (5 витков 0.5 мм). Вторичная (повышающая) обмотка — 500 витков 0.15 проволоки.

Собираем схему, припаиваем по схеме резисторную обвязку (чтобы трансформатор не перегревался на холостом ходу), аппарат готов. Питание от 12 до 24 вольт, с помощью такого аппарата можно сваривать жгуты проводов, резать тонкую сталь, соединять металлы толщиной до 1 мм.

В качестве сварочных электродов можно использовать толстую швейную иглу.

Трансформатор переменного тока

Самодельный сварочный трансформатор переменного тока — это классический тип трансформатора, который применятся в конструкции трансформаторного сварочного аппарата. Трансформатор, работающий на «переменке», проще трансформатора на «постоянке», дешевле и ремонтопригоднее. Но у него есть ряд существенных недостатков. На аппаратах с трансформатором переменного тока хуже поджигается дуга. Она горит нестабильно и требует от сварщика опыта. В противном случае швы получаются некачественными и дефектными.

Тем не менее, трансформатор на «переменке» — это основа трансформатора на «постоянке» (о котором мы расскажем далее), так что вам все равно придется научиться собирать его. И в этом нет ничего сложного.

Выбор проводов для обмотки

Для сборки сварочного трансформатора переменного тока вам необходимы провода для намотки первичной и вторичной обмотки. Также вам нужно сделать так называемый сердечник. Для этого нужна специальная электротехническая сталь, чтобы на этот сердечник уже намотать обмотки.

Определимся с техническими характеристиками, которые должен обеспечить наш трансформатор. Мы в качестве примера возьмем напряжение в 60 В и сварочный максимальный сварочный то от 120 до 160 Ампер. При таком раскладе минимальное сечение у проводов составляет 4 кв.мм.

Но мы рекомендуем использовать провода сечением 7 кв.мм., это оптимальный вариант. При использовании таких проводов ваш самодельный трансформатор не будет бояться перепадов напряжения. Ну а что касается диаметра медной жилы для первичной обмотки, то в данном случае оптимальным вариантом будет значение в 3 мм.

Подбирая провода обратите внимание на их оболочку. Она обязательно должна быть тканевой

 Ни в коем случае не полимерной. Поскольку полимеры легко плавятся от избыточного нагрева, что часто приводит к короткому замыканию. Если по какой-то причине вы не смогли подобрать провод достаточного диаметра, то можете взять два тонких провода и наматывать их вместе.

Но учитывайте, что в такой ситуации обмотка увеличиться в размерах и трансформатор будет нуждаться в большем корпусе. Габариты аппарата и его вес так же увеличатся. Вся эта информация применима к первичной обмотке. Для вторичной обмотки можно использовать более толстые провода. Вроде тех, с помощью которых подключается держатель электрода.

Сборка сердечника

Итак, провода выбраны и подготовлены. Теперь нам нужно собрать тот самый сердечник. На изображении ниже показан идеальный по всем параметрам сердечник для самодельного трансформатора. Он стержневого типа.

Для сборки вам понадобятся пластинки, изготовленные из электротехнической стали. Оптимальная толщина одной пластинки — не менее 0.35 и не более 0.55 мм. А необходимый размер сердечника (a, b, c, d на рисунке выше) рассчитывается отдельно исходя из сечения провода. Но многие умельцы выбирают размеры «на глаз». Главное, чтобы все витки поместились.

Теперь приступаем к сборке сердечника. Возьмите пластины (они должны быть Г-образными) и складывайте в том порядке, который указан на изображении ниже. Когда вы получите сердечник достаточной толщины, скрепите все пластинки по углам с помощью болтов. Обработайте пластинки с помощью надфиля. Потом изолируйте сердечник.

Намотка

Следующий этап — намотка трансформатора. Сначала наматывается первичная обмотка. Необходимо сделать около 210-215 витков. Мотать нужно так, как указано на изображении ниже. Когда сделаете все витки, прикрепите сверху текстолитовую пластинку. На ней можно закрепить концы обмотки, используя болты.

Далее вам нужно перемотать вторичную обмотку. На ней необходимо сделать около 70 витков. Затем так же прикрепите текстолитовую пластинку и на ней закрепите концы обмотки с помощью болтов. Готово! Трансформатор можно использовать и в таком виде, а можно применить для дальнейших модификаций. На изображении ниже показан конечный вид намотанного трансформатора.

Материалы для намотки

В качестве сердечника используют в основном профильные пластины, изготовленные из специального сплава. Их собирают по необходимой толщине, учитывая расчетное сечение сердечника. Существует несколько форм пластин, но чаще всего используются Ш-образные элементы.

Каркас трансформатора – это, в принципе, изолятор, который ограждает сердечник от обмоток. На нем же держится и катушка. Изготавливают каркас и диэлектрического материала, он должен быть тонким (0,5-2,0 мм), чтобы поместиться в окошке сердечника. Если будет перематываться старый трансформатор, то функции каркаса могут выполнять картон, текстолит и так далее. Размеры каркаса и его форма определяются параметрами сердечника. Но высота конструкции должна быть больше размеров обмотки.

Для тороидальных трансформаторов лучше использовать медные провода, покрытые защитной эмалью. Для сварочных аппаратов лучше использовать провода медные или алюминиевые с целлюлозной, хлопчатобумажной и ли стекловолокнистой изоляцией. Последний вид не самый лучший. Он прекрасно справляется с нагрузками, особенно с высокими температурами, но в процессе вибрации волокна расслаиваются, а это нарушение изоляционного слоя. Что касается выводных проводов, то оптимально, если они будут разного цвета. Это упростит способ подключения.

Как видите, перемотать свой собственный старый трансформатор не очень сложно. Это, конечно, займет много времени, но работать прибор будет неплохо. Во всяком случае он будет дешевле, чем покупать новый.

Направление витков

Я с трудом нашел информацию про направление витков обмотки, — для этого пришлось освежить школьный курс физики (правило буравчика и т.п.). Хотя этот вопрос неизбежно возникает у новичка.

Главное правило — направление витков обмотки не имеет значения… до тех пор пока возникает необходимость соединять обмотки друг с другом (последовательно или параллельно), либо в случае применения трансформатора в каких-нибудь устройствах, где важна фаза сигнала.

Не важно в каком направлении наматывать витки — важно как потом соединяются обмотки

Последовательное соединение обмоток

При последовательном соединении обмоток трансформатора, нужно мысленно представить, что одна обмотка является продолжением другой, а точка их соединения — это разрыв единой обмотки, в которой направление вращения витков вокруг сердечника сохраняется неизменным (и конечно не может разворачиваться в обратную сторону!).

При этом любой вывод обмотки может быть началом или концом, а само направление вращения может быть любым. Главное, чтобы это направление оставалось одинаковым у соединяемых обмоток.

При этом, движение соединяемых обмоток сверху вниз катушки или снизу вверх не имеет значения (см. рисунок — увеличивается кликом мыши).

В трансформаторах, у которых сердечник имеет форму буквы «О», и катушки намотаны на двух каркасах справа и слева, действует те же правила. Но для простоты понимания можно мысленно «разорвать» сердечник (сверху или снизу), и представить, что он выпрямляется в один стержень, — так легче будет понять, как одна обмотка переходит в другую с сохранением направления вращения витков (по или против часовой стрелки). См. рисунок ниже (рисунок увеличивается кликом мыши).

Параллельное соединение обмоток

При параллельном соединении важна длина провода в обмотках.

Даже при одинаковом количестве витков, разные обмотки могут иметь разную длину провода (та обмотка, которая ближе к середине — будет короче, а та что дальше — длиннее). В результате этого могут возникать перетоки.

Если предполагается параллельное соединение обмоток, то лучше мотать их одновременно в два (три, четыре…) провода. Тогда они будут одинаковой длины, что максимально исключит перетоки при их дальнейшем параллельном соединении.

Намотку в несколько проводов также используют при отсутствии провода нужного сечения (набирают большое сечение несколькими проводами меньшего).

Проверка направления витков при помощи батарейки и мультиметра

Если есть трансформатор, в котором нужно соединить две обмотки последовательно, но направление витков не видно и не известно, можно подать импульс постоянного тока от батарейки на одну из обмоток, наблюдая за скачком напряжения на другой обмотке.

Когда скачок напряжения в момент подключения батарейки на мультиметре (на второй обмотке) будет в «+», то точками соединения обмоток будут любые «+» и «-» разных обмоток (например «+» мультиметра и «-» батарейки, или наоборот). Два других конца при этом будут выводами этих обмоток после соединения (см. рисунок — кликнуть мышью для увеличения).

Направление витков на разных катушках

Повторюсь — не важно направление намотки, важно подключение обмоток. Хотя есть одно «но»

Если говорить об удобстве, то на таком типе трансформатора (с сердечником в виде буквы «О» и двумя катушками), удобнее правую и левую катушку мотать одинаково (не зеркально, а одинаково). В этом случае удобнее будет ставить перемычки при последовательном соединении двух обмоток на разных катушках — перемычки будут с одной стороны, и не через весь каркас сверху вниз

Хотя есть одно «но». Если говорить об удобстве, то на таком типе трансформатора (с сердечником в виде буквы «О» и двумя катушками), удобнее правую и левую катушку мотать одинаково (не зеркально, а одинаково). В этом случае удобнее будет ставить перемычки при последовательном соединении двух обмоток на разных катушках — перемычки будут с одной стороны, и не через весь каркас сверху вниз.

См. рисунок (для увеличения — кликнуть мышью на рисунке):

Конструкция

Первый двухполярный трансформатор был изготовлен еще Фарадеем, и согласно данным, это было именно тороидальное устройство. Тороидальный автотрансформатор (марка Штиль, ТМ2, ТТС4)– это прибор, предназначенный для преобразования переменного тока одного напряжения в другое. Они используется в различных линейных установках. Этот электромагнитный прибор может быть однофазным и трехфазным. Конструктивно состоит из:

  1. Металлического диска, изготовленного из рулонной магнитной стали для трансформаторов;
  2. Резиновой прокладки;
  3. Выводов первичной обмотки;
  4. Вторичной обмотки;
  5. Изоляции между обмотками;
  6. Экранирующей обмотки;
  7. Дополнительным слоем между первичной обмоткой и экранирующей;
  8. Первичной обмотки;
  9. Изоляционного покрытия сердечника;
  10. Тороидального сердечника;
  11. Предохранителя;
  12. Крепежных элементов;
  13. Покрывной изоляции.

Для соединения обмоток используется магнитопровод.

Этот тип преобразователей может классифицироваться по назначению, охлаждению, типу магнитопровода, обмоткам. По назначению бывает импульсный, силовой, частотный преобразователь (ТСТ, ТНТ, ТТС, ТТ-3). По охлаждению – воздушный и масляный (ОСТ, ОСМ, ТМ). По количеству обмоток – двухобмоточный и более.

Фото – принцип работы трансформатора

Устройство этого типа используется в различных аудио- и видеоустановках, стабилизаторах, системах освещения. Главным отличием этой конструкции от других устройств является количество обмоток и форма сердечника. Физиками считается, что кольцевая форма – это идеальное исполнения якоря. В таком случае, намотка тороидального преобразователя выполняется равномерно, как и распределение тепла. Благодаря такому расположению катушек, преобразователь быстро охлаждается и даже при интенсивной работе не нуждается в использовании кулеров.

Фото – тороидальный кольцевой преобразователь

Достоинства тороидального трансформатора:

  1. Небольшие габариты;
  2. Выходной сигнал на торе очень сильный;
  3. Обмотки имеют небольшую длину, и как результат уменьшенное сопротивление и повышенный КПД. Но также из-за этого при работе слышен определенный звуковой фон;
  4. Отличные характеристики энергосбережения;
  5. Простота в самостоятельной установке.

Преобразователь используется как сетевой стабилизатор, зарядное устройство, в качестве блока питания галогенных ламп, лампового усилителя УНЧ.

Фото – готовый ТПН25

Видео: назначение тороидальных трансформаторов

Вторичная обмотка

Рассчитаем диаметр провода вторичной обмотки самодельного трансформатора. Мощность вторичной обмотки примем:

Р2 = 100 ватт

Р2 = U2  x I2

где:

U2 = 18 вольт;

I2 – ток;

Допустимый ток во вторичной обмотке будет равен:

I2 = Р2 / U2 = 100 Вт / 18 В = 5,55 А.

Из таблицы диаметр в зависимости от тока: диаметр для тока 5,55 А – ближайшее значение в таблице 6,28 ампера. Для такого тока необходим диаметр провода 2 мм.

Берем провод, который мы получили при сматывании старого трансформатора. Наматываем провод вторичной обмотки по такому же принципу, как и первичную обмотку. Провод вторичной обмотки намного жестче, поэтому, чтобы он ровно ложился при намотке, периодически его необходимо осаживать ударами молотка через деревянный брусок, чтобы не повредить изоляцию. У нас получилось 3 слоя вторичной обмотки. Получился готовый намотанный каркас простого трансформатора.

Как определить первичную обмотку?

Если Вы не знаете, как подключить трансформатор, то первым делом необходимо найти первичную обмотку. Первичную обмотку в понижающем трансформаторе можно определить с помощью мультиметра в режиме измерения сопротивления. В большинстве случаев сетевая обмотка имеет самое высокое сопротивление, так как намотана на большое количество витков.

Обратите внимание, что первичная обмотка в маломощных трансформаторах наматывается тонким обмоточным проводом и располагается (как правило, но бывают исключения) ближе всех к стержню магнитопровода. Рассмотрите контактные лепестки на каркасе катушки трансформатора, концы обмоток выходят наружу и запаиваются на лепестки контактов

Так можно визуально оценить толщину проволоки и какие выводы обмоток находятся ближе всех к внутренней стороне каркаса катушки.

Так же с большим сопротивлением может быть и высоковольтная анодная обмотка в повышающем анодно-накальном трансформаторе, но в любом случае необходимо проверять через лампочку и замерять напряжение на других обмотках. Например, на накальную обмотку подать напряжение 6,3В и замерить напряжение на других обмотках. Сетевая (первичная) обмотка намотана на 220-230В, на ней должно быть примерно такое же напряжение.

Определить обмотки можно с помощью мультиметра в режиме «прозвонка» (так же измерение сопротивления). На контактной площадке катушки трансформатора ставите щуп на один лепесток и поочередно вторым щупом дотрагиваетесь до других лепестков. Когда находите второй конец обмотки, то мультиметр звуковым сигналом (показаниями сопротивления на экране) оповещает Вас об этом. Таким образом «вызваниваете» обмотки. Чтобы не запутаться следует предварительно срисовать расположение контактов на катушки и помечать в процессе определения обмоток на замыкание. Если обмотка имеет несколько выводов, то начало и её конец можно узнать по наибольшему сопротивлению для данной обмотки (средняя точка будет иметь среднее значение сопротивления).

Выполнив несложные действия с определением обмоток, Вы самостоятельно сможете подключить неизвестный Вам трансформатор. С этим намного проще, если на катушках трансформатора указана заводская маркировка. В этом случае по информации из справочника можно определить параметры и нумерацию выводов обмоток трансформатора.

Радио-как хобби

Те радиолюбители, которые имеют позывные и хоть изредка работают в эфире, неизбежно сталкиваются с изготовлением согласующих антенных устройств или цепей. Мощная катушка индуктивности имеется в любом из этих устройств.

В этой статье рассказано об изготовлении такой катушки. Но изготовил я её не для антенного согласующего устройства, а для прибора под названием «искусственная земля». Этот прибор будет описан в отдельной статье.

Итак, катушка индуктивности с воздушным диэлектриком. Подобные я уже делал для согласования Г-образной антенны. Каркасом для катушки служит пластина из изоляционного материала. Я использовал стеклотекстолит толщиной 3 мм. Для обеспечения постоянства шага намотки из такого же стеклотекстолита изготавливаются две распорные планки.

Размеры всех этих элементов напрямую зависят от размеров изготавливаемой катушки индуктивности. В моем случае катушка индуктивности имеет диаметр 60 мм и содержит 23 витка медного провода диаметром 1,2 мм.

Чертеж каркаса и распорных планок:

Как видно, каркас имеет два ряда отверстий диаметром 2 мм, просверленных с шагом 3 мм. Расстояние между рядами равно диаметру катушки индуктивности-60мм.

Важный момент-нижний ( см. чертеж) ряд отверстий смещен по горизонтали относительно верхнего ряда на половину шага. В моем случае, при шаге 3 мм, смещение составило 1,5 мм. Это нужно для того, чтобы витки катушки можно было легко «ввинтить» в каркас.

Для облегчения сверления отверстий в программе Sprint Layout подготовил шаблон. Выглядит так:

Этот шаблон распечатывается на принтере, приклеивается к пластине каркаса , затем производится кернение отверстий и их сверловка.

Пластина каркаса и распорные планки перед кернением:

Катушка индуктивности наматывается первоначально на какой-либо оправке.

Для получения катушки диаметром 60 мм я намотал 23 витка провода диаметром 1,2 мм на отрезке сантехнической трубы диаметром 50 мм.

Почему так? Потому что, после намотки катушка индуктивности в свободном состоянии несколько спружинивает и увеличивается в диаметре до примерно 60 мм. Получаем эдакую спираль из медного провода.

И это ключевой момент. В первую очередь нужно намотать хотя бы 10 пробных витков провода на подходящей оправке. Мотать нужно плотно, виток к витку. Затем просто освободить полученную катушку. Она неизбежно увеличится в диаметре. Этот диаметр нужно измерить, он и будет исходной величиной для подготовки шаблона каркаса. Именно диаметр полученной спиральной катушки определяет расстояние между рядами отверстий каркаса. Чем точнее измерим диаметр, тем легче потом будет вкрутить витки катушки в отверстия каркаса.

Долго расписывал-надеюсь, получилось более-менее внятно и понятно.

Дальше все просто. Катушка индуктивности в виде спирали из медного провода просто ввинчивается в отверстия пластины-каркаса. Причем, сначала провод пропускам в первую пластину-распорку, затем в пластину-каркас, и в последнюю очередь во вторую пластину-распорку.

Далее несколько фото готовой катушки для пояснения процесса намотки.

Катушка индуктивности имеет вот такой общий вид:

Как уже указывалось, катушка имеет 23 витка. Измеренная индуктивность составила около 20 мкГн.

Еще добавлю, что уже делал ранее подобные катушки по этой технологии. Самая большая имела диаметр мм и длину около 200 мм. Так что, способ вполне подходящий.

Небольшое видео процесса изготовления катушки индуктивности, описанной в данной статье:

Тороидальный трансформатор своими руками

По всем характеристикам тороидальные трансформаторы превосходят П и Ш образные трансформаторы примерно в 1.5.. 2 раза. Также по весу торы в намного легче.

В связи с этим лучше делать тороидальный трансформатор для сварочных аппаратов.

Об изготовлении тороидального трансформатора в домашних условиях пойдет речь в нашей статье.

В наличии имелось железо от какого то трансформатора размерами 7 см х 65 см.

Берем пластины и обкатываем их круглым предметом, например бутылкой.

Берем одну пластину сворачиваем ее в кольцо и закрепляем саморезами. Это будет оправка для набора пластин.

Начинаем укладывать пластины начиная от края во внутрь. Так как внутренний диаметр самом начале большой, то сначала укладываем ровные пластины, не обкатанные бутылкой.

Набрав небольшое количество пластин, обязательно поджимаем их.

Примерно вот что должно получится. Так как внутренний диаметр кольца уменьшается, то далее применяем пластины, которые обкатывали бутылкой.

Первое кольцо магнитопровода тороидального трансформатора готово. Выглядит оно вот так.

Далее подготавливаем вторую оправку для второго кольца магнитопровода нашего трансформатора.

Продолжаем укладывать пластины от края во внутрь. Процесс повторяется, делать нужно то же самое, что и для первого кольца.

Стремитесь укладывать пластины без зазорно, то есть стык в стык. Конечно в начале будет получаться хорошо, но в конце все равно не получится.

Не забываем обжимать пластины. Делаем это постоянно. От этого зависит качество сборки тора. Лишние зазоры нам ни к чему.

Вот собственно оба кольца. Фотка получилась не резкой.

Далее обстукиваем торцы получившихся колец молотком.

Берем эпоксидный клей, разводим его растворителем.

Пропитываем клеем оба кольца магнитопровода. Клей не жалеем.

Затем склеиваем оба кольца.

Вот такой вот сердечник тороидального трансформатора у нас получился. Высота сердечника получилась 14 см и набор пластин 4 см. Площадь сердечника 56 см.кв. Учитывая небольшие зазоры, которые образовались при сборке, принимаем площадь сердечника 50 см.кв.

Теперь необходимо за изолировать сердечник. Для этого вырезаем из картона куги и накладываем на сердечник.

Далее берем тряпочную черную изоляционную ленту  и обматываем сердечник.

Вот что получилось.

Обматываем еще раз сердечник молярным скотчем.

Все готово для намотки обмоток трансформатора. Провод для первичной обмотки наматываем на самодельный челнок, сделанный из куска ДСП.

Обматываем конец провода филенкой.

Начинаем мотать. Просовываем челнок через отверстие в торе и аккуратно прижимаем каждый виток, равномерно распределяя по поверхности сердечника.

Намотав первый ряд обмотки, обматываем обмотку изоляционной лентой.

Далее мотаем второй ряд первичной обмотки, делая отводы для регулирования тока по первичной обмотке.

После того как первичная обмотка намотана, проверяем ток холостого тока трансформатора. Он должен быть в пределах от 0,2 А до 1,2 А.

На изображениях  показаны  замеры тока в в нормальном и форсированном режиме работы трансформатора. Цифровым мультиметром производился замер напряжения вторичной обмотки (для дальнейшего точного расчета количества витков вторичной обмотки), в качестве которой был намотан кусок провода из 4 витков.

Обматываем второй конец первичной обмотки филенкой и изолируем первичную обмотку.

Далее мотаем вторичную обмотку точно так же как первичную, только без применения челнока.

После намотки изолируем ее.

Далее вырезаем из текстолита или подобного материала два круга, сверлим отверстия под крепление обмоток.

В результате мы получаем вот такой вот сварочный трансформатор.

Данный тороидальный трансформатор был установлен в сварочный полуавтомат. При интенсивном использовании сварочного полуавтомата, температура трансформатора не повышалась выше 60 градусов. Трансформатор работает тихо без потрескиваний  и гула.

Вес данного экземпляра в собранном виде равен 16 кг.

Ответы на комментарии:

Изолирование проводов.

Пропитка сердечника эпоксидным клеем.

Расчет площади сердечника.

Площадь сердечника равна S=А*Б

Шпильки для тора

Автор статьи и фото: Admin Svapka.Ru

Особенности и ошибки проектирования токового трансформатора

Хочу обратить Ваше внимание на то, что напряжение на выходе трансформатора тока будет двуполярным даже если в измеряемой цепи протекает пульсирующий однополярный ток. Трансформатор не может передавать постоянное напряжение

Он передаст на выходную обмотку только переменную составляющую измеряемого тока.

Еще одно замечание. Шунт вторичной обмотки должен пропускать электрический ток в обе стороны. Недопустимо ставить последовательно с выходной обмоткой диод. Это может привести к скачкам напряжения на этой обмотке, насыщению трансформатора, помехам в измеряемой цепи, пробою диода. Можно сначала поставить шунтирующий резистор, а уже потом снять с него напряжение через диод, или поставить мост с включенным в его диагональ шунтирующим резистором. Мост, как известно, обладает двусторонней проводимостью со стороны входов переменного напряжения.

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

В некоторых случаях полезно измерять сумму токов через несколько проводников. Тогда все эти проводники пропускаются через окно сердечника. Сила тока во вторичной обмотке будет пропорциональна силе суммы токов

Важно направление протекания тока. Если один провод пропущен так, что ток протекает в одном направлении, а второй так, что ток течет навстречу, то на выходе будет разность токов

Как я уже писал, трансформатор тока лучше работает при симметричном измеряемом токе. В некоторых случаях этого можно добиться, пропустив проводники в правильном направлении. Например, в пуш-пульном преобразователе напряжения, для ограничения тока может применяться токовый трансформатор. Можно пропустить проводники, соединенные с коллекторами (стоками) транзисторов так, чтобы ток проходил через трансформатор в одном направлении, но можно пропустить их крест-на-крест, а измеряемое напряжение подать на мост. Тогда трансформатор тока будет работать в более щадящем режиме.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Семинар по технике
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: